用户名: 密码: 验证码:
水面武器操瞄系统稳定平台姿态测量及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水面载体在工作过程中,容易受到风浪流的作用而产生摇摆运动。被动隔振器可以消弱载体的高频低幅振动,但对低频摇摆运动的作用不是很明显,因此文中提出使用稳定平台技术来保证安装于水面载体之上的武器操瞄系统的稳定。稳定平台是指能够使被稳定对象在外部干扰作用下相对惯性空间保持方位不变,或在指令力矩作用下能按给定规律相对惯性空间转动的装置。论文针对两轴并联式稳定平台,从误差作用机理、姿态测量以及控制策略角度出发进行研究,旨在开发一种动态及时性好、抗干扰能力强、适用于水面武器装备的稳定平台系统。
     首先描述了水面武器稳定操瞄系统的总体结构,对操瞄系统和稳定平台的工作模式进行了介绍。稳定平台是一种高精度机电一体化设备,精度影响因素较多,文中对这些误差源进行了分类总结,并对其中几个影响较大、较难抑制的误差源进行了详细讨论。稳定操瞄系统中,数字磁罗盘和姿态航向参考系统(AHRS)分别被用来反馈操瞄系统和稳定平台的状态信息。磁罗盘的输出容易受到磁环境影响,文中研究了一种最小二乘法粗校、BP网络补偿法精校两步走的磁罗盘误差组合补偿方法。针对AHRS中的微机械陀螺仪,在使用Singer模型直接对陀螺信号建模的基础上,提出一种基于交互式多模型的陀螺信号处理方法。
     PIOGRAM图法在表达多坐标系旋转关系时具有简单直观的特点,文章借助于PIOGRAM图得到了稳定平台各坐标系间的转换关系,并在此基础上完成了平台执行机构运动学分析及隔离扰动原理的研究。为实现平台高精度控制,建立了电流环、速度环和位置环的三环控制结构。在速度稳定环中引入了干扰观测器,研究表明经典干扰观测器可较好地抑制低频扰动,但对高频测量噪声及模型摄动的抑制效果不是很理想。针对这个问题,提出了一种改进型干扰观测器,该改进型干扰观测器主要通过在反馈通道中,引入另一信号来补偿系统输出反馈。位置跟踪环中,设计了一个基于扰动的前馈——反馈复合控制器。其中,反馈通道使用灰色预测控制以解决系统时滞环节的影响,并详细分析了灰色预测步长的临界条件,在此基础上给出了一种步长自调节的灰色预测控制方法。前馈通道中,研究了载体干扰姿态的预测方法。在对姿态序列进行混沌特性判定的基础上,使用残差GM(1,1)模型在重构相空间中研究了重构相点L1范数的演变规律,在得到范数预测值后通过反解L1范数可得出原姿态时间序列的预测值。最后,通过数值仿真和实验相结合的方式对论文提出的理论和方法进行了验证,表明所设计的平台系统是有效的、可行的。
Water-borne carriers are easy to be influenced by wind waves when operating on the water. Passive isolator can reduce the effects of high-frequency and low-amplitude vibration, but is not so good to low-frequency swing. Hence stabilized platform technology is proposed to guarantee the stabilization of shipborne weapon aiming systems in the dissertation. Stabilized platform is the device which can keep the stabilized objects in a stable attitude under the actions of external disturbances, or make the stabilized objects work following the given orders in inertial space. The dissertation focuses on the two-axis parallel platform, studies the effect rules of error sources, attitude measurement and intelligent control, means to develop a shipborne stabilized platform which has the characteristics of quick reaction and strong anti-disturbance capability.
     The overall structure of shipborne stabilized aiming system is described firstly, the working modes of aiming system and stabilized platform are introduced meanwhile. Stabilized platform is a high precision equipment which composes of mechanism and electronics, and the precision influencing factors are numerous. In the dissertation, error sources are sorted and some hard unquenchable ones are dicussed in detail. In the stabilized aiming system, digital magnetoresistive compass and Attitude and Heading Reference System (AHRS) are used to feed back the states of aiming system and stabilized platform respectively. Outputs of digital magnetoresistive compass are easy to be influenced by magnetic environment. To solve the problem, a two-step integrated compensation method is proposed which uses least squared method to compensate firstly and uses BP network method to compensate the remaining errors. For micro-mechanical gyro in AHRS, Singer model is applied in direct modeling of gyro signal, and a gyro signal filtering method based on Interacting Multiple Models (IMM) is proposed.
