用户名: 密码: 验证码:
三峡水库蓄水初期鱼类中重金属污染研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡库区的水生态环境问题引人瞩目。三峡水库地处长江中上游山地与下游平原区过渡的关键生态节点上,库区水生态环境的演化发育状况,不仅关系到库区水生态安全,也关系到下游广大沿江地区及河口的生态环境健康。同时,三峡水库库容巨大,是我国最重要的淡水资源储库,关系到我国供水安全。
     三峡库区潜在的重金属生态风险一直以来都是受到高度关注的热点问题。由于长江中上游流域处于我国主要的重金属成矿带(如,库区毗邻武陵汞矿成矿亚区),三峡库区位于重金属高背景值区域。此外,国内外最新的研究证据表明,水库蓄水后,水文水动力从天然河流的“动水”状态转化为人工湖泊的“静水”状态,湖沼作用可能加强水环境中重金属(如汞)的活化,水库生态系统有可能成为有利于重金属在鱼类中累积放大的“热点”,蓄水运行后可能出现库区鱼类肌体中重金属含量显著增加的“水库效应”。
     针对三峡水库蓄水后可能存在的重金属生态风险问题,本研究首次系统调查了蓄水后库区鱼类食物链(关键种)中重金属(汞Hg、铬Cr、镉Cd、铅Pb、砷As、铜Cu、锌Zn和镍Ni)的含量水平,初步分析了库区内鱼体中重金属的水平现状及影响因素、不同鱼种间的差异以及空间分布特征,从总体上掌握了蓄水以来三峡库区鱼类中重金属污染特征。根据水库水体类型分区状况,在库区中挑选有代表性的典型水域,利用稳定同位素技术对鱼类食物网特征进行了分析,探索了重金属在水生食物网上的迁移转化和富集放大规律及库区鱼类中重金属水平分布,分析其变化趋势及潜在风险。最后,再对库区居民食用鱼类的健康风险进行了评价。
     本论文针对三峡水库蓄水运行近10年后库区鱼类中重金属含量及生态风险进行了系统研究,其研究成果如下:
     1.2011-2012年对库区12种常见鱼类研究表明,三峡水库自2003年蓄水运用以来,鱼体中重金属含量与蓄水之前相比没有显著升高,鱼体中Hg、 Cr、Cu、Pb、Ni、Zn、As和Cd的平均浓度分别为0.56mg/kg,0.28mg/kg,0.23mg/kg,0.19mg/kg,0.60mg/kg,6.1mg/kg,0.46mg/kg和5.6μg/kg,总绝对浓度水平变化看,三峡水库的重金属“水库效应”并不十分显著。
     2.库区鱼体中重金属含量表现出较明显的空间异质性特征,这可能与蓄水引起的鱼类栖息地环境特征变化有较大关系。在干流中Zg、Zn、Pb和Cr等重金属在鱼体中的浓度表现出从上游的库尾向下游的库中递减的趋势,库区泥沙沉积作用沿程加强的“净化作用”一定程度降低了三峡库区重金属的暴露风险。在库区典型支流(大宁河)的回水区和河口分别采集的11种鱼类中,中上层鱼类体内重金属含量无明显区别,但支流回水区的底层鱼类体内Ni、Cu、Zn、As含量显著高于采自支流河口的底层鱼类含量。
     3.采用稳定同位素分析技术对库区鱼类食物链结构进行了细致分析,结果表明,库区干、支流间鱼类δ13C和δ15N差异显著,支流中鱼体的813C和δ15N明显低于干流,同种鱼类在库区干流、支流的摄食途径可能有较大差异。以大宁河为典型支流的调查结果进一步证实,支流回水区(如大昌断面)与毗邻长江干流河口水域(如巫山断面)鱼类的食物来源迥异,大昌断面水域鱼类食物谱可能包括了浮游生物、沉积碎屑和底栖动物等在内的多种食源(鱼体的δ13C范围:-28.8‰~-22.5‰),表现出较为典型湖沼型特点;与之形成鲜明对比的是,巫山断面由于受长江干流库区的影响,鱼类的食物来源比较单一(δ13C范围:-26.2‰~-23.1%o),主要以来自江水中的颗粒有机物为主,表现为典型的河流生态类型。
     4.库区不同水域鱼类食物来源的差异可能造成了重金属暴露途径的不同,并导致了重金属在底层鱼类体内与沉积物中分布趋势的差异。库区的干、支流水体中均存在Hg的食物链生物放大现象,但不同水域间的放大效率存在显著差别,其中支流鱼类上汞的放大效率显著高于干流水域。而在典型支流的回水区和河口中,回水区中汞的放大效率高于河口水域。支流回水区和河口的食物网结构存在明显差别,回水区食物网偏向于湖泊型,河口食物网结构偏向于河流型。在回水区食物网中,汞通过浮游食物链传递放大的效率显著高于通过底栖食物链传递的放大效率,但汞在浮游食物链中传递时的初始浓度低于通过底栖食物链传递时的初始浓度。随着水库环境条件的不断变化,鱼体的汞暴露存在一定的潜在风险。
     5.三峡库区16种鱼类中重金属含量与氮稳定同位素815N回归分析结果显示,鱼体中的Cr、Zn、Pb、Cd、As和Hg浓度随营养等级的升高而增加,Ni和Cu则表现出随营养等级的升高而降低的趋势,但其浓度与δ15N的相关性均不显著。所有重金属中只有Hg与δ15N呈显著正相关(p<0.05),表现出明显的生物放大现象,但放大效率明显低于国内外一些水库水域的报道。
     6.库区鱼类中重金属健康风险评价表明,食用库区鱼类所摄入的Hg、Cr、Cu、Zn、 Pb、Cd和As的目标危害系数(Target hazard quotients, THQ)均小于1,库区居民每周通过鱼类摄入各种重金属的量远低于暂定每周允许摄入量,目前食用库区鱼类的健康风险较低。
Three Gorges Reservoir (TGR) is located in the lower section of the upper reaches of the Yangtze River, China. It is a giant canyon-shape reservoir with great depth, and an important aquatic ecosystem to the lower reaches of the Yangtze River. Due to its large scale, the environmental effect of TGR raises great social concern. Reservoir has been believed as sensitive ecosystem to heavy metal pollution. The "Reservoir Effect" after impoundment can increase methylmercury production in the base of food web and lead to substantial increase in the predator fish, posing a risk to humans. Even before its construction, there were predictions of sharply increased heavy metal levels, e.g. mercury, in fish bodies from TGR after impoundment.
