用户名: 密码: 验证码:
水中常规弹药引信环境敏感及安全控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂多样的现代战争需要与之相适应的武器装备。我国领海广阔,与邻国海上争端不断,发生海上武力冲突的风险很大,大力发展海军及海军武器装备意义重大且十分迫切。水中发射和使用的中小口径弹药与武器系统是目前海军特战队装备发展的方向之一。相对陆上弹药引信而言,水中弹药引信的研究比较薄弱,已有的研究也一直侧重于水中目标探测与识别技术。水下火箭弹这种水中常规弹药具有发射过载低、无旋转的特点,其引信设计尤其是环境敏感与安全控制方面存在诸多技术难题。解决水中常规弹药引信环境敏感及安全控制方面的诸多关键技术,对于改善目前国内在水中常规弹药引信安全控制方面的薄弱现状,拓展引信技术的应用空间,推动水中常规弹药引信的发展以及提高我国水下兵器的装备水平具有重要的现实意义。
     本文以某水下火箭弹引信为研究对象,根据弹药的工作过程及引信系统设计的总体要求,对可用的环境信息进行了分析,采用弹道压力和流体动力作为环境激励,通过压力传感器和涡轮机构实现引信的环境敏感与安全控制。并提出了引信系统设计中的难点问题和关键技术。
     为获得引信涡轮转速与弹丸速度的函数关系,同时为引信涡轮参数的优化设计奠定基础,建立了水中弹药引信涡轮的转动数学模型。与现有空气中引信涡轮数学模型相比,该模型考虑了流体粘性,构建了涡轮结构参数与动力性能之间的定量关系,且不依赖于试验获得的经验系数。为尽量保持弹丸的原有外形,保证其外弹道性能,引信头部涡轮轮毂端面无导流装置。分析了涡轮轮毂端面无导流装置时造成的流动损失,在此基础上,提出了该情况下考虑边界层及边界层分离的叶片入口速度修正方法。此外,通过分析小攻角情况下涡轮叶片一周范围内流体入射角、边界层厚度及入口速度分布的对应关系,提出了小攻角情况下涡轮转速近似计算的理论方法。
     对压力传感器的类型、参数和供电方式等进行了比较分析。采用数值方法计算了不同攻角、不同水深和不同速度共42种情况下的弹体压力数据,提出传感器安装位置的优化选择策略,对压力传感器安装位置进行了优化选择。对涡轮转速测量系统的关键参数进行了设计,并分析了不同转速测量方法的误差。基于最优化理论,提出了引信涡轮参数非线性优化设计的流程与方法,以解决目前引信涡轮结构参数经验设计与试验设计的缺陷,提高设计效率与质量。以弹速-涡轮转速具有最好的线性度为目标,对引信涡轮参数进行了优化设计。
     根据水中弹药两相流动的CFD技术的相关基础理论与模型,在考虑高速流动、旋转流场与空化现象的基础上,提出了引信涡轮三维流场数值仿真方法。并比较了Schnerr-sauer空化模型和Zwart-gerber-belamri空化模型对水中弹药引信涡轮流场进行数值仿真计算的适用情况。采用粘性流体的CFD技术,对引信涡轮零攻角与小攻角情况下的转速进行了计算,分析了引信头部的压力分布、涡轮的轴向受力及涡轮叶片的变形,为涡轮机构的设计提供一定的数据支撑。
     讨论了空化初生及其影响因素。研究了空化对流体动力特性的影响,以及空化试验的一般准则。从理论上分析了涡轮机构对水中常规弹药射程与弹丸稳定性的影响,根据数值方法计算的结果,研究了涡轮机构对弹丸头部阻力系数、压力中心、俯仰力矩及俯仰力矩系数等的影响,定量分析了有涡轮和无涡轮弹丸射程及稳定性的差异。
     根据系统要求,设计了涡轮机构及引信控制电路,研制了引信系统原理样机,并开展了静态实验与水洞模拟实验。实验结果表明,采用的引信设计方案是可行的。同时验证了水中弹药引信涡轮转动数学模型及参数优化设计方法的正确性。文中引信系统设计方法、所涉及的理论模型、数值仿真技术及实验方法,对水中常规弹药引信系统设计及安全控制具有较高的参考价值。
The complexity of modern warfare requires corresponding arms and weaponry. Our vast territorial waters, constantly maritime disputes with neighboring countries, the risk of armed conflict at sea, made vigorously develop the Navy and naval weaponry significant and very urgent. Small and medium calibre ammunition and weapons system using in water is one of current navy Special Forces equipment development direction. Compared with onshore ammunition fuze, underwater ammunition fuze research is weak, and the existing research has been focused on underwater target detection and recognition technology. Because of low recoil force and non-rotation characteristics of such ammunition as underwater rockets, there are many technical problems of fuze design especially environment sensitive and safety control. Solve the key technologies of the fuze system design and safety control of underwater conventional ammunition, has important practical significance for improving the weak status of the domestic underwater ammunition fuze safety control, expanding the fuze technology applications space, promoting the development of underwater conventional ammunition fuzes and improving our underwater weapons and equipment level.
     In this thesis, taking an underwater rocket fuze as the research object, according to the work course and the general requirements of fuze system, analysed available environmental information and determined using ballistic pressure and fluid power as the environmental incentive, achieve fuze environment sensitive and safety control with the pressure sensor and turbine mechanism. Difficult issues and key technology in the design of the fuze system was analysed.
