用户名: 密码: 验证码:
青藏铁路多年冻土区列车行驶路基振动反应与累积永久变形
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着青藏铁路的通车,由列车荷载振动效应引起冻土路基的沉陷问题日益显著,直接关系到客货列车的安全营运、能否提速等关键科学问题。鉴于此,本论文以青藏铁路高温极不稳定多年冻土区路基在气候变化和列车荷载共同作用下的长期服役性能为应用背景,采用室内试验、理论分析和数值模拟相结合的技术手段,对青藏铁路列车荷载下冻土、融土的动力变形特性、列车荷载下路基振动反应和长期列车荷载作用下路基动力永久变形等科学问题进行了基础性研究,主要研究内容与取得的成果如下。
     (1)针对不同的动应力条件、环境温度和土体物理状态,通过低温动三轴试验,分析了冻结粉质粘土的动力变形特性,研究了列车荷载下冻土的弹性变形和累积塑性变形的变化规律,建立了冻土回弹模量的经验模型;并以临界动应力为归一化因子,进一步建立了冻土累积塑性应变与动应力条件、振动次数和冻结温度等参数之间的关系模型。
     (2)针对冻融循环与列车荷载作用特点,基于常温动三轴试验,研究了冻融循环次数、融化温度、动应力幅值等对融化粉质粘土的动态力学行为的影响,深入研究了冻融循环和列车循环荷载综合作用下融土的弹性变形和累积变形变化规律,并建立了回弹模量和累积塑性变形与冻融循环次数之间的关系模型,与以上建立的模型一并为后续计算分析青藏铁路路基永久变形提供依据。
     (3)针对青藏铁路路基的场地条件,采用有限元-无限元相结合手段,研究了列车行驶对多年冻土区路基三维振动反应的数值模拟途径。实现了温度场和应力场耦合,探讨了列车速度、轴重与路基的主要设计参数对路基振动反应的影响规律,并借助正交试验设计原理,对各影响参数的敏感性进行评价。
     (4)以建立的列车荷载下冻结、融化粉质粘土的累积永久应变模型为基础,二次开发了接口于粘弹塑性本构模型的CREEP子程序,建立了列车行驶路基累积永久变形预测模型。并基于该模型探讨了列车轴重、速度、等效振次和冻融状态等因素对路基累积永久变形发展的影响。
With the completion of the Qinghai-Tibet Railway, several damages induced bythe traffic loads have been occurring to the permafrost subgrade, and the safe-operationdemand and speed-increasing scheme of the railway will therefore be affected seriously.In view of this, considering the background of the long term operating performance ofthe ice-rich permafrost sloped-subgrade along the QTR subjected to traffic loads andannually changing climate, the present thesis attempts to present relevant fundamentalresearches on such key issues as the dynamic performance of frozen and thawing soil,the vibration response of the subgrade, and the permanent deformation induced bytraffic loads. Laboratory tests, theoretical analysis and numerical simulation are takenas the main technological measures to perform the investigation. The original work ispresented in detail as follows.
     (1) Based on the Cyclic-dynamic triaxial tests, the dynamic behavior of frozen siltclay of the QTR subgrade subjected to the variation of dynamic stresses, of externalenvironmental conditions, and of physical features of soil is examined, and emphasis isalso given to the evolution of elastic deformation and cumulative plastic deformation offrozen silt clay induced by vibration loads. Specifically, a resilientmodulus-based-model is established on the basis of the obtained data, and the relationmodel between cumulative deformation and such parameters as dynamic stresses,number of vibration, and frozen temperatures is proposed as well, taking criticaldynamic stress as the normalization factor.
     (2) With the above-mentioned tests performed, a further research of the influenceof freezing-thawing cycles, thawing temperature, amplitude of dynamic stresses on themechanic features of the frozen silt clay of the QTR sloped-subgrade is carried out, inview of the characteristics of seasonally frozen soil and traffic loads. Special attention ispaid to the development of elastic and cumulative deformation of silt clay subjected toboth freezing-thawing cycles and traffic loads, and another relationship model ofresilient modulus, cumulative plastic deformation and freezing-thawing cycles isobtained, which together with the model mentioned above can provide theoreticalfoundation for the later calculation of permanent deformation of the QTR sloped-subgrade.
     (3) A three dimensional finite element-infinite element model on the vibrationresponse of the QTR sloped-subgrade is established. Our team’s train-track-subgradevibration program is adopted to simulate the traffic loads, that is, the calculatedtrack-sleeper forces, and the obtained forces are then imposed on the three-dimensionalsloped-subgrade model so that the temperature field can be coupled with the stress field.The effects of primary parameters such as travelling velocity, train axle, and subgradeon the vibration response of sloped-subgrade are compared based on the simulationresults, and the sensitivity analysis of parameters is performed trough intersectionexperiment design principle, by which the mechanism on the dynamic characteristics ofthe sloped-subgrade of warm permafrost region is further clarified.
     (4) On the basis of the established cumulative-permanent-strain model of frozenand thawed silt clay subjected to cyclic traffic loads, the Drucker-Prager-basedvisco-elastic plasticity sub-program CREEP is developed. Taking the well-obtaineddynamic stresses of subgrade as the initial state variable, the numerical model on thepermanent deformation of the QTR subgrade considering both the effects of groundpressures and dynamic stresses is built, based on which the permanent deformation ofsloped-subgrade induced by traffic loads is predicted, and the influence of train axle,traveling velocity, and vibration numbers on the permanent deformation is investigated.