     This study tried to investigate the heavy metal concentrations in fish and its biomagnification characters along food chains in TGR after175m impoundment. Eleven specie of fish were collected from the main stem and tributaries of TGR, and the contents of mercury (Hg), chromium (Cr), cadmium (Cd), arsenic (As), lead (Pb), nickel (Ni), copper (Cu) and zinc (Zn) in muscle tissue of all fish samples were determined. The levels, spatial distributions and factors of heavy metals in fish from TGR were analyzed based on these data. More over, typical areas were selected to make intensive study, food sources and nutrition levels of the samples were evaluated by using stable isotope (δ13C and δ15N). The characteristic of heavy metal transfer and biomagnification along food chain were investigated. And the Target Hazard Quotient (THQ) was used to assess the potential health risks to local citizens. Result shows:
     1. The average concentrations of Hg、Cr、Cu、Pb、Ni、Zn、As and Cd in twelve fish species were0.56,0.28,0.23,0.19,0.60,6.1,0.46mg/kg and5.6μg/kg. All heavy metals concentrations in carps were lower than the tolerance limits in the related national standards. Significant positive correlations between Hg、Pb and fish sizes were observed. Heavy metal concentrations of fish related with its feeding type and habitats.
     2. There was no significant difference between concentrations in fish from main stem and tributary. However, due to strengthening sedimentation along reservoir flow, an obvious decreasing trend of these heavy metals in carp was observed from upstream to middle area of TGR in main stem. In typical tributary, there was no significant difference between the heavy metal concentrations in fishes from backwater and river mouth. But the heavy metal contents in demersal fishes from backwater were significantly higher than those in corresponding species from river mouth.
     3. Stable isotope results indicate that the food sources of fishes in stem and tributary of TGR could be different:fishes in tributary rely more on pelagic primary production while those in main stem tend to take allochthonous materials carried by runoff. In typical tributary, fishes in backwater have a wide range of food sources including phytoplankton, detritus and insect larvae in sediment, while fishes in river mouth mainly rely on suspended particle organic matter in water. Compared with other fishes, the demersal fishes in backwater water area have more contact with sediment, and this may be an important reason for its higher heavy metal levels.
     4. The log concentrations of Hg、Cr、Zn、Pb、Cd and As in fish increases through815N increments in TGR, while the log concentrations of Ni and Cu decrease through815N increments. Significant positive correlations in the regressions of log metal content of the biota versus815N was obtained for mercury, indicating that an overall biomagnification of Hg. However, the increase of Hg concentration per trophic level was lower than in previous studies.