     To obtain the function relationship of the fuze turbine rotational speed with the projectile velocity, and lay a foundation for optimal design of fuze turbine parameters, the turbine rotation mathematical model of underwater ammunition fuzes was established. The model takes into account the fluid viscosity, and established a quantitative relationship between the turbine structure parameters and dynamic performance, which does not depend on empirical coefficients obtained by tests. Since the flat-head projectile has good flight stability, analyzed the flow losses, when there's no deflector in the head face of the turbine hub. Blade inlet velocity correction method was proposed, considering the boundary layer and the boundary layer separation. In addition, the turbine rotation speed approximate calculation theory method was studied in the case of a small angle of attack, by analyzing correspondence relationship of the incident angle of the fluid, boundary layer thickness and the inlet velocity distribution in a round of turbine blades.
     Pressure sensor type, parameters, the way of power supply and other issues have been compared and analysed. The projectile body pressure data at42cases of different angle of attack, different water depths and different speeds, was calculated by numerical methods, the optimal choice of strategy for selecting sensor installation location was present, and the sensor installation position was optimized. The key parameters of the rotation speed measurement system were designed and the error of different speed measurement methods was analysed. Based on the optimization theory, proposed fuze turbine parameter nonlinear optimization design processes and methods to solve experiential design and experimental design defects of the fuze turbine parameters, improve design efficiency and quality. Target aims to that projectile velocity-turbine speed has the best linearity, the fuze turbine parameters were optimized designed.
     The underlying theory and the model of the two-phase flow of underwater ammunition CFD technology were introduced. Considering the high-speed flow, rotating flow field and cavitation, fuze turbine three-dimensional flow field numerical simulation method was proposed. The applicability of Schnerr-sauer cavitation model and the Zwart-gerber-belamri cavitation model of underwater ammunition fuze turbine flow field numerical simulation was compared. Using the viscous fluid CFD technology, calculated the fuze turbine rotational speed in the case of the zero angle of attack and a small angle of attack, analysed the the pressure distribution of fuze head, the force of turbine in the axial direction and deformation of the turbine blade.
     Cavitation inception and its influencing factors were discussed. Cavitation influences on the hydrodynamic characteristics, as well as the general guidelines of the cavitation test were studied. The turbine institutions influences on the consistency of underwater ammunition ballistics and projectile stability were analyzed theoretically. Based on calculated results by numerical methods, turbine institutions influences on projectile head drag coefficient, center of pressure, pitching moment and pitching moment coefficient were studied. The range and stability differences of projectile with turbine and without turbine were quantitatively analyzed.