引文
[1]周幼吾,郭东信,邱国庆,等.中国冻土[M].北京:科学出版社,2000.
    [2]马巍,刘端,吴青柏.青藏铁路冻土路基变形监测与分析[J].岩土力学,2008,29(3):571-579.
    [3] Cheng G. D., Sun Z. Z., Niu F. J.. Application of the Roadbed CoolingApproach in Qinghai–Tibet Railway Engineering[J]. Cold Regions Science andTechnology.2008,53:241–258.
    [4]朱占元.青藏铁路列车行驶多年冻土场地路基振动反应与振陷预测[D].哈尔滨:哈尔滨工业大学博士学位论文,2009.
    [5]马立峰.动荷载条件下多年冻土区斜坡路基稳定性研究[D].北京:北京交通大学博士论文,2010.
    [6] Madshus C., Kaynia A. M. High-Speed Railway Lines on Soft Ground:Dynamic Behavior at Critical Train Speed[J]. Journal of EngineeringMechanics,2005,131(7):699-711.
    [7] Mehd B.. Train-Induced Ground Vibration and Its Prediction[D]. MS Thesis,Royal Institute of Technology.2004, Stockholm, Sweden.
    [8] Degrande G., Schillemans G.. Free Field Vibrations During the Passage of aThalys High-Speed Train at Variable Speed[J]. Journal of Sound and Vibration,2001,247(1):131-144.
    [9] L. Auersch. The Excitation of Ground Vibration by Rail Traffic: Theory ofVehicle-track-soil Interaction and Measurements on High-Speed Lines [J].Journal of Sound and Vibration,2005,284:103-132.
    [10] P. Galvín, J. Domínguez. Experimental and Numerical Analyses of VibrationsInduced by High-Speed Trains on the Córdoba-Málaga Line [J]. Soil Dynamicsand Earthquake Engineering,2009,29:641-657.
    [11] Turunen-Rise I. H, Brekke A, Harvik L, Madshus C, Klaboe R.. Vibration inDwellings from Road and Rail Traffic Part I: a New Norwegian MeasurementStandard and Classification System[J]. Applied Acoustics,2003,64(1):71-87.
    [12] Chebli H., Clouteau D., Schmitt L.. Dynamic Response of High-SpeedBallasted Railway Tracks:3D Periodic Model and in Situ Measurements[J].Soil Dynamics and Earthquake Engineering,2008,28(2):118-131.
    [13] Ju S. H., Lin H. T., Chen T. K. Studying Characteristics of Train-InducedGround Vibrations Adjacent to an Elevated Railway by Field Experiments[J].Journal of Geotechnical and Geoenvironmental Engineering,2007,133(10):1302-1307.
    [14] Ju S. H., Lin H. T. Experimentally Investigating Finite Element Accuracy forGround Vibrations Induced by High-Speed Trains[J]. Engineering Structures,2008,30(3):733-746.
    [15] Ju S. H., Lin H. T., Huang J. Y.. Dominant Frequencies of Train-InducedVibrations. Journal of Sound and Vibration[J],2009,319(1-2):247-259.
    [16] Pablo Salvador, Julia Real, et al. A Procedure for the Evaluation of VibrationInduced by the Passing of a Train and Its Application to Real RailwayTraffic[J]. Mathematical and Computer Modelling,2011,53:42-54.
    [17]曾树谷.铁路轨道测试技术[M].北京:中国铁道出版社,1988.
    [18]高广运,李志毅,冯世进,等.秦沈铁路列车运行引起的地面振动实测与分析[J].岩土力学学报,2007,28(9):1817-1071.
    [19]蔡成标,翟婉明,赵铁军,等.列车通过路桥过渡段时的动力作用研究[J].交通运输工程学报,2001,1(1):17-19.
    [20] Xia H., Zhang N., Cao Y. M. Experimental Study of Train-Induced Vibrationsof Environments and Buildings[J]. Journal of Sound and Vibration,2005,280(3-5):1017-1029.
    [21]陈建国,夏禾,陈树礼,等.运行列车引起的周围地面振动规律研究[J].工程力学,2010,1(27):98-103.
    [22]屈畅姿,王永和,魏丽敏,等.武广高速铁路路基振动现场测试与分析[J].岩土力学,2012,5(33):1451-1456.
    [23]陈斌,陈国兴,朱定华,等.城市轨道交通引起的场地振动试验研究[J].防灾减灾工程学报,2007,27(3):312-317.
    [24]李德武,高峰.金家岩隧道列车振动现场测试与分析[J].兰州铁道学院学报,1997,16(03):7-11.
    [25]潘昌实,谢正光.地铁区间隧道列车振动测试与分析[J].土木工程学报,1990,23(02):21-28.
    [26]张玉娥,白宝鸿.地铁列车振动对隧道结构激振荷载的模拟[J].振动与冲击.2003,26(2):82-89.
    [27]王祥秋,杨林德,高文华.铁路隧道提速列车振动测试与荷载模拟[J].振动与冲击,2005,24(3):99-102.