     5. While Log-transformed mercury contents were consistently correlated with δ15N yalues for the fish food web in TGR, the regression slope was significant higher in tributary than that in main stem. This indicates that biomagnification power of mercury is greater in tributary than in main stem of TGR. In typical tributary, the biomagnification power was greater for pelagic species compared with the benthic species, but higher concentration of Hg was found in the base of benthic food chains (intercept) compared with the pelagic food chain.
     6. The target hazard quotients (THQ) of Hg、Cr、Cu、Zn、Pb、Cd and As was less than1, and the estimated weekly intake (EWI) was far below the provisional tolerable weekly intake (PTWI), which indicates the risks for the general population consumption is low in TGR.
引文
[1]郑守仁,刘宁.三峡工程与长江水资源利用[J].中国水利,2000,8:49-50.
    [2]钟章成,邱永树.重庆三峡库区主要生态环境问题与对策[J].重庆环境科学,1999.21(1):1-2.
    [3]蔡其华.三峡工程与长江治理开发[J].水利水电快报,2005,26(10):1-4.
    [4]长江水利委员会.三峡工程生态环境影响研究[M].武汉:湖北科学技术出版社,1997.
    [5]王图锦.三峡库区消落带重金属迁移转化特征研究[D].重庆:重庆大学,2011
    [6]杜佐华.三峡库区的水土保持与生态环境[J].中国水土保持,1999,5:7-9.
    [7]徐昔保,杨桂山,李恒鹏,等.三峡库区蓄水运行前后水土流失时空变化模拟及分析[J].湖泊科学,2011,23(3):429-434.
    [8]Wu J, Huang J, Han X, et al. Three-Gorges Dam--Experiment in Habitat Fragmentation? [J]. Science, 2003,300 (5623):1239-1240.
    [9]曹文宣.三峡工程对长江鱼类资源影响的初步评价及资源增殖途径的研究[A].长江三峡工程对生态与环境及其对策研究论文集[C].北京:科学出版社,1987.
    [10]周广杰,况琪军,胡征宇,等.香溪河库湾浮游藻类种类演替及水华发生趋势分析[J].水生生物学报,2006,30(1):42-46.
    [11]张晟,黎莉莉,张勇,等.三峡水库135m水位蓄水前后水体中重金属分布变化[J].安徽农业科学,2007,31(11):3342-3343.
    [12]张晓华,肖邦定,陈珠金,等.三峡库区香溪河中重金属元素的分布特征[J].长江流域资源与环境,2002,11(3):269-273.
    [13]徐小清,张晓华,靳立军,等.三峡水库汞活化效应对鱼汞含量影响的预测[J].长江流域资源与环境,1999,8(2):198-204.
    [14]Gardiner J. The chemistry of cadmium in natural water—I a study of cadmium complex formation using the cadmium specific-ion electrode[J]. Water Research,1974,8(1):23-30.
    [15]Gardiner J. The chemistry of cadmium in natural water-Ⅱ. The adsorption of cadmium on river muds and naturally occurring solids[J]. Water Research,1974,8(3):157-164.
    [16]May T W, McKinney G L. Cadmium, lead, mercury, arsenic, and selenium concentrations in freshwater fish,1976-77--National Pesticide Monitoring Program[J]. Pesticides Monitoring Journal, 1981,15(1):14-38.
    [17]Demayoa A, Taylora M C, Taylora K W, et al. Toxic effects of lead and lead compounds on human health, aquatic life, wildlife plants, and livestock[J]. CRC Critical Reviews in Environmental Control, 1982,12:257-305.
    [18]Seyler P, Martin J M. Biogeochemical processes affecting arsenic species distribution in a permanently stratified lake[J]. Environmental Science & Technology,1989,23:1258-1263.
    [19]Cullen W R, Reimer K J. Arsenic speciation in the environment[J]. Chemical Reviews,1989,89: 713-764.
    [20]Pierce M L, Moore C B. Adsorption of arsenite and arsenate on amorphous iron hydroxide[J]. Water Research,1982,16:1247-1253.
    [21]Chau Y K, Kulikovsky-Cordeiro O T R. Occurrence of nickel in the Canadian environment[J]. Environmental Reviews,1995,3:95-120.
    [22]Flemming C A, Trevors J T. Copper toxicity and chemistry in the environment:a review[J]. Water, Air, and Soil Pollution,1989,44:143-158.
    [23]Spear P A. Zinc in the aquatic environment:chemistry, distribution and toxicology[M]. National Research Council of Canada Publ. no.17589. NRCC, Ottawa, Ontario, Canada,1981.
    [24]Mohan D, Pittman C U Jr. Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water[J]. Journal of Hazardous Materials,2006,137(2):762-811.