     Turbine mechanism and fuze control circuit were designed according to the system requirements, developed the fuze system principle prototype and conducted static tests and the water tunnel simulation tests. The test results show that the fuze design is feasible. The correctness of the turbine rotation mathematical models and parameter optimization design method of underwater ammunition fuze was verified. The fuze system design methods, theoretical models and numerical simulation technology, have a high reference value for the fuze system design and safety control of underwater conventional ammunition.
引文
[1]侯超.水下火箭弹引信系统分析及关键技术研究[D].硕士学位论文,南京:南京理工大学,2008.
    [2]姚养无.从水下枪械到两栖枪械的历史跨越[J].轻兵器,2003(4):8-10
    [3]马宝华.网络技术时代的引信[C].中国兵工学会第十四届引信学术年会论文集,2005
    [4]Terry J. Gander. Fuses:Perfection to Be Destroyed[J]. Armada International,2000.1
    [5]212所译.美国军用手册引信分册[M].MIL-HDBK-757,1994
    [6]于新峰,高敏.美军引信技术最新发展动态[C].第十三届引信学术年会论文集,2003
    [7]马宝华.战争、技术与引信—关于引信及引信技术的发展[J].探测与控制学报,23(1),2003.1:1-6
    [8]施坤林,黄峥,马宝华等.国外引信技术发展趋势分析与加速发展我国引信技术的必要性[J].探测与控制学报,27(3),2005.8:1-5
    [9]Tony Pergolizzi, Dennis Ward. Electronic Time Fuze for Mortars (ETFM). XM784/XM785 ETFM Development Program[C]. Alliant Precision Fuze Company (APFC). 46th Annual NDIA Fuze Conference.1st May 2002.
    [10]Dime. Miniature Verge Escapement Safety and Arming Device[C]. KAMAN DAYRON, Inc.48th Annual NDIA Fuze Conference.6th May 2004.
    [11]王雨时.加速引信技术进步.适应弹药发展需求—中国引信技术发展问题管窥[C].中国兵工学会弹药专业委员会弹药系统工程研讨会(南京)学术交流资料,2002
    [12]马宝华.引信构造与作用[M].北京:国防工业出版社,1986.
    [13]李豪杰,张河.引信安全系统及其功能范畴探讨[J].探测与控制学报,第28卷第5期,2006.10
    [14]李豪杰.引信环境分析、测试与迫弹引信安全系统设计研究[D].博士学位论文,南京:南京理工大学,2006.
    [15]李忠梁.低后坐非旋转环境下引信解除保险环境分析与应用研究[D].硕士学位论文,南京:南京理工大学,2009.6
    [16]张合,李豪杰.引信机构学[M],第一版.北京:北京理工大学出版社,2007
    [17]王雨时.引信外弹道自转角速度衰减规律数学模型[C].中国兵工学会第14届学术年会论文集(西宁).中国兵工学会引信专业委员会,2005.10
    [18]李静海,庄彦,蔡传能.反舰导弹机电引信保险提前解除问题的分析与改进[J].战术导弹技术,2001(5)
    [19]Victor. C, Rimkus. Miniature Electronic Safing and Arming Device[C]. Sandia National Laboratories.43rd Annual NDIA Fuze Conference,8th April 1999
    [20]范宁军.引信安全系统基本理论研究[J].北京理工大学学报,1990(3)
    [21]高敏,马宝华.引信安全系统环境识别器的信息原理[J].北京理工大学学报,1992(2):52-57
