用户名: 密码: 验证码:
水润滑橡胶合金轴承混合润滑分析与动力学性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题来源于国家国防基础科研项目和国家自然科学基金项目“大尺寸水润滑橡胶合金轴承振动噪声机理与可靠性研究”(51175521),主要针对国内外大中型船舶推进系统润滑油泄漏污染江河湖海水资源环境日趋严重现状,以及我国水中航行器及水中兵器等推进系统迫切需要解决的减振降噪、安全可靠等共性关键科技问题,在集成重庆大学机械传动国家重点实验室基于新型工程复合材料的高效传动系统等10多项相关技术发明专利成果和国内外相关研究基础上,以多场耦合条件下高可靠低噪声水润滑橡胶合金轴承为研究对象,开展了水润滑橡胶轴承混合润滑行为及其承载与失效机理,水膜动态特性,水润滑橡胶合金轴承系统摩擦噪声机理以及实验研究,揭示了水润滑橡胶合金轴承多曲面多纵向沟槽润滑结构(沟槽数量、沟槽半径和沟槽过度圆弧半径)、橡胶厚度、橡胶硬度、弹性模量、长径比等对润滑特性和摩擦噪声的影响规律,为提出高可靠、长寿命、低噪声、无污染等高性能水润滑橡胶合金轴承及系统的创新设计理论、方法和技术,培育新的环保产业和经济增长点奠定关键科学技术基础。主要研究内容如下:
     (1)针对水润滑橡胶合金轴承多曲面多纵向沟槽的几何结构以及橡胶低弹性模量等特点,建立了考虑多曲面多纵向沟槽润滑结构、橡胶弹性变形、表面粗糙度以及温度等多因素的水润滑橡胶合金轴承混合润滑模型。根据水润滑橡胶合金轴承实际工况,建立与之相适应的边界条件,并提出该模型的数值求解方法。
     (2)在建立的混合润滑模型基础上,分析了水润滑橡胶合金轴承水膜压力、水膜厚度以及温度分布,并研究转速、载荷、沟槽几何结构(数量、沟槽圆弧半径和沟槽过度圆弧半径)、轴承间隙、橡胶弹性模量、表面粗糙度等多场耦合条件下多因素对水润滑橡胶合金轴承混合润滑性能的影响,掌握了水润滑橡胶合金轴承混合润滑行为,揭示其承载、润滑与失效机理。
     (3)基于不定常雷诺方程,考虑了多曲面多圆弧沟槽的润滑结构和橡胶变形,推导了水润滑橡胶合金轴承动态雷诺方程,并给出了水膜动态刚度和动态阻尼的计算表达式。在此基础上,研究了载荷、转速、供水压力、水槽结构、长径比、轴承间隙等对水膜动态特性的影响规律,为水润滑橡胶合金轴承稳定性分析提供了理论基础。
     (4)阐述了机械摩擦系统的摩擦噪声机理,建立了水润滑橡胶合金轴承动力学模型,并运用有限元法进行了水润滑橡胶合金轴承复模态分析,通过阻尼比来判断水润滑橡胶合金轴承系统的稳定性,进而揭示了水润滑橡胶合金轴承摩擦噪声机理。研究了不同摩擦系数、速度、载荷、橡胶硬度、水槽数量以及橡胶厚度对摩擦噪声的影响规律,进而提出了低噪声水润滑橡胶合金轴承优化设计方法。
     (5)针对目前国内外水润滑橡胶轴承实验手段落后以及相关实验台存在的不足,本文发明并研制出多场耦合条件下的水润滑橡胶合金轴承及传动系统综合性能实验平台。该实验平台具有不同频率激振力、速度、水介质环境等多场耦合条件下,水润滑橡胶合金轴承摩擦系数、水膜压力、水膜厚度、轴心轨迹、动态刚度和阻尼、振动噪声等实验功能。并且,利用该实验台进行了相关实验,实验结果验证了理论分析的正确性,为提出多场耦合条件下的低噪声高可靠水润滑橡胶合金轴承创新设计理论和方法提供实验条件。
The thesis work is based on the projects “Research of the vibration and noisemechanism and reliability on the large-size water lubricated rubber alloy bearing”which had been supported by National Defense Basic Scientific Research Program ofChina and National Natural Science Foundation of China (Grant No.51175521). Due tothe water pollution of river and sea by oil leakage of marine propulsion system isgetting worse, along with the common and key technology issues that need to be solvedurgently of vibration and noise reducing, safe and reliable, and energy and emissionreduction for the marine propulsion system of submarines, aircraft carrier and anechoicsubmarines, the high reliable and low noise water lubricated rubber alloy bearing undercoupling multi-field effect is studied based on the over10technological patents forinvention related to the high efficient transmission system based on the new-typecomposite material of the state key laboratory of mechanical transmission of chongqinguniversity and other relevant research results. The mixed lubricating behavior alongwith the load capacity and failure mechanism, water film dynamic characteristic andfriction and noise mechanism are studied, and some related experiments are conducted,in order to evaluate the influences of lubricating structure with multi-surfaces axialgrooves (including the grooves number, grooves radius and grooves fillet radius), rubberlayer thickness, rubber hardness and elastic modulus, L/D ratio et al on the lubricatingcharacteristic and friction noise of water lubricated rubber alloy bearing. The results layscientific and technological foundation for proposing the creative designing theory,method and technology on high-performance water lubricated rubber alloy bearing andtransmission systems and developing the new sources of environmental protectionindustries and economic growth. The research contents as follows:
     (1) A mixed lubrication model for water lubricated rubber alloy bearing isconducted considering the effects of lubricating structure with multi-surfaces axialgrooves, elastic deformation, surface roughness and thermal. Meanwhile the numericalsolution is developed according to the actual operation conditions.