     The PIOGRAM diagram method can describe coordinate conversion simply and intuitively. With PIOGRAM diagram, conversion relationships of different coordinate systems are established, and kinematics analysis of executive mechanism and disturbance-isolation theory analysis are finished. To realize high precision control, the three-loop control structure of stabilized platform which includes current loop, speed loop and position loop is modeled. Disturbance Observer (DOB) is applied in the speed stabilization loop, the dissertation indicates that classical DOB can suppress external disturbance well, but has non-ideal performances of suppressing measurement noise and model perturbation. In view of the problems, a novel improved DOB is proposed which uses an additional control signal to compensate system outputs in feedback channel. In the position tracking loop, a compound controller combined with feedback and disturbance forward is designed, and Grey Prediction Control method is used in feedback channel to reduce the influence of delay link. The critical qualification of grey prediction step is discussed in detail, and a grey prediction controller with variable steps is designed. In forward channel, the prediction method of carrier motion attitude is studied. After finishing the chaos identification of attitude series, the L1norm change laws of reconstructed phase points are studied with residual GM(1,1) model, and predicted values of time series are obtained with L1norm inverse solution. In the end, the theories and technologies discussed in this dissertation are tested with numerical simulations and experiments, results indicate that the designed platform system is feasible.
引文
[1]铁血军事.中国周边安全形势.http://bbs.tiexue.net/bbs33-0-1.html,2012.7.
    [2]新华军事.索马里海盗行动日趋专业各国护航作用有限.http://news.xinhuanet.com,2009.12.
    [3]陈爱武.小型车载稳定平台控制方法研究.北京:中国矿业大学(北京)博士学位论文,2011.
    [4]王锋.舰载多功能火箭炮系统分析与研究.南京:南京理工大学博士学位论文,2007.
    [5]陈益.具有目的域的光电稳定跟踪系统满意控制策略.南京:南京理工大学博士学位论文,2010.
    [6]王玉辉.船用摄像稳定平台测控问题研究.青岛:山东科技大学博士学位论文,2011.
    [7]金振逸.水面浮动平台实时稳定技术研究.南京:南京理工大学硕士学位论文,2011.
    [8]程佳.并联4TPS_1PS型电动稳定跟踪平台的特性及控制研究.杭州:浙江大学博士学位论文,2008.
    [9]Hilkert J M.. Inertially stabilized Platform technology concepts and principles, IEEE Control Systems Magazine,2008,28(1):26-46.
    [10]Walter R.E., Danny H, Donaldson J.. Stabilized inertial measurement system, Proceedings of SPIE-The International Society for Optical Engineering,2002,4724: 57-68.
    [11]J. Debruin. Control systems for mobile satcom antennas. IEEE Control Systems Magazine,2008,28(1):86-101.
    [12]Masten M.K.. Inertially Stabilized Platforms for Optical Imaging Systems. IEEE Control Systems Magazine,2008,28(1):47-64.
    [13]雷金利.大负载光电稳定平台技术研究.长春:长春理工大学博士学位论文,2009.
    [14]曹正才.舰载雷达常用稳定方式坐标变换.雷达与对抗,2010,30(1):47~52.
    [15]李红光,鱼云岐,宋亚民.最优控制在车载惯性平台稳定回路中的应用.应用光学,2007,28(3):251~256.
    [16]Donald Ruffatto, Donald Brown, Richard Pohle, etc. Stabilized High-Accuracy Optical Tracking System. Proceedings of SPIE,2001,4365:10-18.
    [17]Arthur Mayer. Analysis of Gyro Orientation. IRE Transactions on Automatic Control,1958:93-101.
    [18]董岩.基于神经网络的机载三轴稳定平台控制系统算法应用研究.长春:中国科学院长春光学精密机械与物理研究所博士学位论文,2011.
    [19]夏旭.船用稳定平台运动规划算法研究.哈尔滨:哈尔滨工程大学硕士学位论文,2011.
    [20]王连明.机载光电平台的稳定与跟踪伺服控制技术研究.长春:中国科学院长春光学精密机械与物理研究所博士学位论文,2002.
    [21]日本90式坦克火控系统. http://jczs.news.sina.com.cn,2004.
    [22]蔡敬海.机载光电稳定平台跟踪伺服系统研究.长春:长春理工大学硕士学位论文,2009.
    [23]Gibson A.. Laser Pointing technology. Proceedings of SPIE,2000,40(34):165-174.
    [24]姬伟.陀螺稳定光电跟踪平台伺服控制系统研究.南京:东南大学博士学位论文,2006.
    [25]Xie Delin, Yuan Jiahu, Yang Hu. Stabilization of Line-of sight for Airborne O-E Tracking and Imaging system. Proceedings of SPIE-The International Society for Optical Engineering,1998,3365:191-201.
    [26]鲍晓华.两自由度舰载并联稳定平台的设计与仿真研究.秦皇岛:燕山大学硕士学位论文,2011.
    [27]李岩.光电稳定跟踪装置误差建模与评价问题研究.长沙:国防科技大学博士学位论文,2008.