    [22]党瑞荣,李世义.引信环境信息识别理论[J].兵工学报,2000(8):209-213
    [23]Anh N.Duong. Ordnance Fuzing/Safety & Arming Programs Overview[C]. NDIA 45th Annual Fuze Conference.2001.4
    [24]赵河明,张亚,董少峰.发射周期前引信解除保险故障树建模与定量计算研究[J].探测与控制学报,24(4),2002:39-42
    [25]孙晓波.引信电子安全系统的发展[J].探测与控制学报,2003(2):46-49
    [26]Klaus Schadow. MEMS Military Applications-RTO Task Group Summary[C]. AIAA2004-6749. CANEUS 2004-Conference on Micro-Nano-Technologies. Monterey, California.1-5 November 2004
    [27]王炅,李良军,邵炫,常娟.磁流变技术在引信安全系统中应用探讨[J].探测与控制学报,第28卷第6期,2006.12:11-16
    [28]石庚辰,李华.引信MEMS远距离解除保险机构[J].探测与控制学报,第30卷第3期,2008.6:1-4
    [29]何希才,张薇.传感器应用及其接口技术[M].北京:科技文献出版社,1996
    [30]王渭源.微电子机械系统的进展和趋势[J].功能材料与器件学报,1996(3):129-136
    [31]张晖.21世纪的水中兵器[J].现代军事.1999(1):25-27
    [32]王增刚.超空泡效应对水下运动体减阻增速作用的理论预估[D].硕士学位论文.南京:南京理工大学,2000
    [33]戴君全,叶本治,冯民贤,杨桂红.射弹在水介质中的运动规律的测试研究[J].测试技术学报,1995(1):33-39
    [34]宋浩伟.弹丸水下高速运动外弹道建模与仿真[D].硕士学位论文,南京:南京理工大学,2007
    [35]王天明.基于面元法的水下弹丸流体动力特性数值分析[D].硕士学位论文,南京:南京理工大学,2007
    [36]解艳春.水下高速运动体弹道仿真[D].硕士学位论文,哈尔滨:哈尔滨工程大学,2008
    [37]赵国库.引信水中超声波探测技术研究[D].博士学位论文,南京:南京理工大学,2005
    [38]黄明利.水下火箭弹引信电磁感应装定技术研究[D].硕士学位论文,南京:南京理 工大学,2011
    [39]李世中,张亚.弹道环境测试及其在引信中应用的研究[J].弹道学报,2000(3):84-88
    [40]宋寿鹏,王康谊.引信弹道环境信息及其应用[J].华北工学院学报,1996(1):48-52
    [41]蒋启凌,陈兴球.燃气压力保险机构在火箭弹引信中的应用[J].探测与控制学报,2006,28(6):25-39
    [42]安文书,陈雷,苌军红.电子时间引信解除保险距离试验研究[J].军械工程学院学报,19(1),2007:39-41
    [43]岳明凯,张德智,蒋威.面向弱环境力的引信环境敏感技术研究[J].探测与控制学报,29(1),2007:60-63
    [44]赵晶晶.某末制导火箭弹引信安全和解除保险装置改进设计[D].硕士学位论文,南京:南京理工大学,2008
    [45]刘明杰,石庚辰,王华等.小口径火炮机械触发引信设计思想[D]. 北京:引信动态特性国防科技重点试验室(北京分部),2000
    [46]张万军,崔占忠,黄忠华.准流体延期保险机构及其均匀设计[J].探测与控制学报,2004,26(4):25-29
    [47]徐长江,张河.基于三维流场数值计算的引信用侧进气涡轮发电机的设计研究[D].中国电机工程学报,2006(8):144-149
    [48]Peter Becker, et al. Optronic Mortor Proximity Fuze PX581 [C]. Pesentation for 45th Annual Fuze Conference.2001
    [49]薛维清.引信专用物理电源的应用与发展[[J].现代引信,1994(1):8-13
    [50]Frank Kienzler, Karl Kautzsch. High Fuze Reliability and Safety Today and in the Future[C].53rd Annual Fuze Conference, May 19-21,2009
    [51]纪永详,尉进有.引信涡轮保险机构对弹道性能影响的分析[J].现代引信,1997(1):46-48
    [52]顾强,陶胜,安晓全等.引信涡轮电机弹道信息的应用研究[J].中北大学学报(自然科学版),第29卷第6期,2008:486-489
    [53]徐长江.引信侧进气涡轮发电机气动优化研究[D].博士学位论文,南京:南京理工大学,2007