     (2) The distribution of water film pressure, thickness and thermal are studied basedon the mixed lubricated model to evaluate the influences of speed, load, groovesstructure (including the grooves number, grooves radius and grooves fillet radius),rubber elasticity modulus, the bearing clearance and surface roughness on the mixed lubricating performance of water lubricated rubber alloy bearing under couplingmulti-field effect. The results reveal the mixed lubrication action and load capacity andfailure mechanism of water lubricated rubber alloy bearing.
     (3) The dynamic Reynolds equation considering the rubber deformation andlubricating structure with multi-curve groove based on the unsteady flows has beenderived. And the governing equation of water film dynamic stiffness and damping arepresented. On this basis, the influences of the load, speed, supply pressure, groovegeometry, aspect ratios and the bearing clearance on the water film dynamiccharacteristics are studied. The results will be the theoretical basis of steady analysis ofwater lubricated rubber alloy bearing.
     (4) The friction noise mechanism of the mechanical tribology system is studied toestablish the dynamic model for water lubricated rubber alloy bearing. And the complexmode of water lubricated rubber alloy bearing are analysed using the finite elementmethod to evaluate the stability and friction noise mechanism of water lubricated rubberalloy bearing. Furthermore, the influences of friction coefficient, speed, load, rubberhardness, grooves number and rubber thickness on the friction noise distribution arestudied to propose the optimal design method of low noise water lubricated rubber alloyrubber bearing.
     (5) The synthesis experiment platform of water lubricated rubber alloy bearing hasbeen developed aiming to advance the experiment method and condition consideringmulti field coupling issue. It is excellent to do the experiments of friction coefficient,water film pressure, water film thickness, axis trace, dynamic stiffness and damping andvibrating noise et al, considering the different frequency of exciting force, speed, waterenvironment. In addition, the related experiments are done that validate the correct oftheoretical analysis. Therefore, the experiment platform can provide the experimentalconditions for studying the innovative design theory and method of the multi-fieldcoupling water lubricated rubber alloy bearing.
引文
[1] Emissions estimation technique manual for aggregate emissions from commercial ships/boatsand recreational boats[R]. Environment Australia,1999.
    [2] Recreational vessels registered in queensland: by local authority and length[R].Qld. Dept.Transpt. Queensland Department of Transport,2001.
    [3] Marine pollution section, marine oil pollution: its potential impact and control[R].Qld. Transpt.Queensland Transport,1989.
    [4] Rolt L T C. The mechanicals: progress of a profession[M].Institution of Mechanical Engineers,1967.
    [5] Orndorff JR R. Water-Lubricated rubber bearings, history and new developments[J]. NavalEngineers Journal,1985,(10):39~52.
    [6] Busse W F, Denton W H. Water-lubricated soft-rubber bearings[J].Trans.AMSE.Iron SteelDiv.1932,54(2).
    [7] Fogg A, Hunwicks S A. Some experiments with water-lubricated rubber bearings[J].Proceedings of the Institution of Mechanical Engineers,1937.
    [8] Bednar A. Soft rubber bearings[J].The American Society of Mechanical Engineers,1949,5.