    [28]罗二娟.耦合型3自由度并联舰载稳定平台研究.秦皇岛:燕山大学硕士学位论文,2011.
    [29]Jesse J. Ortega. Gunfire Performance of Stabilized Electro-Optical Sights. Proceedings of SPIE-The International Society for Optical Engineering,1999,3692: 74-83.
    [30]陈永冰,钟斌.惯性导航原理.北京:国防工业出版社,2007.
    [31]美国新型舰载激光武器击落无人飞机http://news.xinmin.cn,2010.09.
    [32]Ricks Timothy P., Burton Megan M., Cruger William E., Reynolds Robert K.. Stabilized electro-optical airborne instrumentation Platform(SEAIP). Proceedings of SPIE, 2004,5268:202-209.
    [33]ASP-1 Stablized platform Brochure, http://www.wehrliassoc.com.
    [34]Brochure of iICSC-OFS etc. http://www.imar-navigation.de.
    [35]Engineering System Development Department. http://www.southernresearch.org/engineering/engineering-systems-development.html.
    [36]Algrain M.C., Quinn J.. Accelerometer Based Line-of-Sight Stabilization Approach for Pointing and Tracking Systems. Second IEEE Conference on Control Applications, 1993,1:159-163.
    [37]Algrain M.C.. Accelerometer-Based Platform Stabilization. Proceedings of SPIE: Acquisition, Tracking and Pointing V,1991,1482:367-382.
    [38]K.K. Tan, T.H.L., A. Mamun, M.W. Lee, C.J. Khoh. Composite control of a gyromirror line-of-sight stabilization platform-design and auto-tuning. ISA Transactions, 2001,40(2):155-171.
    [39]Lee T.H., Koh E.K., Loh M.K.. Stable adaptive control of multivariable servomechanisms, with application to a passive line-of-sight stabilization system. IEEE Transactions on Industrial Electronics,1996,43(1):98-105.
    [40]Lee T.H., Tan, K.K., Lee M.W.. A variable structure-augmented adaptive controller for a gyro-mirror line-of-sight stabilization platform. Mechatronics,1998,8(1):47-64.
    [41]Ioakimidis T.E., Wexler R. S.. Commercial Ku-band SATCOM On-the-MOVE Using a Hybrid Tracking Scheme.2001 MILCOM Proceedings Communications for Network-Centric Operations:Creating the Information Force,2001,2:780-784.
    [42]船用卫星天线稳定跟踪平台.http://www.cbs-satcom.com.
    [43]牛小骥,高钟毓,张嵘,陈志勇.基于微机械惯性传感器的卫星电视天线稳定系统.中国惯性技术学报,2002,10(5):11~15.
    [44]CWWP、CJWP稳定跟踪平台产品手册.http://www.sipat.com.
    [45]薛开,王平,王文斌,徐建安,祝海涛.基于多轴运动控制器的二轴转台控制系统.哈尔滨工程大学学报,2006,27(4):570~573.
    [46]Takaji Umeno, Yoichi Hori. Robust Speed Control of DC Servomotors Using Modern Two Degrees-of-Freedom Controller Design. IEEE Transactions on Industrial Electronics,1991,38(5):363-368.
    [47]张绍德,陈主成.一种基于干扰观测器的伺服系统设计.电子科技大学学报,2005,34(1):85~88.
    [48]于爽,付庄,闰维新,等.基于干扰观测器的惯性平台摩擦补偿方法.哈尔滨工业大学学报,2008,40(11):1830~1833.
    [49]Takaji Umeno, Tomoaki Kaneko, Yoichi Hori. Robust Servosystem Design with Two Degrees of Freedom and its Application to Novel Motion Control of Robot Manipulators. IEEE Transactions on Industrial Electronics,1993,40(5):473-485.
    [50]谢巍,何忠亮.采用改进型扰动观测器的控制方法.控制理论与应用,2010, 27(6):698~700.
    [51]YangQuan Chen, Blas M.Vinagre, Igor Podlubny. On Fractional Order Disturbance Observer. Proceedings of the 2003 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference,2003,5A:617-624.
    [52]Chengbin Ma, Yoichi Hori. Backlash Vibration Suppression in Torsional System Based on The Fractional Order Q-Filter of Disturbance Observer. AMC'04,8th IEEE International Workshop on Advanced Motion Control, Kawasaki, Japan, March,2004: 577-582.
    [53]王军平.高性能运动控制及在数控系统中的应用.西安:西北工业大学博士学位论文,2002.
    [54]Smith O J. Closer Control of Loops with Dead Time. Chemical Engineering Progress,1957,53(5):217-219.
    [55]姜波.灰色系统与神经网络分析方法及其应用研究.武汉:华中科技大学博士学位论文,2004.