    [28]谢城养,曹跃华,宋瑞刚.地铁列车运营引起的既有线结构振动衰减规律分析[J].铁道建筑技术,2006,(03):44-47.
    [29]闫维明,聂晗,任珉,等.地铁交通引起的环境振动的实测与分析[J].地震工程与工程振动,2006,4(26):187-191.
    [30]蔡英,黄时寿.重载铁路的线路动力学测试及分析:大秦线万吨列车试验分析[J].西南交通大学学报,1993,3:92-98.
    [31]周神根.高速铁路路基基床设计[J].路基工程,1997,72(3):1-5.
    [32]韩自力,张千里.既有线提速路基动应力分析[J].中国铁道科学,2005,26(5):1-4.
    [33]杨灿文,龚亚丽.列车通过时路基动应力和振动[J].土木工程学报,1963,9(2):49-57.
    [34]王炳龙,余绍锋,周顺华,等.提速状态下路基动应力测试分析[J].铁道学报,2000,22(增):79-81.
    [35]聂志红,李亮,刘宝琛,等.秦沈客运专线路基振动测试分析[J].岩石力学与工程学报,2005,24(6):1067-1071.
    [36]律文田,王永和.秦沈客运专线路桥过渡段路基动应力测试分析[J].岩石力学与工程学报,2006,23(3):500-504.
    [37]李献民,肖宏彬,土永和.行车速度对桥路过渡段路基动应力的影响[J].地震工程与工程振动,2005,2(1):50-53.
    [38]刘林芽,雷晓燕,练松良.提速铁路过渡段的动力反应测试分析[J].铁道工程学报,2005,89(5):15-19.
    [39]张泉,罗强.遂渝铁路刚性路基动应力测试分析[J].铁道设计标准,2006(2):18-20.
    [40]易佳俊.路桥过渡段高速列车通过性能的试验研究[J].四川建材,2009,35(147):132-133.
    [41]马伟斌,韩自力,朱忠林.高速铁路路桥过渡段振动特性试验研究[J].岩土工程学报,2009,31(1):124-128.
    [42]许杰.软土地区铁路既有动力响应测试及提速列车-路基动力作用特性研究[D].上海:上海交通大学硕士学位论文,2011.
    [43]刘建坤,刘奉喜,房建宏.青海热水煤矿多年冻土区列车引起的地面振动检测与模拟[J].冰川冻土,2004,2(26):177-181.
    [44]陈拓,吴志坚,车爱兰,等.机车动荷载作用下多年冻土区铁路路基动力反应的试验研究[J].地震工程与工程振动,2011,31(1):168-173.
    [45]王立娜,凌贤长,张锋,等.大庆季节冻土区冬季铁路列车行驶振动反应现场监测研究[J].中国科技论文在线,2009,(07):507-511.
    [46] Ling X. Z., Chen S. J., Zhu Z. Y., Zhang F., Wang L. N., Zou Z. Y.. FieldMonitoring on the Train-Induced Vibration Response of Track Structure inBeiluhe Permafrost Region Along Qinghai-Tibet Railway in China[J]. ColdRegions Science and Technology,2009(a),60(1):75-83.
    [47] Ling X. Z., Zhang F., Zhu Z. Y., Ding L., Hu Q. L.. Field Experiment ofEmbankment Vibration Induced by Passing Train in a Seasonally FrozenRegion of Daqing[J]. Earthquake Engineering and Engineering Vibration,2009(b),8(1):149-157.
    [48] Ling X. Z., Wang L. N., Zhang F., et al. Field Experiment on Train-InducedEmbankment Vibration Responses in Seasonally-Frozen Regions of Daqing,China[J]. Journal of Zhejiang University: Science A,2010,11(8):596-605.
    [49] Sneddon I. N.. The Stress Produced by a Pulse of Pressure Moving Along TheSurface of Asemi-Infinite Solid[J]. Rendiconti Del Circolo Matematico diPalermo,1952,2:57-62.
    [50] Cole J, Huth J.. Stresses Produced in a Half-Space by Moving Loads. Journalof Applied Mechanics[J]. Transactions of the ASME,1958,25:433-436.
    [51] Eason G., The Stresses Produced in a Semi-Infinite Solid by a Moving SurfaceForce[J]. International Journal of Engineering Science,1965,2:581-609.
    [52] Alabi B.. A Parametric Study on Some Aspects of Ground-Borne Vibrations dueto Rail Traffic[J]. Journal of Sound Andvibration,1992,153:77-87.
    [53] Gunaratne M., Sanders O.. Response of a Layered Elastic Medium to a MovingStrip Load[J]. International Journal for Numerical and Analytical Methods inGeomechanics,1996,20(3):191-208.
    [54] Jones D. V., Laghrouche O., and LeHouedec D.. Ground Vibration in the Vicinityof a Rectangular Load Acting on a Viscoelastic Layer over a Rigid Foundation[J].Journal of Sound and Vibration,1997,203(2):307-319.
    [55] Kumar R., and Ailawalia P.. Moving Load Response of Micropolar ElasticHalf-Space with Voids[J]. Journal of Sound and Vibration,2005.280:837-848.