    [54]引信设计手册编写组.引信设计手册[M].北京:国防工业出版社,1978
    [55]Hochreiter, H. M., Dimensionless Correlation of Coefficients of Turbine-type Flowmeters[J], Trans. ASME, October 1958,1363-1368
    [56]Lee, WF.2., Henning Kariby, A Study of Viscosity Effect and Its Compensation on Turbine-type flowmeters[J]. Jounral of Basic Engineering, Trans.ASME, September 1960: 717-728
    [57]赵学端,应启戛,沈昱明。涡轮流量计数学模型与优化设计,上海机械学院学报,1985(2):1-15
    [58]Tsukamoto, H., Hutton, S.P., Theoretical Prediction of Meter Factor for a Helical Turbine Flowmeter[C], In:Proc.of the Conference of Fluid Control and Measurement, Tokyo, Japan. Pegramon Press,1986:973-978
    [59]Thompson R.E., Grey J.. Turbine Flowmeter Performance Model[C], J.Basic Engineering, Trans. of ASME, Dec.1970:712-723
    [60]翁燕,吴国纷,赵学端.流体粘度对涡轮流量计性能影响的理论预测[J].上海机械学院学报,1990,12(2):11-22
    [61]孙立军.降低涡轮流量传感器粘度变化敏感度的研究[D].博士学位论文,天津:天津大学,2004
    [62]王振涡轮流量传感器在不同流体条件下测量性能的研究[D].博士学位论文,天津:天津大学,2008
    [63]黄建松,柯文棋,乐秀鸿等.模拟非接触水下爆炸时舰船人员冲击损伤的安全性评估及防护措施[J].中华航海医学与高气压医学杂志,2005,12(3):133-135.
    [64]张守中.爆炸与冲击动力学[M].北京:兵器工业出版社,1993
    [65]石庚辰,李华.引信MEMS远距离解除保险机构[J].探测与控制学报,2008,30(3):1-4
    [66]周晓东.引信能量和信息非接触传输系统设计理论及其应用研究[D].博士学位论文,南京:南京理工大学,2005.
    [67]李长生.电磁能量和信息近场耦合理论及其同步传输技术研究[D].博士学位论文,南京:南京理工大学,2012.
    [68]刘沛清.空气螺旋桨理论及其应用[M].北京:北京航空航天大学出版社,2006
    [69]董世汤,王国强,唐登海,黄振宇.船舶推进器水动力学[M].北京:国防工业出版社,2009
    [70]Binder, R.C., Advanced Fluid Mechanics[J], Prentice-Hall, Inc., Englewood Clisff, N.J., vol.1,1958:P160
    [71]Schlichting H.. Application of Boundary-layer Theory in Turbomachinery[C], J. Basic Engineering, Trans. ASME, Dec.1959:543-555
    [72]刘泽九,贺士荃,刘晖.滚动轴承应用[M].北京:机械工业出版社.2007.3.650-654
    [73]吴玉林,刘树红.粘性流体力学[M].北京:中国水利水电出版社,2007.63-66
    [74]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社,1998.4.143-157
    [75]童中翔,翟庆刚.某型飞机表面局部压力计算[J].空军工程大学学报(自然科学版),5(2),2004:13-15
    [76]Howarth L. On the Solution of the Laminar Boundary Layer Equations[J]. Proc Roy Soc London,1938, A164:547-579
    [77]陈德勇.微机械谐振梁压力传感器研究[D].博士学位论文:中国科学院电子学研究所,2002.7
    [78]J.C.Jiang, R.C.White, P.K.Allen, Microcavity Vacuum Tube Pressure Sensor for Robot Tactile Sensing[C], Proc. Transducers'91, San Francisco, CA, USA,1991:238-240.