    [56]程飙.工业过程灰色控制.黄石学院学报,1986,11(1):11~23.
    [57]C.C. Wong, W.C. Liang. Design of switching grey prediction controller. The Journal of Grey System,1997,1:47-60.
    [58]C.C. Wong, W.C. Liang, H.M. Feng, et al. Dynamic grey prediction controller design. The Journal of Grey System,1998,2:123-131.
    [59]Wong Chingchang, Chen Jenyang. A hybrid grey PID controller design through fuzzy gain scheduler. The Journal of Grey System,1999,1:13-27.
    [60]Jen-Yang Chen. Designing of a stable grey prediction controller for nonlinear systems. The Journal of Grey System,1996,8(4):381-396.
    [61]Shiuh-Jer Huang, Chien-Lo Huang. Control of an Inverted Pendulum Using Grey Prediction Model. IEEE Transactions on Industry Applications,2000,36(2):452-458.
    [62]赵郁峰,雷勇,王常虹.基于灰色理论PID控制的伺服转台研究.四川大学学报,2005,42(4):739~742.
    [63]WEI Li-sheng, FEI Min-rui. Research on Stability and Simulation of Adaptive Grey Predictive Control. Journal of System Simulation,2009,21(10):3009-3013.
    [64]范宏伟.红外导引头的二轴伺服稳定平台控制系统设计与实现.哈尔滨:哈尔滨工业大学硕士学位论文,2009.
    [65]McNeilage C., Ivanov E.N., et al. Review of feedback and feedforward noise reduction techniques. IEEE Int. Freq. Con. Symp,1998,146-155.
    [66]Grimble M.J.. Non-linear generalized minimum variance feedback, feedforward and tracking control. Automatica,2005,41(6):957-969.
    [67]Tsinias J., Tzamtzi M.P.. An explicit formula of bounded feedback stabilizers for feedforward systems. System and Control Letters,2001,43(4):247-261.
    [68]Miroslav Krstic. Feedback Linearizability and Explicit Integrator Forwarding Controllers for Classes of Feedforward Systems. IEEE Transactions on Automatic Control,2003,49(10):1668-1682.
    [69]李红梅.船载通信天线控制系统的稳定设计.电子设计工程,2010,18(6):51~55.
    [70]吴晔,胡伟锋,许美健.导引头稳定平台线性隔离度及其提高方法.制导与引信,2011,32(1):1-5.
    [71]唐建林,董彦良,赵克定.基于动力学干扰力前馈的液压Stewart平台μ综合控制.吉林大学学报(工学版),2009,39(3):662~667.
    [72]孙丽娜,宋悦铭,戴明.采用复合控制提高机载光电平台的数引跟踪精度.光学精密工程,2008,16(2):265~268.
    [73]Wang Benyong, Dong Yanliang, Zhao Keding. Compound Control for Hydraulic Flight Motion Simulator. Chinese Journal of Aeronautics,2010,23(2):240-245.
    [74]李慧忠,王庆丰.电液伺服水平稳定平台的控制研究.机床与液压,2007,35(2):112~113.
    [75]刘义,郭建都,郭黎霞.基于RBF算法的前馈惯性稳定平台PID控制回路的设计.车辆与动力技术,2011,121(1):31-34.
    [76]王蕾,吉书鹏.利用复合控制提高机载光电成像跟踪系统的跟踪精度.微电机,2011,44(5):93~96.
    [77]牛立,李莉,庄良杰.惯性平台稳定回路的自抗扰控制.中圈惯性技术学报,2004,12(6):48~51.
    [78]杨蒲,李奇.陀螺稳定平台自适应分层滑模速度控制.兵工学报,2008,29(7):864~869.
    [79]Willian J.Bigley, Steven P.Tsao. Optimal Motion Stabilization Control of an Electro-Optical Sight System. Proceedings of SPIE-The International Society for Optical Engineering,1989,1111:116-120.
    [80]Krishna Moorty J.A.R., Marathe Rajeev, Sule' V.R.. H∞ Control Law for Line-of-sight Stabilization for Mobile land Vehicles. Optical Engineering,2002,41(11): 2935-2944.
    [81]Krishna Moorty J.A.R., Marathe Rajeev, Babu Hari. Fuzzy Controller for Line-of-sight Stabilization Systems. Optical Engineering,2004,43(6):1394-1400.
    [82]Hongliu Du, Satish S.Nair. Modeling and Compensation of Low-Velocity Friction with Bounds. IEEE Transaction on Control Systems Technology,1999,7(1):110-121.
    [83]Chun-Liang Lin, Yi-Hsing Hsiao. Adaptive feedforward control for disturbance torque rejection in seeker stabilizing loop. IEEE Transactions on Control Systems Technology,2001,9(1):108-121.