    [9] Beatty J R, Cornell D H. Laboratory testing rubber bearings[J]. The American Society ofMechanical Engineers,1949,11/12.
    [10] Schneider L G, Smith W V. Lubrication in a sea-water environment[J]. Naval EngineersJournal,1963-10,75(4):841-854.
    [11]王家序,田凡,王帮长,肖科.橡胶合金材料及利用该材料制造传动件的方法[P].中国,ZL200810070080.2,2011.04.27
    [12] Daugherty T L, Sides N T. Frictional characteristics of water-lubricated compliant surfacestave bearing[J]. ASLE Transactions,1981,24(3):293~301
    [13]金志鸿,唐育民,海鹏洲等.水润滑特性和弹性接触应力对尾轴承使用寿命的影响[J].中国造船,1986,4:007.
    [14]杨成仁,苏逢荃,王优强.八纵向沟水润滑橡胶轴承润滑机理的实验研究[J].青岛建筑工程学院学报,1995,16(004):51-58.
    [15]苏逢荃,王优强.水润滑动压橡胶轴承的实验研究与误差分析[J].青岛建筑工程学院学报,1997,18(001):39-44.
    [16]王优强,杨成仁.水润滑动压橡胶轴承的数值计算[J].青岛建筑工程学院学报,1996,17(3):49-55.
    [17]王优强,杨成仁.八纵向沟水润滑橡胶轴承润滑性能研究[J].润滑与密封,2001(04):23-25
    [18]王优强,杨成仁.水润滑动压橡胶轴承的结构与润滑性能研究[J].润滑与密封,2001(6):20-22.
    [19]段芳莉.橡胶轴承的水润滑机理研究[D].重庆大学博士学位论文,2002.
    [20]段芳莉,韦云隆,海鹏洲.水润滑橡胶轴承的弹流润滑分析[J].润滑与密封,2004(3):5-7.
    [21]彭晋民,王家序.水润滑塑料合金轴承摩擦性能实验[J].重庆大学学报:自然科学版,2001,24(006):9-11.
    [22]彭晋民,王家序,余江波.水润滑金属基塑料轴承设计参数的研究[J].轴承,2001,10:003.
    [23]彭晋民,王家序.水润滑塑料合金轴承润滑机理研究[J].润滑与密封,2002(3):5-6.
    [24]彭晋民,王家序.水润滑塑料合金轴承的弹性变形及其影响[J].农业机械学报,2002,33(3):102-105.
    [25]王家序,陈战.水润滑橡胶轴承的摩擦磨损特性及机理研究[J].润滑与密封,2002(4):21-23.
    [26]王家序,陈战.水润滑橡胶轴承的磨粒磨损特性及机理研究[J].润滑与密封,2002(3):30-31.
    [27]王家序,田凡,王帮长.水润滑橡胶合金轴承[P].中国,ZL200810070089.3,2010.12.15
    [28]王家序,王帮长,肖科.水润滑动密封橡胶合金轴承[P].中国,ZL200510057204.X,2008.04.23
    [29]朱汉华,刘正林,温诗铸等.船舶轴系尾轴承动态润滑计算[J].武汉理工大学学报(交通科学与工程版),2005,(1):149-151
    [30]余江波,王家序,田凡等.水润滑塑料合金轴承的润滑机理[J].农业机械学报,2007,38(3):160-163.
    [31] Sprengel J F, Hargreaves D J. A test rig for the performance assessment of non-metallic waterlubricated bearings[C].International Tribology Conference, Brisbane, Institutions of Engineers,Australia National Conference Publication NCP,1990,14.
    [32] Hargreaves D J, Elgezawy A S.Optimisation of grooving arrangements in water lubricatednon-metallic journal bearings[J]. Trans. IEAust ME,1993,18(3):245–251.
    [33][33]Elgezawy A S. A theoretical and experimental study of water lubricated non-metallicjournal bearings[J]. Queensland University of Technology, Australia,1996.
    [34] Hargreaves D J, Chadwick G. Experimental and theoretical analyses of combined coquette andpoiseuille flows in journal bearings with multiple axial grooves[C]. In Proceedings of theInternational Tribology Conference, Nagasaki,2000.