    [56] Bierer T., Bode C.. A Semi-Analytical Model in Time Domain for MovingLoads[J]. Soil Dynamics and Earthquake Engineering,2007,27(12):1073-1081.
    [57]王常晶,陈云敏.列车荷载在地基中引起的应力反应分析[J].岩石力学与工程学报,2005,24(7):1178-1186.
    [58]蒋建群,周华飞,张土乔.弹性半空间体在移动集中荷载作用下的稳态反应[J].岩土工程学报,2004,26(4):440-444.
    [59]钟阳,王哲人,郭大智.求解多层弹性半空间轴对称问题的传递矩阵法[J].土木工程学报,1992,25(6):37-43.
    [60]钟阳,孙林.轴对称半空间层状弹性体系动态反应的理论解[J].中国公路学报,1998,11(2):24-29.
    [61] F. C. P. De Barros and J. E. Luco. Response of a Layered Viscoelastic Half-Sapceto a Moving Point Load[J]. Wave Motion,1994,19:189-210.
    [62] Hung H. H., and Yang Y. B.. Elasitc Waves in Visco-Elastic Half-SapceGenerated by Various Vehicle Loads[J]. Soil Dynamics and EarthquakeEngineering,2001,21:1-17.
    [63] Karlstr m, A. and Bostr m, A.. An Analytical Model for Train-Induced GroundVibiations from Railways[J]. Journal of Sound and Virbration,2006,292:221-241.
    [64] H. Gnmdmann, M. Lieb, and E. Trommer. The Response of a Layered Half-Spaceto Traffic Loads Moving along Its Surface[J]. Archive of Applied Mechanics,1999,69(1):55-67.
    [65]汤连生,徐通,林沛元,等.交通荷载下层状道路系统动应力特征分析[J].岩石力学与工程学报,2009,28(增2):3876-3884.
    [66] Siddharthan R., Zafir Z., and Norris G. M.. Moving Load Response of LayeredSoil. Part I: Formulation; Part II: Verification and Application[J]. Journal ofEngineering Mechanics,1993,119:2052-2089.
    [67] Theodorakopoulos D. D.. Dynamic Analysis of a Poroelastic Half-Plane SoilMedium under Moving Loads[J]. Soil Dynamics and Earthquake Engineering,2003,23:521-533.
    [68] Lefeuve-Mesgouez G., Mesgouez A.. Ground Vibration due to a High-SpeedMoving Harmonic Rectangular Load on a Poroviscoelastic Half-Space[J].International Journal of Solids and Structures,2008,45(11-12):3353-3374.
    [69] Cai Y. Q., Sun H. L., and Xu C. J.. Steady State Responses of PoroelasticHalf-Space Soil Medium to a Moving Rectangular Load[J]. International Journalof Solids and Structures,2007,44(22-23):7183-7196.
    [70] Ouyang Huajiang. Moving-Load Dynamic Problems: A Tutorial (With a BriefOverview)[J]. Mechanical Systems and Signal Processing,2011,25(6):2039-2060.
    [71] Beskou N. D., Theodorakopoulos D. D.. Dynamic Effects of Moving Loads onRoad Pavements: A Review[J]. Soil Dynamics and Earthquake Engineering,2011,31(4):547-567.
    [72] Jin B., Yue Z. Q., and Tham L. G.. Stresses and Excess Pore Pressure Inducedin Saturated Poroelastic Half-Space by Moving Line Load[J]. Soil Dynamicsand Earthquake Engineering,2004,24:25-33.
    [73] Lu J. F., and Jeng D. S.. A Half-Space Saturated Poro-Elastic MediumSubjected to a Moving Point Load[J]. International Journal of Solids andStructures,2007,44:573-586.
    [74] Xu B., Lu J. F., and Wang J. H., Dynamic Response of a LayeredWater-Saturated Half Space to a Moving Load[J]. Computers and Geotechnics,2008,35:1-10.
    [75]刘干斌,姚林海,杨洋,等.考虑热-水-力耦合效应多孔弹性地基的动力反应[J].岩土力学,2007,28(9):1784-1788.
    [76]卢正,姚林海,刘干斌,等.简谐线源荷载作用下热流固耦合地基的动力反应[J].岩土力学,2010,31(7):2309-2316.
    [77]时刚,高广运,郭院成.饱和层状地基的瞬态动力反应分析[J].郑州大学学报(工学版),2010,2(31):52-55.
    [78]蔡袁强,徐长节,郑灶峰,等.轴对称饱和地基竖向振动分析[J].应用数学与力学,2006,27(1):75-80.
    [79]张玉红,黄义,王忠建.层状饱水软土地基三维非轴对称动力反应分析方法[J].地震工程与工程振动,2002,22(4):47-52.
    [80]杨军,宋二祥.饱和无限地基动力反应的有限元分析[J].清华大学学报(自然科学版),1999,12(39):82-85.
    [81]左迎辉,蔡袁强,徐长节移动荷载下饱和半空间的动力反应[J].岩石力学与工程学报,2005,23(24):4352-4357.
    [82]孙宏磊.高速交通荷载作用下饱和土体与线路系统的动力反应[D].浙江大学博士学位论文,2008.
    [83]刘琦,金波.移动简谐力作用下三维多孔饱和半空间的动力问题[J].固体力学学报,2008,1(29):98-102.