    [84]Vukosavic S.N., Stojic M.R.. Suppression of Torsional Oscillations in A High-Performance Speed Servo Drive. IEEE Transaction on Industry Electronics,1998,45(1): 108-117.
    [85]姬伟,李奇.陀螺稳定平台视轴稳定系统自适应模糊PID控制.航空学报,2007,28(1):191~195.
    [86]Ho-Pyeong Lee, Yoo Inn-Eark. Robust Control Design for a Two-axis Gimbaled Stabilization System.2008 IEEE Aerospace Conference,2008:7.
    [87]Hilkert J.M., Hullender David A.. Adaptive control system techniques applied to inertial stabilization systems. Proceedings of SPIE-The International Society for Optical Engineering,1990,1304:190-206.
    [88]张智永.光电稳定伺服机构的关键测控问题研究.长沙:国防科技大学博士学位论文,2006.
    [89]刘付强.船用卫星天线微型姿态测量系统关键技术研究.哈尔滨:哈尔滨工程大学博士学位论文,2008.
    [90]Hammon R.L.. An Application of Random Process Theory to Gyro Drift Analysis. IRE Transactions on Aeronautical and Navigational Electronics, September, 1960:84-91.
    [91]Dushman A.. On Gyro Drift Models and their Evaluation. IRE Transactions on Aerospace and Navigational Electronics, July,1962:66-71.
    [92]Van Dierendonek J., Brown G... Modeling Nonstationary Random Process with an Application to Gyro Drift Rate. IEEE Transactions on Aerospace and Electronic Systems, 1969, aes-5(3):423-428.
    [93]Oravetz A.S., Sandberg H.J.. Stationary and Nonstationary Characteristics of Gyro Drift Rate. AIAA Journal,1970,8(10):1766-1772.
    [94]Pandit Sudhakar M., Zhang Weibang. Modeling Random Gyro Drift Rate Data Dependent Systems. IEEE Transactions on Aerospace and Electronic Systems,1986, aes-22(4):455-460.
    [95]ZHANG Hua, KE Xizheng, JIAO Rong. Experimental research on feedback Kalman model of MEMS gyroscope. The Eighth Int. Conf. on Electronic Measurement and Instruments, Xi'an, China,2007:1253-1256.
    [96]刘鲁源,陈玉柱.基于小波变换的陀螺漂移建模与实验研究.中国惯性技术学报,2004,12(1):61~65.
    [97]周结华,彭侠夫,仲训昱.基于灰色RBF-NN的陀螺随机漂移误差建模.华中科技大学学报(自然科学版),2011,39(2):39~42.
    [98]CHEN Xiyuan. Modeling random gyro drift by time series neural Networks and by traditional method. IEEE Int. Conf. Neural Networks & Signal Processing, Nanjing, China,2003:810-813.
    [99]樊春玲,田蔚风,金志华.一种新型的基于灰色模型的动调陀螺随机漂移建模方法.上海交通大学学报,2004,38(10):1741-1743,1747.
    [100]暴飞虎,胡昌华,刘丙杰,张伟,张豪.基于模糊分类-灰色马尔可夫的陀螺仪漂移预测.系统工程与电子技术,2007,29(8):1398~1401.
    [101]吉训生,王寿荣.硅微陀螺漂移混沌特性分析及预测,中北大学学报(自然科学版),20011,32(5):567~573.
    [102]袁赣南,梁海波,何昆鹏,谢燕军.MEMS 陀螺随机漂移的状态空间模型分析及应用.传感技术学报,2011,24(6):853~858.
    [103]崔铭.粒子滤波在MEMS陀螺仪初始对准中的应用.传感技术学报,2011,24(9):1275~1278.
    [104]Liu Fuqiang, Liu Fanming, Wang Wenjing, et al. MEMS gyro's output signal de-noising based on wavelet analysis. Proc. of the 2007 IEEE Int. Conf. on Mechatronics and Automation, Harbin, China,2007:1288-1293.
    [105]吉训生,王寿荣.硅微陀螺漂移数据滤波方法研究.传感技术学报,2008,21(2):333~336.
    [106]姬伟,李奇.光纤陀螺信号误差分析与滤波算法的研究.传感技术学报,2007,20(4):847~852.
    [107]昊鹏,葛远声,陈世同,薛冰.微机械陀螺信号虚拟野值降噪方法.仪器仪表学报,2010,31(5):1194~1199.
    [108]陈世同,孙枫,高伟,昊磊.基于归一化LMS算法的光纤陀螺降噪技术研究.仪器仪表学报,2009,30(3):521~525.
    [109]HOU H Y. Modeling inertial sensors errors using Allan variance. Calgary, Canada:Department of Geomatics Engineering, University of Calgary,2004.