    [35] Pai R, Hargreaves D J, Brown R J. Modelling of fluid flow in a3-axial groove waterbearingusing computational fluid dynamics[C]. In Proceedings of14th Australasian FluidMechanics Conference, Adelaide University, Adelaide, Australia,2001
    [36] Vijayaraghavan D, Keith T G. Effect of type and location of oil groove on the performance ofjournal bearings[J].Tribol. Trans,1992,35:98-106.
    [37] Shelly P, Ettles C. Solutions for the load capacity of journal bearings with oil grooves, holes,reliefs or chamfers in non-optimum positions[J]. In Proceeding of the Institution ofMechanical Engineers,1971,56:38–46.
    [38] Salimonu D O, Kistler A L, R A Burton. Turbulent flows near steps in a thin channel with onemoving wall[J].Trans. ASME,1977,99:224–229.
    [39] Burton R A. The straight grooved bearing with turbulence and inertia[J]. Privatecommunication,2002.
    [40] ESDU International. Calculation methods for steadily loaded axial groove hydrodynamicjournal bearings—super-laminar operation[M]. Engineering sciences data item,1984.
    [41] ESDU International. Calculation methods for steadily loaded axial groove hydrodynamicjournal bearings[M]. Engineering sciences data item,1985.
    [42] Pai R, Majumdar B C. Stability submerged oil film journal bearings under dynamicload[J].Wear146,1991,146:125–135.
    [43] Pai R. Measurement of clearance of a fluid film bearing[C]. In Proceedings of the24thNational Conference on Fluid Mechanics,B. E. College, Howrah, India,1997,30:26–28.
    [44] Pai R, Parkins D W. Measurement of eccentricity and attitude angle of a journal[C]. Presentedat the3rd national conference on fluid machinery,1998,9:12–13.
    [45] Pai R, Parkins D W. Measurement of power absorbed in fluid film bearings[C]. Presented atthe26th national conference on fluid power and fluid mechanics, IIT Kharagpur,1999,35:15–16.
    [46] Pai R, Hargreaves D J. Modelling of fluid flow in the grooves of a3-axial groove waterbearing using computational fluid dynamics[C]. In Proceedings of6th International TribologyConference AUSTRIB, University of Western Australia, Perth, Australia,2002,45:407–411.
    [47] Tanamal T K H R. Modelling of fluid flow in multiple axial groove water lubricated bearingsusing computational fluid dynamics[D]. Masters by Research thesis, Queensland University ofTechnology,2007
    [48] Majumdar B C, Pai R, Hargreaves D J. Analysis of water lubricated journal bearings withmultiple axial grooves[J]. Proc. I MECH E. J: J. Eng. Tribol,2004,218(2):135–146.
    [49] Pai R S, Pai R. Stability of four-axial and six-axial grooves with water lubricated journalbearings under dynamic load[J]. Proc. IMechE J. Eng. Tribol,2008,222(5):683-691.
    [50] Pai R S, Pai R. Non-linear transient analysis of multiple axial groove water lubricated journalbearing[J]. Proc. IMechE J. Eng. Tribol,2008,222(5):683-691.
    [51] Pai R S, Pai R, Hargreaves D J. In static and dynamic characteristics of a3-axial groove waterlubricated journal bearing[C].4th International Conference on Tribology for EquipmentReliability ICIT, Mumbai,2004,15–18:355–361.
    [52] Pai R S, Pai R, Majumdar B C, Hargreaves D J. Comparison of static performancecharacteristicsof3-axial groove water lubricated journal bearings: reynolds and JFOmodels[C]. In Proceedings of the International Tribology Conference AUSTRIB, Brisbane,2006.
    [53] Yoshimoto S, Anno Y, Tamura M, et,al. Axial load capacity of water lubricated hydrostaticconical bearings with spiral grooves[J]. Trans. ASME J. Tribol,1996,118:893–899.
    [54] Yoshimoto S, Oshima S, Danbara S, et,al. Stability of water lubricated hydrostatic conicalbearings with spiral grooves for high speed spindles[J]. Trans. ASME J. Tribol,2002,124:398–405.
    [55] Kraker A D, Ostayen R A J, Rixen D J R. Calculation of stribeck curves for (water) lubricatedjournal bearings[J]. Tribology International,2007,(40):459-469.
    [56] Cabrera D L, Woolley N H, Allanson D R, et,al. Film pressure distribution in water lubricatedrubber journal bearings[J]. Proc. IMechE, J. Eng. Tribol,2005,219.
    [57] Litwin W. Water lubricated bearings of ship propeller shafts—problems, experimental testsand theoretical investigations[J]. Pol. Maritime Res,2009,4(62):42–50.