    [84] Hall L. Simulations and Analyses of Train-Induced Ground Vibrations, aComparative Study of Two-and Three-Dimensional Calculations with ActualMeasurements[D]. Sweden, Royal Institute of Technology,2000.
    [85] Schillemans L. Impact of Sound and Vibration of the North-South High-SpeedRailway Connection through the City of Antwerp Belgium[J]. Journal ofSound and Vibration,2003,267:637-649.
    [86]陈建国,肖军华,李前进,等.提速列车荷载作用下铁路路基动力特性的研究[J].岩土力学,2009,7(30):1944-1950.
    [87]宫全美,王炳龙,周顺华,等.沪宁线提速铁路路基的强度条件[J].同济大学学报,2006,34(2):207-211.
    [88] Shahu JT, Rao NSV, Kameswara. Parametric Study of Resilient Response ofTracks with a Sub-Ballast Layer[J]. Canadian Geotechnical Journal,1999,36(6):1137-1150.
    [89] P. Galvín, S. Francois, et al. A2.5D Coupled FE-BE Model for the Predicitionof Railway Induced Vibrations [J]. Soil Dynamics and Earthquake Engineering,2010,30:1500-1512.
    [90] Degrande G., et al. A Numerical Model for Ground-Borne Vibrations fromUnderground Railway Traffic Based on a Periodic Finite Element-BoundaryElement Formulation[J]. Journal of Sound and Vibration,2006,293(3-5):645-666.
    [91] Masafumi Katou, Toshifumi Matsuoka, Osamu Yoshioka, et al. NumericalSimulation Study of Ground Vibrations Using Forces from Wheels of aRunning High-Speed Train[J]. Journal of Sound and Vibration,2008,318:830-849.
    [92] Kaynia A. M., Madhus C., Zackrisson P.. Ground Vibration from High-SpeedTrains: Prediction and Counter Measure[J]. Journal of GeotechnicalGeoenvironmental Engineering,2000,126(6):531-537.
    [93] L. Andersen, C. J. C. Jones. Coupled Boundary and Finite Element Analysis ofVibration from Railway Tunnels-a Comparison of Two-and Three-DimensionalModels[J]. Journal of Sound and Vibration,2006,293:611-625.
    [94] Takemiya H. Substructure Simulation of Inhomogeneous Track and LayeredGround Dynamic Interaction under Train Passage[J]. Journal of EngineeringMechanics,2005,131(7):699-711.
    [95] J. O’Brien, D. C. Rizos.. A3D BEM-FEM Methodology for Simulation ofHigh Speed Train Induced Vibrations[J]. Soil Dynamics and EarthquakeEngineering,2005,25:289-301.
    [96] Chebli H., Clouteau D., Schmitt L.. Dynamic Response of High-SpeedBallasted Railway Tracks:3D Periodic Model and in Situ Measurements[J].Soil Dynamics and Earthquake Engineering,2008,28(2):118-131.
    [97] Hwang R. N., Lysmer J.. Response of Buried Structures to Traveling Waves[J].Journal of Geotechnical Engineering, ASCE,1981,107(GT2):183-200.
    [98] Hanazato T., Ugai K., Mori M., Sagakuchi R.. Three-Dimensional Analysis ofTraffic-Induced Ground Vibrations[J]. Journal of Geotechnical Engineering,ASCE,1991,117(8):1133-1151.
    [99] Galvín P., Francois S., et al. A2.5D Coupled FE-BE Model for the Predicitionof Railway Induced Vibrations[J]. Soil Dynamics and Earthquake Engineering,2010,30:1500-1512.
    [100]Yang Y. B., Hung H. H. A2.5D Finite/Infinite Element Approach for ModelingVisco-Elastic Bodies Subjected to Moving Loads[J]. International Journal forNumrical Methods in Engineering,2001,51:1317-1336.
    [101]高广运,李宁,何俊锋,等.列车移动荷载作用下饱和地基的地面振动特性分析[J].振动与冲击,2011,6(30):86-92.
    [102]边学成.高速列车运动荷载作用下地基和隧道的动力反应分析[D].浙江大学博士学位论文,2005.
    [103]Yang Y. B., Hung H. H., Chang D. W.. Train Induced Wave Propagation inLayered Soils Using Finite/Infinite Element Simulation[J]. Soil Dynamics andEarthquake Engineering,2003,23:263-278.
    [104]Monismith C. L., Seed H. B., Mitry F. G., et al. Prediction of PavementDeflections from Laboratory Tests[J]. Proceedings of2”d InternationalConference on Structures Design of Asphalt Pavements,1967:109-140.
    [105]Hicks R. G., Monismith C. L.. Factors Influencing the Resilient Properties ofGranular Materials[J]. Highway Research Record,1971,(345):15-31.
    [106]Barksdale R. D., Itani S. Y.. Influence of Aggregate Shape on Base Behavior[J].Transportation Research Record,1988,(1227):173-182.
    [107]Kolisojia P.. Resilient Deformation Characteristics of Granular Materials forAnalysis of Highway Pavements[D]. Tempere University of Technology,Tempere, Finland,1997.