    [110]EI-SHEIMY N, HOU H Y, NIU X J. Analysis and modeling of inertial sensors using Allan variance. IEEE Transactions on Instrumentation and Measurement,2008, 57(1):140-149.
    [111]毕永利,王连明,葛文奇.光电稳定平台控制系统中数字滤波技术研究.仪表 技术与传感器,2005,4:54~57.
    [112]孟中,张涛,戴明.陀螺滤波在改善伺服系统低速特性中的应用.压电与声光,2006,2(1):109~112.
    [113]朱华征,周晓尧,张文博,范大鹏.光电稳定平台中陀螺随机漂移的处理方法.中国惯性技术学报,2009,17(2):225-230.
    [114]宋高顺.MIMU辅助卫星测姿技术研究.南京:南京理工大学博士学位论文,2012.
    [115]杜英.电子罗盘测量误差分析和补偿技术研究.太原:中北大学硕士学位论文,2011.
    [116]李翔.基于地磁场的水平方位角测量研究.桂林:桂林电子科技大学硕士学位论文,2010.
    [117]G.W. Barber, A.S. Arrott. History and magnetics of compass adjusting. IEEE Transactions on Magnetics,1988,24(6):2883-2885.
    [118]Tolles W.E., Lawson J.D.. Magnetic Compensation of MAD Equipped Aircraft. New York:Airborne Instruments Lab Inc,1950.
    [119]Paul Leliak. Identification and Evaluation of Magnetic Field Sources of Magnetic Airborne Detector Equipped Aircraft. IRE Trans. Aerospace & Navigational Electronics. 1961,8(3):95-105.
    [120]M. Moulin, J.C. Guodon, J.M. Marsy, et al. Process for compensating the magnetic disturbances in the determination of a magnetic heading, and devices for carrying out this process. United States:No.4414753,1983.
    [121]Caruso M.J.. Applications of magneto resistive sensors in navigation systems. Sensors and Actuators,1997,42(9):15-21.
    [122]Cho S.Y.. Enhanced tilt compensation method for biaxial magnetic compass. Electronics Letters,2005,41(24):1323-1325.
    [123]Seungkeun Choi, Seong-Hyok Kim, Yong-Kyu Yoon, M.G. Allen. A Magnetically Excited and Sensed MEMS-Based Resonant Compass. IEEE Transactions on Magnetics, 2006,42(10):3506-3508.
    [124]Vcelak J., Petrucha V., Kaspar P.. Compact Digital Compass with PCB Fluxgate Sensors. Proceedings of IEEE Sensors,2006:859-861.
    [125]E. Laulainen, L. Koskinen, M. Kosunen, K. Halonen. Compass tilt compensation algorithm using CORDIC.2008 IEEE International Symposium on Circuits and Systems, 2008:1188-1191.
    [126]LI Zhi, LI Xiang, WANG Yong-jun. A calibration method for magnetic sensors and accelerometer in tilt-compensated digital compass. Proceeding of 9th International Conference on Electronic Measurement and Instruments,2009,2:868-871.
    [127]王勇军,李智,李翔.三轴电子罗盘的设计与误差校正.传感器与微系统,2010,29(10):110~112.
    [128]Crassidis J L, Lai K L, Harman R R. Real-time-attitude-independent three-axis magnetometer calibration. Journal of Guidance, control and dynamics,2005,28(1): 115-120.
    [129]Fang Jiancheng, Sun Hongwei, Cao Juanjuan, Zhang Xiao, Tao Ye. A Novel Calibration Method of Magnetic Compass Based on Ellipsoid Fitting. IEEE Transactions on Instrumentation and Measurement,2011,60(6):2053-2061.
    [130]李智,李翔.基于椭球假设的三轴电子罗盘罗差补偿研究.仪器仪表学报,2011,32(10):2210~2215.
    [131]朱建良,王兴全,吴盘龙,薄煜明,张捷.基于椭球曲面拟合的三维磁罗盘误差补偿算法.中国惯性技术学报,2012,20(5):562~566.
    [132]Wang Jau-Hsiung, GAO Yang. A new magnetic compass calibration algorithm using neural networks. Measurement Science and Technology,2006,17(1):153-160.
    [133]刘仁浩,王华.数字磁罗盘的全姿态罗差补偿.光学精密工程,2011,19(8):1867~1873.
    [134]钟辰,金海红,任腾,田柳.基于遗传算法的数字罗盘误差补偿方法研究.传感技术学报,2012,25(6):803~806.
    [135]张静,金志华,田蔚风.无航向基准时数字式磁罗盘的自差校正.上海交通大学学报,2004,38(10):1757~1760.
    [136]马文,曾连荪,金志华.数字式磁罗盘的误差补偿方法研究.电子测量技术,2007,30(11):74~77.