    [58] Bhushan B, Gray S, Graham R W. Development of low-friction elastomers for bearings andseals[C]//American Society of Lubrication Engineers, Annual Meeting,36th, Pittsburgh, Pa.1981:1981.
    [59] Bielinski D, Slusarski L, Janczak K J et al. Physical modification of elastomers to improvetheir tribological properties[J]. Wear,1993,169(2):257-263.
    [60] Bielinski D M, Slusarski L, Affrossman S et al. Influence of iodination on tribologicalproperties of acrylonitrile—butadiene rubber[J]. Journal of applied polymer science,1997,64(10):1927-1936.
    [61]肖科,王家序,张榆等.纳米级氧化锌晶须对水润滑轴承材料的改性研究[J]. Wear,2004,996(200):95-104.
    [62]胡志孟,赖世全,李同生.凹凸土/丁腈橡胶纳米复合材料的制备与性能[J].弹性体,2004,14(3):39-42.
    [63]周扬波,古菊,贾德民等.改性纳米碳酸钙对丁腈胶的补强作用[J].弹性体,2004,14(3):35-38.
    [64]周扬波,古菊,贾德民.纳米碳酸钙的表面改性及其在橡胶中的应用[J].特种橡胶制品,2004,25(3):54-58.
    [65] Andersson P, Lintula P. Load carrying capability of water lubricated ceramic journalbearings[J]. Tribol. Int,1994,27,315–321.
    [66] Dweib A H, D'Souza A F. Self-excited vibrations induced by dry friction, part1: Experimentalstudy [J]. Journal of Sound and Vibration,1990,137(2):163-175.
    [67]陈光雄,周仲荣,谢友柏.摩擦噪声研究的现状和进展[J].摩擦学报,2000,20(6):478-481.
    [68] Kinkaid N M, O’Reilly O M, Papadopoulos P. Automotive discbrake squeal[J]. Journal ofSound and Vibration,2003,267(1):105-166.
    [69] Guan D H, Su X D, Zhang F. Sensitivity analysis of brake squeal tendency to substructures’modal parameters [J]. Journal of Sound and Vibration,2006,291(1-2):72-80.
    [70] Sinou J J, Louis J. Mode coupling instability in friction-induced vibrations and its dependencyon system parameters including damping [J]. European Journal of Mechanics A/Solids,2007,26(1):106–122.
    [71] Daniel H. Nonlinear stability analysis of a disk brake model[J]. Nonlinear Dynamics,2009,58(1-2):63-73.
    [72] Bhushan B. Stick-slip induced noise generation in water-lubricated compliant rubberbearings[J]. Journal of Lubrication Technology,1980,102:201.
    [73] Krauter A I. Generation of squeal/chatter in water-lubricated elastomeric bearings[J].Journalof Lubrication Technology,1981,103:406.
    [74] Simpson T A,Ibrahim R A. Nonlinear friction-induced vibration in water-lubricatedbearings[J]. Journal of Vibration and Control,1996.2(1):87-113.
    [75] Zhou Y, Li G X, Wang JX.Analysis of frictional noise for water lubricated rubber bearingssystem[J]. Advanced Materials Research Vols.2011,156-157:607-610.
    [76] Peng E G, Liu Z L, Tian Y Zet. Experimental study on friction-induced vibration ofwater-lubricated rubber stern bearing at low speed [J]. Applied Mechanics and Materials,2010,44-47:409-413.
    [77] Peng E G, Liu Z L, Lan F. Research on noise generation mechanism of rubber material forwater-lubricated bearings [J]. Applied Mechanics and Materials,2011,84-85:539-543.
    [78] Peng E, Liu Z, Zhou X, et,al. Study on nonlinear friction-induced vibration in water-lubricatedrubber stern tube bearings[J]. The Open Mechanical Engineering Journal,2012,6:140-147.
    [79]姚世卫,杨俊,张雪冰等.水润滑橡胶轴承振动噪声机理分析与试验研究[J].振动与冲击,2011,30(2):214-216.
    [80]田宇忠,刘正林,金勇等.水润滑橡胶尾轴承鸣音试验研究[J].武汉理工大学学报,2011,33(1):130-133.
    [81]吕红明,郑尧刚.水润滑引起摩擦噪声的机制及实验研究[J].润滑与密封,2011,36(10):45-48
    [82] Hertz H. On the contact of elastic solids[J]. Journal für die Reine und AngewandteMathematik,1882,92:156-171.