    [108]Raad L., Minassian G. H., Gartin S.. Characterization of Saturated GranularBases under Repeated Loads[J]. Transportation Research Record,1992,13-69.
    [109]刘升传.既有线重载铁路路桥过渡段路基变形与加强措施研究[D].北京:北京交通大学博士学位论文,2008.
    [110]Qiu Yanjun. Permanent Deformation of Subgrade Soils Laboratory Investigationand Application in Mechanistic-Based Pavement Design[D]. Ph.D. Dissertation,University of Arkansas,1998.
    [111]Seed H. B., MeNeill R. L., Guenin J., et al. A Soil Deformation in NormalCompression and Repeated Loading Tests[R]. HRB Bulletin141,1956.
    [112]Barksdale R. D.. Laboratory Evaluation of Rutting in Base Course Materials[C].Proceeding of the3rdInternational Conference on the Structural Design of AsphaltPavement, University of Michigan,1972:161-174.
    [113]Lentz, R. W. Permanent Deformation of a Cohesion Less Subgrade MaterialUnder Cyclic Loading[D]. Ph.D. Dissertation, Michigan State University, EastLansing, USA,1979.
    [114]Pumphrey Jr., N. D., and Lentz R. W. Deformation Analysis of FloridaHighway Subgrade Sand Subjected to Repeated Load Triaxial Tests[M].Washington D. C., TRB,1986
    [115]Strwart H. E.. Permanent Strains from Cyclic Variable-Amplitude Loadings[J].Journal of Geotechnical Engineering,1986,112(6):646-660.
    [116]Monismith C. L., Ogawa N., Freeme C. R.. Permanent DeformationCharacteristics of Subgrade Soils due to Repeated Loading[J]. TransporationResearch Record,1975,537:1-17.
    [117]Kenis W. J., Predictive Design Procedures, VESYS Users Manual: An InterimDesign Method for Flexible Pavements Using the Vesys Structural Subsystem[R].Final Report Federal Highway Administration, Washington, D. C.,1978.
    [118]Li D., Selig E. T.. Cumulative Plastic Deformation for Fine-Grained SubgradeSoils[J]. Journal of Geotechnical and Geoenvironmental Engineering,1996,122(12):1006-1013.
    [119]Li D., Selig E. T.. Method for Railroad Track Foundation Design. II:Applications[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(4):323-329.
    [120]Wolff H., and Visor A. T.. Incorporating Elastic-Plasticity in Granular LayerPavement Design[J]. Proc. Of the Institute of Civil Engineers: Transport,London, Auk,1994,105(4):259-272.
    [121]Sweere G T H. Unbound Granular Bases for Roads[D]. Ph.D. Thesis,University of Delft, Delft, The Netherlands,1990.
    [122]Elliott R. P., Norman D. Dennis, Qiu Y. J.. Permanent Deformation ofSubgrade Soils(Phase I: A Test Protocol)[R]. University of Arkansas, USA,1998.
    [123]Chai J. C., Miura N.. Traffic-Load-Induced Permanent Deformation of Road onSoft Subsoil[J]. Journal of Geotechnical Engineering Division, AmericanSociety of Civil Engineering,2002,128(11):907-916.
    [124]Paute J. L., Hornych P., Benaben J. P.. Repeated Load Triaxial Testing ofGranular Materials in the French Network of Laboratories[J]. FlexiblePavements,1996:53-64.
    [125]Lerkarp F., Dawson A. R.. Modeling Permanent Deformation Behaviour ofUnboundgranular Materials[J]. Construction and Building Materials,1998,12(1):9-18.
    [126]Wichtmann T. Triantafyllidis T. Influence of a Cyclic and Dynamic LoadingHistory on Dynamic Properties of Dry Sand, Part II: Cyclic AxialPreloading[J]. Soil Dynamics and Earthquake Engineering,2004.24(11):789-803.
    [127]Wichtmann T., Niemunis A., Triantafyllidis T.. Strain Accumulation in Sanddue to Cyclic Loading: Drained Triaxial Tests[J]. Soil Dynamics andEarthquake Engineering,2005,25(12):967-979.
    [128]Wichtmann T., Niemunis A., Triantafyllidis T.. On the Influence of thePolarization and the Shape of the Strain Loop on Strain Accumulation in Sandunder High-Cyclic Loading[J]. Soil Dynamics and Earthquake Engineering,2007,27(1):14-28.
    [129]Wichtmann T., Niemunis A., Triantafyllidis T.. Strain Accumulation in Sand dueto Cyclic Loading: Drained Cyclic Tests with Triaxial Extension[J]. SoilDynamics and Earthquake Engineering,2007,27(1):42-48.
    [130]Wichtmann T., Niemunis A., Triantafyllidis T.. Validation and Calibration of aHigh-Cycle Accumulation Model Based on Cyclic Triaxial Tests on EightSands[J]. Soil and Foundation,2009,49(5):711-728
    [131]Karg C., Haegeman W.. Elasto-Plastic Long-Term Behavior of Granular Soils:Experimental Investigation[J]. Soil Dynamics and Earthquake Engineering,2009,29:155-172.
    [132]Karg C.. Modelling of Strain Accumulation due to Low Level Vibrations inGranular Soils[D]. Belgium: Ghent University,2007.