    [137]陆建山,王昌明,张爱军.数字式磁罗盘的航向角干扰补偿方法研究.传感器与微系统,2010,29(6):75~79.
    [138]Fleck J.T.. Short Time Prediction of the Motion of a Ship in Waves, Proc.1st Conf. on Ships and Waves, October 1954, Published by Council on Wave Research and SNAME.
    [139]Paul Kaplan. A Study of Prediction Techniques for Aircraft Carrier Motions at Sea. Perforation of Arctic Sea-Ice Cover, July,1969:121-131.
    [140]Michael Triantafyllou, Michael Athans. Real Time Estimation of the Heaving and Pitching Motions of a Ship Using a Kalman Filter. Ocean Engineering,1981:1090-1095.
    [141]Yumori, Isao Roy. Real time prediction of ship response to ocean waves using time series analysis. Oceans Conference Record (IEEE),1981,2:1082-1089.
    [142]Fonseca N., Soares C.G.. Time-domain analysis of large-amplitude vertical ship motions and wave loads. Journal of Ship Research,1998,42(2):139-153.
    [143]Lainiotis D G, Plataniotis K N. Neural network estimators:application to ship position estimation. IEEE International Conference on Neural Networks, Orlando,1994: 4710-4717.
    [144]Jihong Shen, Changbin Zhang, Yanyou Chai, Jin Zou. Prediction of Planing Craft Motion Based on Grey System Theory. Journal of Marine Science and Application,2011, 10(2):240-245.
    [145]SUN Lihong, SHEN Jihong. Application of the Grey tapological method to predict the effects of ship pitching. Journal of Marine Science and Application,2008,7(4): 292-296.
    [146]MA Fongyuan, WANG Weihui. Prediction of pitting corrosion behavior for stainless SUS 630 based on grey system theory. Materials Letters,2007,61:998-1001.
    [147]Jianshan Lu, Changming Wang, Aijun Zhang, Weiwei Hu. Study on Combined Forecasting of Stabilized Platform Motion Attitude. Proceedings of the 2012 International Conference on Computer Science and Electronics Engineering,2012,3:694-697.
    [148]马洁.船舶运动姿态预报与控制方法研究.哈尔滨:哈尔滨工程大学博士学位论文,2006.
    [149]赵明明.舰载武器稳定平台控制系统设计.南京:南京航空航天大学硕士学位论文,2010.
    [150]Richard L.Pio.. Euler Angle Transformation. IEEE Transactions on Automatic Control,1966, AC-11 (4):707-715.
    [151]王苏.舰载激光武器高精度稳定平台系统研究.哈尔滨:哈尔滨工程大学硕士学位论文,2008.
    [152]黄卫权.舰船用平台式惯导系统测控技术研究.哈尔滨:哈尔滨工程大学博士学位论文,2006.
    [153]周结华,彭侠夫,何栋炜.惯性平台稳定回路的多环控制.福州大学学报(自然科学版),2008,9(36):161~165.
    [154]陈鹏展.交流伺服系统控制参数自整定策略研究.武汉:华中科技大学博士学位论文,2010.
    [155]辜小兵.基于DSP的交流伺服驱动器的设计与实现.北京:冶金自动化研究设计院硕士学位论文,2007.
    [156]毕永利.多框架光电平台控制系统研究.长春:中国科学院研究生院博士学位论文,2006.
    [157]庞新良.机载光电稳定平台数字控制关键技术研究.长沙:国防科技大学博士学位论文,2007.
    [158]张菊.含有齿隙和摩擦的舰载雷达稳定平台动力学建模及控制仿真.西安:西安电子科技大学硕士学位论文,2010.
    [159]钱华明,夏全喜,阙兴涛,等.基于Kalman滤波的MEMS陀螺仪滤波方法.哈尔滨工程大学学报,2010,31(9):1217~1221.
    [160]董景新,赵长德,郭美凤,等.控制工程基础(第3版).北京:清华大学出版社,2009.
    [161]张爱军.水下潜器组合导航定位及数据融合技术研究.南京:南京理工大学博士学位论文,2009.
    [162]王永强.基于地磁测量的数字罗盘研究.上海:上海交通大学硕士学位论文,2007.
    [163]马斌良,黄玉美,史恩秀,等.基于神经网络代数算法的电子罗盘的标定.仪器仪表学报,2008,29(11):2304~2309.
    [164]董长虹Matlab神经网络与应用.北京:国防工业出版社,2005.
    [165]王璐,赵忠,邵玉梅,等.磁罗盘误差分析及补偿.传感技术学报,2007,20(2):439~441.
    [166]Singer R A. Estimating optimal tracking filter performance for manner maneuvering targets. IEEE Transactions on Aerospace and Electronic Systems,1970,6(4): 474-480.