    [83] Reynolds O. On the theory of lubrication and its application to mr.beauchamp tower’sexperiments, including an experimental determination of the viscosity of olive oil[J]. Philos.Trans.,1886,177:157–234.
    [84] Peppler W. Untersuchungen uber die druckubertragung bei belastetenund geschmiertenumlaufenden achsparallelen zylindern[J]. Maschinenelemente—Tagung Aachen,1935,42:17-26.
    [85] Meldahl A. Contribution to the theory of the lubrication of gears and of the stressing of thelubricated flanks of gear teeth[J]. Brown Boveri Rev,1941,28:374–382.
    [86] Gatcombe E K. Lubrication characteristics of involute spur gears—a theoreticalinvestigation[J]. Trans. ASME,1945,67:177–185.
    [87] Blok H. Fundamental mechanical aspects of thin film lubrication[J]. Ann. N.Y. Acad. Sci.,1950,53:779–804.
    [88] Grubin A N. Fundamentals of the hydrodynamic theory of lubrication of heavily loadedcylindrical surfaces[J]. Central Scientific Research Institute for Technology and MechanicalEngineering,1949,30:115–166.
    [89] Ertel A M. Hydrodynamic lubrication based on new principles[M]. Akad. Nauk. SSSR,Prikladnaya Matematika i Mekhanika,1939,3(2):41–52.
    [90] Petrusevich A I. Fundamental conclusions from the contact-hydrodynamic theory oflubrication[M]. Izv. Akad. Nauk SSR. Otd. Tekh. Nauk,1951,2:209–233.
    [91] Dowson D, Higginson G R. A numerical solution to the elastohydrodynamic problem[J]. Eng.Sci,1959,1:6–15.
    [92] Dowson D, Higginson G R. New roller bearing lubrication formula[J]. Engineering,1961,192:158–159.
    [93] Dowson D, Higginson G R. Elastohydrodynamic lubrication pergamon[M]. Oxford,1966.
    [94] Dowson D, Toyoda S.A. Central film thickness formula for elastohydrodynamic linecontacts[C]. Proceedings of the Fifth Leeds-Lyon Symposium on Tribology, MechanicalEngineering Publications, Bury St. Edmunds, UK,1979.
    [95] Ranger A P, Ettles C M M, Cameron A. The solution of the point contact elastohydrodynamicproblem[J]. Proc. Royal Society, London,1975,A346:227-244.
    [96] Hamrock B J, Dowson D. Isothermal elastohydrodynamic lubrication of point contacts, part1:theoretical formulation [J]. Journal of Lubrication Technology,1976,98:223-229.
    [97] Hamrock B J, Dowson D. Isothermal elastohydrodynamic lubrication of point contacts, part2:ellipticity parameter results [J]. Journal of Lubrication Technology,1976,98:375-383.
    [98] Hamrock B J, Dowson D, Isothermal elastohydrodynamic lubrication of point contacts, Part3:fully flooded results [J].Journal of Lubrication Technology,1977,99:264-276.
    [99] Hamrock, B. J., Dowson, D. Isothermal elastohydrodynamic lubrication of point contacts, part4: starvation results [J]. Journal of Lubrication Technology,1977,99:15-23.
    [100] Koye K A, Winer W O. An experimental evaluation of the hamrock and dowson minimumfilm thickness equation for fully flooded EHD point contacts[J]. Journal of LubricationTechnology,1981,103:284-294.
    [101] Crook A W. The lubrication of rollers II. film thickness with relation to viscosity and speed [J].Philosophical Transactions of the Royal Society,1961,A254:223-236.
    [102] Crook A W. The lubrication of rollers IV. measurements of friction and effective viscosity[J].Philosophical Transactions of the Royal Society,1963, A255:281-312.
    [103] Dyson A, Naylor H, Wilson A R. The measurement of film thickness in elastohydrodynamiccontacts[J]. Proceedings of the Institution of Mechanical Engineers,1966,180(3B):119-134.
    [104] Sibley L B, Orcutt F K. Elastohydrodynamic lubrication of rolling contact surfaces [J].ASLE Transactions,1961,4:234-249.
    [105] Kannel J W. The measurement of pressure in rolling contacts[J]. Proc. Inst. Mech. Engrs,1966,180(3B):135-142.
    [106] Hamilton G M, Moore S L. Deformation and pressure in an EHD contact[J]. Proc. RoyalSociety,1971,A322:313-330.