    [79]H.C.Lee and R.S.Huang, A Novel Field Emission Array Pressure Sensor[C], Proc. Transducers'91, San Francisco, CA, USA,1991:241-244.
    [80]张传文,陆广振,穆春生.国外压力传感器及其元器件的制造工艺[J].仪表技术与传感器,1992,No.6:39-41
    [81]杜晓松.锰铜薄膜超高压力传感器研究[D].博士学位论文,成都:电子科技大学,2002.6
    [82]杨保和.金刚石薄膜压力传感器研制[D].博士学位论文,河北:河北工业大学,2003,11
    [83]叶青.转速测量技术进展[J].上海计量测试,第219期,2010.5:31-32,35
    [84]张志新,童水光,张洪亮.智能动平衡仪中转速测量方法研究[J].流体机械,第30卷第9期,2002:32-34,17
    [85]李朝晖,张河.一种基于弱磁探测的转速测量方法[J].机床与液压,2003(3):287-288,203
    [86]马金权,李庆辉,强盛.一种高精度实时电机转速测量新方法[J].齐齐哈尔大学学报,第18卷第1期,2002:42-44
    [87]赵军丽,吴易明,王卫峰,闵俊伟.一种非接触光电式二维转速测量系统[J].红外与激光工程,第38卷,增刊,2009:130-134
    [88]冯夏勇,宾鸿赞.微机转速测量常用方法与精度分析[J].电子与自动化,1995(2):31-33
    [89]贺少辉.基于激光多普勒效应的微电机转速测量系统[D].硕士学位论文,天津:天津大学,2010
    [90]牛洁,周静,苟娜.基于霍尔传感器的直流电机转速测量系统设计[J].电子测试,2008(5):75-78
    [91]王成栋,朱永生,康荣学,张优云.基于电涡流传感器的转速测量方法研究[J].仪表技术与传感器,2003(6):45-47
    [92]陈凯.基于等精度测频技术的汽轮机全范围转速测量[J].自动化仪表,第33卷第7期,2012.7:59-62
    [93]李福进,陈至坤,王汝琳,梁月肖.基于单片机的转速测量方法[J].工矿自动化, 2006(1):54-55
    [94]李秋华,张天宏,王继业.基于磁阻传感器的宽量程转速测量电路设计[J].传感器与微系统,第25卷第6期,2006:55-60
    [95]吴利涛,洪帆.高精度智能转速测量模板的设计[J].计算机测量与控制,11(6),.2003:412-414
    [96]周正干,李然,李和平.高精度数字式转速测量系统的研究[J].测控技术,第19卷第5期,2000:60-62
    [97]贺桂芳,蒋华军.磁阻传感器在转速测量中的应用[J].微计算机信息,第22卷第5-1期,2006:168-170
    [98]杨俊恩,孟志东,杨国鹏,张子春.差分霍尔传感器的转速测量技术研究[J].仪表技术,2010(10):66-69
    [99]沈德明,高亹.基于单片机的汽轮机的数字测速方法[J].自动化仪表,22(11),2001:14~15
    [100]夏俊超,陈敏,曾胜.基于单片机的高精度转速测量算法[J].化工机械,第33卷第3期,2006:141-144
    [101]孙立军,周兆英,张涛.液体涡轮流量传感器叶轮几何参数定量优化方法[J].仪器仪表学报,28(3),2007:493-497
    [102]贾云飞,王振,蒋伟伟.多变量非线性规划算法下涡轮传感器的优化[J].化工自动化及仪表,36(5),2009:70-73
    [103]Wang Zhen, Zhang Tao, Computational Study of the Turbine Flowmeter[J], Journal of Flow Measurement and Instrumentation, Volume 19, Issue 5, October 2008:233-239
    [104]黄平,孟永钢.最优化理论与方法[M].北京:清华大学出版社,2009.2
    [105]Lerbs H W. Moderately Loaded Propellers with Finite Number of Blades and Arbitrary Distribution of Circulation[C]. Trans. SNAME,1952
    [106]Pien P C. The Caculation of Marine Propellers Based on Lifting Surface Theory[J]. Jou. JSR,Vol.5,No.2,1961
    [107]Hess J L,Smith A M O. Calculation of Potential Flow about Arbitrary Three Dimensional Lifting Bodies[R]. Technical Report MDC J5679-01, McDonnel Douglas, Oct, 1973
    [108]Richmyer R D, Morten K W. Difference Methods for Intial-value Problems[M]. New York:interscience,1967
    [109]Courant R, Isaacson E, Reeves M. On the Solution of Nonlinear Hyberbolic Differential Equations by Finite Differences [J]. Comptational Pure and Applied Mathematics,1952,5: 243-255