    [133]Hyodo M., Yasuhara K.. Analytical Procedure for Evaluating Pore-WaterPressure and Deformation of Saturated Clay Around Subjected to TrafficLoads [C]. Proceedings of the6th International Conference on NumericalMethods in Geomechanics.1987:653-658.
    [134]Parr G. B.. Some Aspects of the Behavior of London Clay under RepeatedLoading[D]. UK: University of Nottingham,1972.
    [135]Khedr S.. Deformation Characteristics of Granular Base Course in FlexiblePavement[J]. Transportation Research Record,1985,1043:131-138.
    [136]Sharp R. W.. Pavement Design Based on Shakedown Analysis[J].Transportation Research Record,1985,1022:99-107.
    [137]Brown S. F., Hyde A. F. L.. Significance of Cyclic Confining Stress inRepeated Load Triaxial Testing of Granular Materials[J]. TransportationResearch Record,1985,537:49-58.
    [138]Raad L., Weichert D., Haidar A.. Shakedown and Fatigue of Pavements withGranular Bases[J]. Transportation Research Record,1989,1227:159-172.
    [139]Suiker A. S. J.. The Mechanical Behavior of Ballasted Railway Tracks[D].Ph.D. Thesis, University of Delft, Delft, The Netherlands,2002.
    [140]Werkmeister S., Dawson A. R., Wellner F.. Pavement Design Model forUnbound Granular Materials[J]. Journal of Transportation Engineering,2004,130(5):665-674.
    [141]Niekerk A. A., Scheers J., Muraya P., et al. The Effect of Compaction on theMechanical Behavior of Mix Granulate Base Course Materials and on PavementPerformace[C]. Unbound Aggregates in Road Construction, Dawson(ed.)Balkema, Rotterdam,2000:125-136.
    [142]黄茂松,李进军,李兴照饱和软粘土的不排水循环累积变形特性[J].岩土工程学报,2006,7(28):891-895.
    [143]杨树荣.路基土壤反复载重下之回弹与塑性行为及模式建构[D].台北:国立中央大学土木工程研究所,2002.
    [144]朱登峰,黄宏伟,殷建华.饱和软粘土的循环蠕变特性[J].岩土工程学报,2005,9(27):1060-1064.
    [145]刘添俊,葛修润,安关峰.单向循环荷载作用下饱和软黏土的形状研究[J].岩石力学与工程学报,2012,31(1):3345-3351.
    [146]刘建坤,肖军华,杨献永,等.提速条件下粉土铁路路基动态稳定性研究[J].岩土力学,2009,30(2):399-405.
    [147]肖军华,刘建坤.循环荷载下粉土路基土的变形性状研究[J].中国铁道科学,2010,31(1):1-8.
    [148]陈颖平,黄博,陈云敏.循环荷载作用下软黏土不排水累积变形特性[J].岩土工程学报,2008,30(5):764-768.
    [149]张勇,孔令伟,郭爱国,等.循环荷载下饱和软黏土的累积塑性应变试验研究[J].岩土力学,2009,30(6):1542-1548.
    [150]姚兆明,陈晓霞.长期循环荷载下饱和软黏土安定性模型[J].土木建筑与环境工程,2011,6(30):31-35.
    [151]王军,蔡袁强,徐长节,等.循环荷载作用下饱和软黏土应变软化模型研究[J].岩石力学与工程学报,2007,8(26):332-338.
    [152]王军,蔡袁强.循环荷载作用下饱和软黏土应变累积模型研究[J].岩石力学与工程学报,2008,27(2):331-338.
    [153]蒋军,陈龙珠.长期循环荷载作用下粘土的一维沉降[J].岩土工程学报,2001,23(3):366-369.
    [154]王红.道碴弹性和累积变形的试验研究[J].中国铁道科学,2001,22(6):J06-110.
    [155]王林秀,等.级配碎石作路面基层材料的动三轴力学性能试验研究[J].中国市政工程,2004,(3):25-26.
    [156]刘松玉,邱红,等.煤歼石的动力特性试验研究[J].东南大学学报(自然科学版),2005,35(2):280-283.
    [157]Zhu Y. L., He P., Zhang J. Y., et al. Triaxial Creep Model of Frozen Soil underDynamic Loading[J]. Progress in Natural Science,1997,7(4):465-468.
    [158]Zhu Z. Y., Ling X. Z., Chen S. J., et al. Experimental Investigation on theTrain-Induced Subsidence Prediction Model of Beiluhe Permafrost Subgradealong the Qinghai-Tibet Railway in China[J]. Cold Regions Science andTechnology,2010,62(1):67-75.
    [159]焦贵德,马巍,赵淑萍,等.高温冻结粉土的累积应变和临界动应力[J].岩石力学与工程学报,2011,增1(30):3193-3198.
    [160]彭丽云,刘建坤.正融粉质粘土在循环荷载作用下的变形特性研究[J].岩土工程学报,2010,32(4):567-572.
    [161]赵淑萍,马巍,焦贵德,等.长期动荷载作用下冻结粉土的变形和强度特征[J].冰川冻土.2011,1(33):144-151.
    [162]肖军华.提速列车荷载下粉土的力学响应与路基稳定性研究[D].北京交通大学,博士论文,2008.