    [107] Archard J F, Kirk M T. Lubrication at point contacts[J]. Proc. Royal Society,1961,A261:532-550.
    [108] Gohar R, Cameron A. Optical measurement of oil Film thickness under elastohydrodynamiclubrication[J]. Nature,1963,200:458-459.
    [109] Gohar R, Cameron A. The mapping of elastohydrodynamic contacts[J]. ASLE Transactions,1966,10:215-225.
    [110] Foord C A, Wedeven L D, Westlake F J, Cameron A. Optical elastohydrodynamics[J].Proc.Inst. Mech. Engrs, Part I,1969-70,184:487-503.
    [111] Greenwood J A, Tripp J H. The contact of two nominally flat rough surfaces[J]. Proc. Inst.Mech. Eng,1970,185:625–633.
    [112] Patir N, Cheng H S. An average flow model for determining effects of three-dimensionalroughness on partial hydrodynamic lubrication[J]. ASME J. Lubr. Technol,1978,100:12–17.
    [113] Patir N, Cheng H S. Effect of surface roughness orientation on the central film thickness inEHD contacts[C]. Proceedings of the Fifth Leeds-Lyon Symposium on Tribology, byMechanical Engineering Publications, Bury St. Edmunds, UK,1979:15–21.
    [114] Zhu D,Cheng H S. Effect of surface roughness on the point contact EHL[J]. ASME J. Tribol,1988,110:32–37.
    [115] Wang Y S, Wang Q J, Lin C. Mixed lubrication of coupled journal-thrust bearing systems[J].Computer Modeling in Engineering and Sciences,2002,3(4):517-530.
    [116] Lee S C, Ren N. Behavior of elastic-plastic rough surface contacts as affected by the surfacetopography, load and materials[J]. Trans.STLE,1996,39:67-74.
    [117] Goglia P R, Cusano C, Conry T F. The effects of surface irregularities on theelastohydrodynamic lubrication of sliding line contacts, part I—single irregularities, partII—wavy surfaces[J]. ASME J. Tribol,1984,106:104–119.
    [118] Lubrecht A A. The numerical solution of elastohydrodynamic lubricated line and point contactproblems using multigrid techniques[D]. University of Twente, The Netherlands,1987.
    [119] Kweh C C, Evans H P, Sindle R W. Micro-elastohydrodynamic lubrication of an ellipticalcontact with transverse and3-dimensional roughness[J]. ASME J. Tribol,1989,111:577–584.
    [120] Chang L, Cusano C, Conry T F. Effects of lubricant rheology and kinematic conditions onmicro-elastohydrodynamic lubrication[J]. ASME J. Tribol,1989,111:344–351.
    [121] Venner C H, Lubrecht A A. Numerical simulation of a transverse ridge in a circular EHLcontact under rolling/sliding[J]. ASME Jour.of Trib,1994,116(3):751-761.
    [122] Venner C H, Napel W E. Surface roughness effects in an EHL line contact[J]. Journal ofTribology,1992,114(3):616-622.
    [123] Venner C H, Lubrecht A A. Numerical analysis of the influence of waviness on the filmthickness of a circular EHL contact[J]. Journal of tribology,1996,118(1):153-161.
    [124] Hooke C J,Venner C H. Surface roughness attenuation in line and point contacts[J].Proceedings of the Institution of Mechanical Engineers, Part J: Journal of EngineeringTribology Prof Eng Publ Ltd,2000,214(5):439-444.
    [125] Ai X L, Cheng H S. The effects of surface texture on EHL point contacts[J].ASME Journal ofTribology,1996,118:59-66.
    [126] Ai X L,Cheng H S. Transient model for micro-elastohydrodynamic lubrication withthree-dimensional irregularities[J]. Journal of Tribology, Transactions of the ASME,1993,115:102-110.
    [127] Ai X L. Numerical analyses of elastohydrodynamically lubricated line and point contacts withrough surfaces by using semi-system and mutilgrid method[D]. Northwestern universityEvanston IL,1993.
    [128] Venner C H, Lubrecht A A. Transient analysis of surface features in an EHL line contact in thecase of sliding[J]. Journal of Tribology,1994,116(2):186-193.
    [129] Jiang X F, Hua D Y, Cheng H S, Ai X, Lee S C A. Mixed elastahydrodynamic lubricationmodel with asperity contact[J]. Journal of Tribology,1999,121:481-491.