    [167]Kalman R E. A New Approach to Linear filtering and Prediction Problems. Transaction of the ASME. Journal of Basic Engineering,1996,82:35-45.
    [168]付梦印,邓志红,张继伟Kalman滤波理论及其在导航系统中的应用.北京:科学出版社,2003.
    [169]卞鸿巍,李安,覃方君,许江宁.现代信息融合技术在组合导航中的应用.北京:国防工业出版社,2010.
    [170]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理.西安:西北工业大学出版社,1998.
    [171]Blom H A P, Bar-Shalom Y. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Transactions on Automatic Control,1988, 33(8):780-783.
    [172]H.A.P.Blom. An Efficient Filter for Abrupty Changing System. Proc of 23rd IEEE Conf. on Decision and Control,1984:656-658.
    [173]陆建山,王昌明,宋高顺,等.基于卡尔曼滤波的交互式多模型GPS定位方 法研究.兵工学报,2011,32(6):770-774.
    [174]赵琳,王小旭,丁继成,曹伟.组合导航系统非线性滤波算法综述.中国惯性技术学报,2009,17(1):46~58.
    [175]肖本贤.多轴运动下的轮廓跟踪误差控制与补偿方法研究.合肥:合肥工业大学博士学位论文,2004.
    [176]方强.被动式力矩伺服控制系统设计方法及应用研究.哈尔滨:哈尔滨工业大学博士学位论文,2006.
    [177]王建宇.舱外航天服关节力学特性测试机器人系统的研究.哈尔滨:哈尔滨工业大学博士学位论文,2008.
    [178]高亮.基于干扰观测器的转台控制系统设计.哈尔滨:哈尔滨工业大学硕士学位论文,2007.
    [179]H.S. Lee, Masayoshi Tomizuka. Robust Motion Control Design for High Accuracy Position System. IEEE Transaction on Industrial Electronics,1996,43(1):48-55.
    [180]方强,姚郁.电动负载模拟器扰动观测器系统优化设计.哈尔滨工业大学学报,2007,39(3):349~353.
    [181]王冬青.非线性时滞系统的神经网络预测控制.天津:天津大学博士学位论文,2005.
    [182]邓聚龙.灰色控制系统(第2版).武汉:华中理工大学出版社,1993.
    [183]王明东.发电机组灰色预测可拓控制方法研究.哈尔滨:哈尔滨工业大学博士学位论文,2008.
    [184]刘思峰,谢乃明,等.灰色系统理论及其应用(第四版).北京:科学出版社,2008.
    [185]郭一凡.灰预测控制器的MATLAB研究.武汉:华中科技大学硕士学位论文,2004.
    [186]吴红英,魏利胜.倒立摆网络控制系统的自适应灰色预测策略研究.计算机科学,2010,37(2):253~255.
    [187]仇振安.姿态稳定平台测控技术研究.长沙:国防科技大学硕士学位论文,2006.
    [188]赵旺升.基于脉冲串控制的含位置反馈和前馈补偿的位置控制算法的研究.北京:北京交通大学硕士学位论文,2007.
    [189]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉:武汉大学出版社,2002.
    [190]刘伟,王科俊,邵克勇.混沌时间序列的混合粒子群优化预测.控制与决策,2007,22(5):562~565.
    [191]Takens F.. Determining strange attractors in turbulence. Lecture Notes in Mathematics, Berlin:Springer,1981,898:361-381.
    [192]张智晟,孙雅明,王兆峰,等.优化相空间近邻点与递归神经网络融合的短期负荷预测.中国电机工程学报,2003,23(8):44~49.
    [193]Lu Jianshan, Wang Changming, Zhang Aijun, Xie Xiaomin. Residual GM(1,1) Model-Based Prediction Method for Chaotic Time Series. The Journal of Grey System, 2012,24(4):379-388.
    [194]唐黔湘.试验数据处理的灰色混沌方法及其应用.机床与液压,2003,(3):262~264.
    [195]李夕兵,刘志祥.基于重构相空间充填体变形规律的灰色预测研究.安全与环境学报,2004,4(6):54~57.
    [196]Fang-mei Tseng, Hsiao-Cheng Yu, Gwo-Hsiung Tzeng. Applied Hybrid Grey Model to Forecast Seasonal Time Series. Technological Forecasting and Social Change, 2001,67:291-302.
    [197]陈华友,刘春林.基于L1范数的加权几何平均组合预测模型的性质.东南大学学报(自然科学版),2004,34(4):535~540.
    [198]王立军,陈锋,丁福光,施小成.船舶动力定位海浪环境的实时仿真与海浪谱分析.华东船舶工业学院学报(自然科学版),2001,15(1):48~51.
    [199]郭惜久.水面稳定平台测控系统研究.南京:南京理工大学硕士学位论文,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700