    [163]魏星,黄茂松.交通荷载作用下公路软土地基长期沉降的计算[J].岩土力学,2009,11(30):3342-3346.
    [164]魏星,黄茂松,刘明.公路软土地基工后沉降的计算[C].岩土力学与工程新进展.上海:同济大学出版社,2007:87-91.
    [165]董亮,蔡德钩,叶阳升,等.列车循环荷载作用下高速铁路路基累积变形预测方法[J].土木工程学报,2010,43(6):100-108.
    [166]肖军华,周顺华,韦凯.列车振动荷载下铁路粉土路基的长期沉降[J].浙江大学学报(工学版),2010,10(44):1912-1917.
    [167]边学成,曾二贤,陈云敏.列车交通荷载作用下软土路基的长期沉降[J].岩土力学,2008,29(11):2990-2996.
    [168]凌建明,王伟,邬洪波.行车荷载作用下湿软路基残余变形的研究[J].同济大学学报,2002,30(11):1315-1320.
    [169]李冬雪,凌建明,钱劲松,等.黏质路基土永久变形改进计算方法[J].同济大学学报(自然科学版),2013,3(4):386-389.
    [170]张锋.深季节冻土区重载汽车荷载下路基动力响应与永久变形[D].哈尔滨:哈尔滨工业大学博士论文,2012.
    [171]王立娜,凌贤长,李琼林,等.列车荷载下青藏冻结粉质黏土变形特性试验研究[J].土木工程学报,2012,45(S1):42-47.
    [172]Ling X. Z., Zhu Z. Y., Zhang F., et al. Dynamic Elastic Modulus for Frozen Soilfrom the Embankment on Beiluhe Basin along the Qinghai-Tibet Railway[J].Cold Regions Science and Technology,2009,57(1):7-12.
    [173]Zhu Z.Y., Ling X. Z., Wang Z. Y., et al. Experimental Investigation of theDynamic Behavior of Frozen Clay from the Beiluhe Subgrade along the QTR[J].Cold Regions Science and Technology,2011,69(1):91-97.
    [174]Liu J. K., Wang T. L., Tian Y. H.. Experimental Study of the DynamicProperties of Cement-and Lime-Modified Clay Soils Subjected toFreeze-Thaw Cycles[J]. Cold Regions Science and Technology,2010,61(1):29-33
    [175]王天亮.冻融条件下水泥及石灰路基改良土的动静力特性研究[D].北京:北京交通大学博士论文,2011.
    [176]丁祖德,彭立敏,施成华,等.循环荷载作用下富水砂质泥岩动变形特性试验研究[J].岩土工程学报,2012,34(3):534-539.
    [177]施烨辉.列车荷载和冻融循环作用下冻土路基稳定性研究[D].北京:北京交通大学博士论文,2011.
    [178]赵淑萍,朱元林,何平,等.冻土动力学参数测试研究[J].岩石力学与工程学报,2003,22(增2):2677-2681.
    [179]赵淑萍,何平,朱元林,等.冻结砂土在动荷载下的蠕变特征[J].冰川冻土,2002,24(3):270-274.
    [180]肖军华.循环荷载下压实粉土的回弹模量试验研究[J].公路,2010(8):199-205.
    [181]薛强.青藏铁路安多段高温极不稳定冻土斜坡路基稳定性分析[D].北京:北京交通大学硕士论文,2007.
    [182]张尧禹.青藏铁路多年冻土区片石路基稳定性监测试验与温度场模拟研究
    [D].长春:吉林大学硕士论文,2005.
    [183]李双洋,张明义,张淑娟,黄志军.列车荷载下青藏铁路冻土路基动力响应分析[J].冰川冻土,2008,30(5):860-867.
    [184]原思成,张鲁新,赖远明,等.青藏铁路多年冻土区现浇混凝土涵洞基础水化热对路基热状况影响[J].岩石力学新进展与西部开发中的岩土工程问题-中国岩石力学与工程学会第七次学术大会论文集,2002.
    [185]沈宇鹏.青藏铁路安多段多年冻土斜坡路基稳定性研究[D].北京:北京交通大学博士论文,2007.
    [186]Zienkiewicz O. C., Bando K., Bettess P., et al. Mapped infinite elements forexterior wave problem[J]. Int J Num Meth Eng,1985,21:1229-1251.
    [187]Lysmer J., Kulemeyer R. L.. Finite dynamic model for infinite media[J]. J EngMech ASCE,1969,95:759-877.
    [188]铁道第三勘察设计院,西南交通大学,中南大学,北京交通大学.路基过渡段的设置方法[R].天津:铁道第三勘察设计院;成都:西南交通大学;长沙:中南大学;北京:北京交通大学,2003
    [189]陈斌,陈国兴,朱定华,等.城市轨道交通对场地振动影响的试验研究[J].第三届全国防震减灾工程学术研讨会论文集,2007.
    [190]丁德云.地铁列车振动环境响应低频特征的分析与研究[D].北京:北京交通大学博士论文,2010.
    [191]陈鹏,徐博侯.基于因素敏感性的边坡稳定可靠度分析[J].中国公路学报,2012,25(004):42-48.
    [192]仇敏玉.交通荷载对道路工后沉降影响的研究[D].杭州:浙江大学博士论文,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700