    [130] Hu Y Z, Zhu D. A full numerical solution to the mixed lubrication in point contacts[J]. Journalof Tribology,2000,122:1–9.
    [131] Zhu D, Hu Y Z. The study of transition from full film elastohydrodynamic to mixed andboundary lubrication[J]. Proc. STLE/ASME,1999:150-156.
    [132] Wang Q J, Zhu D. Virtual Texturing: Modeling the performance of lubricated contacts ofengineered surfaces [J]. Journal of Tribology,2005,127:722-728.
    [133] Felix-Q A, Ehret P, Summers J L. On three-dimensional flat-top defects passing through anEHL point contact: a comparison of modeling with experiments[J]. Journal of Tribology,2005,127:51-60.
    [134] Liu Y C, Wang Q J, Wang W Z, et,al, Krupka I,Hartl M. EHL simulation using thefree-volume viscosity model[J]. Tribology Letters,2006,23:27-37.
    [135] Liu Y C, Wang Q J, Zhu D, Wang W Z, Hu Y Z. Effect of differential scheme and viscositymodel on rough surface point contact isothermal EHL[J]. Journal of Tribology,2009,131:044501.1-044501.5.
    [136] Wang W Z, Hu Y Z, Liu Y C, Zhu D. Solution agreement between dry contacts and lubricationsystem at ultra-low speed[J]. Journal of Engineering Tribology,2010,224:1049-1060.
    [137] Luo J B, Liu S. The investigation of contact ratio in mixed lubrication[J]. TribologyInternational,2006,39:409-416.
    [138] Guangteng G, Spikes H A. The control of friction by molecular fractionation of base fluidmixtures at metal surfaces[J]. Tribology Transactions,1997,40:461-469.
    [139] Zhu D. On some aspects in numerical solution of thin-film and mixed EHL[J]. Journal ofEngineering Tribology,2007,221:561-579.
    [140] Liu S B, Wang Q J, Liu G. A versatile method of discrete convolution and FFT (DC-FFT) forcontact analyses[J]. Wear243,2000,243:101–111.
    [141] Liu S B, Wang Q J. Studying contact stress fields caused by surface tractions with a discreteconvolution and fast fourier transform algorithm[J]. Journal of Tribology,2002,124:36–45.
    [142] Peklenik J. New development in surface characterization and measurement by means of radonprocess analysis[J]. Proc. Insts, Mech, Engrs,1967,182(3K):108.
    [143] Shi F H, Wang Q J. A mixed-TEHD model for journal-bearing conformal contacts. Part I:model formulation and approximation of heat transfer considering asperity contact[J]. Journalof Tribology,1998,120(2):198-205.
    [144] Wang Q J, Shi F H, Lee C. A mixed-TEHD model for journal-bearing conformal contact. PartII: contact, film thickness, and performance analyses[J]. Journal of Tribology,1998,120(2):206-213.
    [145] Wang Q, Shi F, Lee S C. A mixed-lubrication study of journal bearing conformal contacts[J].Journal of Tribology,1997,119(3):456-461.
    [146] Wang Y S, Zhang C, Wang Q J, et al. A mixed-TEHD analysis and experiment of journalbearings under severe operating conditions[J]. Tribology International,2002,35(6):395-407.
    [147] Wang Y S, Wang Q J, Lin C, et al. Development of a set of stribeck curves for conformalcontacts of rough surfaces[J]. Tribology transactions,2006,49(4):526-535.
    [148] Kreitlow W,et al.Vibration and “hum” of disc brakes under load [C].SAE850079,1985.
    [149] Abdelhamid M K.Brake judder analysis:case study [C].SAE972027,1997.
    [150]周燕.摩擦噪声与降噪技术研究[D].机械科学研究总院,2006.
    [151]陈光雄.金属往复滑动摩擦噪声的研究[D].西南交通大学,2002.
    [152] Aronov V, D’souza A F, Kalpakjian S, et al. Interactions among friction, wear, and systemstiffness—Part1: effect of normal load and system stiffness [J]. Journal of Tribology,1984,106(1):54-58.
    [153] Aronov V, D’souza A F, Kalpakjian S, et al. Interactions among friction, wear, and systemstiffness—Part2: vibrations induced by dry friction[J]. Journal of Tribology,1984,106(1):59-64.
    [154]文武.铁路车辆盘形制动噪声的有限元复特征值分析[D].西南交通大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700