    [110]刘儒勋,舒其望.计算流体力学的若干新方法[M].北京:科学出版社,2003
    [111]Jameson A, Schmidt W, Turkel E.Numerical Solutions of the Euler Equations by FVM using R-K Time-stepping schemes[R]. AIAA 81-1259
    [112]Vinokur M. An Analysis of Finite Difference and Finite Volume Formations of Conservation Laws[R]. NASA CR177416,1986
    [113]张涵信,沈孟育.计算流体力学-差分方法的原理和应用[M].北京:国防工业出版社,2003
    [114]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006
    [115]陈作斌.计算流体力学及应用[M].北京:国防工业出版社,2003
    [116]Thompson J F, Warsi Z. Boundary-fitted Coordinate System for Numerical Solution of Partial Differential Equations-A review[J]. Journal of Computational Physics,1983:47-51
    [117]Thompson J F, Warsi Z, Mastin C. Numerical Grid Generation:Foundation and Applications[J]. North-Holland, New York,1985:95-140,163
    [118]张来平,张涵信,高树椿.矩形/三角形混合网格技术及在二维/三维复杂无粘流场数值模拟中的应用[J].空气动力学学报,16(1),1998:79-88
    [119]徐长江,张合.引信用侧进气涡轮电机三维流场数值模拟[J].弹箭与制导学报,26(1),2006:110-113
    [120]王振,张涛,郑丹丹.涡轮流量传感器内部流场数值模拟中湍流模型比较[J].天津大学学报,40(12),2007:1447-1451
    [121]黄剑峰,张立翔,姚激,曹亮.混流式水轮机三维空化湍流场混合数值模拟[J].中国电机工程学报,31(32),2011:115-121
    [122]Shuhong Liu, Liang Zhang, Michihiro Nishi, Yulin Wu. Cavitating Turbulent Flow Simulation in a Francis Turbine Based on Mixture Model [J]. Journal of Fluids Engineering, 131(5),2009
    [123]Yulin Wu, Shuhong Liu, Hua-Shu Dou and Liang Zhang. Simulations of Unsteady Cavitating Turbulent Flow in a Francis Turbine Using the RANS Method and the Improved Mixture Model of Two-phase Flows[J]. Engineering with Computers,27(3),2011:235-250
    [124]E. Sansone;C. Pellone, T. Maitre. Modeling the Unsteady Cavitating Flow in a Cross-Flow Water Turbine[J]. Journal of Fluids Engineering,132(7),2010
    [125]T.H. shih, W.W. Liou, A. Shabbir, Z. G. Yang, J. Zhu, A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows[J]. Comput Fluids.24(3):227-238,1995
    [126]Kubota A, Kato H, Yamaguchi H. A New Modeling of Cavitating Flows:A Numerical Study of Unsteady Cavitation on a Hydrofoil Section [J]. Journal of Fluid Mechanics,240, 1992:59-96
    [127]Singhal A K, Athavale M M, Li H, et al. Mathematical Basis and Validation of the Full Cavitation model [J]. Journal of Fluids Engineering,124(3),2002:617-624
    [128]Schnerr G H, Sauer J. Physical and Numerical Modeling of Unsteady Cavitation Dynamics[C]. Fourth International Conference on Multiphase Flow, New Orleans. USA, 2001
    [129]P.J. Zwart, A.G. Gerber, and T. Belamri. A Two-Phase Flow Model for Predicting Cavitation Dynamics. In Fifth International Conference on Multiphase Flow, Yokohama, Japan,2004.
    [130]Liu Y, Zhao P F, Wang X F. Study of Cavitating Flows around Two-dimensional Hydrofoil Using Two Cavitation Model[J]. Journal of Dalian University of Technology,52(2), 2012:175-182
    [131]HUANG Biao, WANG Guo yu, ZHANG Bo, SHI Su guo. Assessment of Cavitation Models for Computation of Unsteady Cavitating Flows [J]. Journal of Ship Mechanics,15(11), 2011:1195-1202
    [132]HUANG Biao, WANG GuoYu. A Modified Density Based Cavitation Model for Time Dependent Turbulent Cavitating Flow Computations [J]. Chinese Sci Bull,56,2011:1985— 1992
    [133]杨庆.空化初生机理及比尺效应研究[D].博士学位论文,四川:四川大学,2005
    [134]余冬梅.水力空化发生的影响因素及评价[D].硕士学位论文,天津:天津科技大学,2010
    [135]占梁梁.水力机械空化数值计算与试验研究[D].博士学位论文,武汉:华中科技大学,2006
    [136]王献孚.空化泡与超空化泡流动理论及应用[M].北京:国防工业出版社,2009
    [137]刘沛清.空气螺旋桨理论及其应用[M].北京:北京航空航天大学出版社,2005
    [138]Keller A P, Rott H. The Effect of Flow Turbulence on Cavitation Inception[C]. ASME FED Summer Meeting, Vancouver,1997:532-540
    [139]Keller A P. New Scaling Laws for Hydrodynamic Cavitation Inception[C]. The Second Int. Symp. on Cavitation, Tokyo, Japan,1994:212-220
    [140]黄继汤.空化与空蚀的原理及应用[M].北京:清华大学出版社,1991
    [141]P. Jarman and K.J.Taylor. Light Emission from Cavitating Water[J]. Brit. Jr. Appl. Phys., 15,1964
    [142]F.B.Peterson. Light Emission from Hydrodynamic Cavitation[D]. Ph. D. thesis, North western Univerity, August,1966
    [143]刘立栋,张宇文,蔡帆超空泡射弹弹道特性影响因素仿真研究[J/OL].计算机工 程与应用,,0:2011-10-13
    [144]王良明,钱明伟高原环境对高炮外弹道特性的影响[J].弹道学报,18(1),2006:18-21
    [145]赵建斌,翟英存,刘明喜.高空气象条件及其对弹箭弹道特性的影响分析[J].弹箭与制导学报,28(1),2008:177-179
    [146]王中原,史金光,易文俊.超高速弹箭飞行弹道研究[J].兵工学报,26(4),2005:443-447
    [147]Evren Ozsahin, Suleyman Tolun. On the Comparison of the Ballistic Response of Coated Aluminum Plates[J]. Materials and Design,31 (2010):3188-3193
    [148]沈仲书,刘亚飞.弹丸空气动力学[M].北京:国防工业出版社,1984.
    [149]阂杰,郭锡福.实用外弹道学[M].北京:兵器工业部教材编审室出版,1986
    [150]何云峰,孔德仁,王昌明.提高小口径杆型弹飞行稳定性的弹体设计方法探讨[J].弹箭与制导学报,第22卷第4期,2002:36-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700