    [25]Celo V, Lean D R S, Scott S L. Abiotic methylation of mercury in the aquatic environment J]. Science of the Total Environment,2006,368:126-137.
    [26]Benoit J M, Gilmour C C, Mason R P, et al. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters[J]. Environmental Science & Technology,1999,33:951-957.
    [27]冯新斌,仇广乐,付学吾,等.环境汞污染[J].化学进展,2009,31(2):436-457.
    [28]田林锋,胡继伟,罗桂林,等.贵州百花湖沉积物重金属稳定性及潜在生态风险性研究[J].环境科学学报,2012,32(4):885-894.
    [29]韩伟明,胡水景,金卫,-等.千岛湖水环境质量调查与保护对策[J].湖泊科学,1996,8(4):337-341.
    [30]弓晓峰,陈春丽,周文斌,等.鄱阳湖底泥中重金属污染现状评价[J].环境科学,2006,27(4):732-736.
    [31]杨丽原,沈吉,张祖陆,等.南四湖表层底泥重金属污染及其风险性评价[J].湖泊科学,2003,15(3):252-256.
    [32]刘桂霞.呼伦湖重金属的环境地球化学研究[D].呼和浩特:内蒙古大学,2011.
    [33]徐小清,邓冠强,惠嘉玉,等.长江三峡库区江段沉积物的重金属污染特征[J].水生生物学报,1999,23(1):1-9.
    [34]王沛芳,周文明,王超,等.太湖沉积物重金属的形态特征及生态风险评价[J].重庆大学学报,2012,35(11):136-143.
    [35]林春野,何孟常,李艳霞,等.松花江沉积物金属元素含量、污染及地球化学特征[J].环境科学,2008,29(8):2123-2130.
    [36]范文宏,张博,陈静生,等.锦州湾沉积物中重金属污染的潜在生物毒性风险评价[J].环境科学学报,2006,26(6):1001-1005.
    [37]Thornton G J P, Walsh P D. Heavy metals in the waters of the Nanty-y-Fendrod:change in pollution levels and dynamics associated with the redevelopment of the Lower Swansea Valley, South Wales, UK[J]. Science of the Total Environment,2001,278:45-55.
    [38]Therriault T W, Schneider D C. Predicting change in fish mercury concentrations following reservoir impoundment[J]. Environmental Pollution,1998,101:33-42.
    [39]Bodaly R A D, Jansen W A, Majewski A R, et al. Postimpoundment time course of increased mercury concentrations in fish in hydroelectric reservoirs of northern Manitoba, Canada[J]. Archives of Environmental Contamination and Toxicology,2007,53:379-389.
    [40]Brinkmann L, Rasmussen J B. High levels of mercury in biota of a new Prairie irrigation reservoir with a simplified food web in Southern Alberta, Canada[J]. Hydrobiologia,2010,641(1):11-21.
    [41]St. Louis V L, Rudd J W M, Kelly C A, et al. The rise and fall of mercury methylation in an experimental reservoir[J]. Environmental Science & Technology,2004,38:1348-1358.
    [42]Li S, Zhou L, Wang H, et al. Feeding habits and habitats preferences affecting mercury bioaccumulation in 37 subtropical fish species from Wujiang River, China[J]. Ecotoxicology,2009,18: 204-210.
    [43]Feng X, Jiang H, Qiu G, et al. Geochemical processes of mercury in Wujiangdu and Dongfeng reservoirs, Guizhou, China[J]. Environmental Pollution,2009,157:2970-2984.
    [44]Ullrich S M, Tanton T W, Abdrashitova S A. Mercury in the aquatic environment:a review of factors affecting methylation[J]. Critical Reviews in Environmental Science & Technology,2001,31: 241-293.
    [45]Tjerngren I, Karlsson T, Bjorn E, et al. Potential Hg methylation and MeHg demethylation rates related to the nutrient status of different boreal wetlands[J]. Biogeochemistry,2012,108:335-350.
    [46]Montgomery S, Mucci A, Lucotte M. The application of in situ dialysis samples for close interval investigations of total dissolved mercury in interstitial waters[J]. Water, Air & Soil Pollution,1996,87: 219-229.
    [47]王文雄.微量金属生态毒理学和生物地球化学[M].北京:科学出版社,2011.
    [48]Wang W X, Dai R C H. Factors affecting trace element uptake in the black mussel Septifer virgatus[i]. Marine Ecology Progress Series,1999,186:161-172.
    [49]Zhang L,Wang W X. Waterborne cadium and zinc uptake in the euryhaline teleost acclimated at different salinities[J]. Aquatic Toxicology,2007,84:171-181.
    [50]Wallace W G, Lee B G, Luoma S N. Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fraction (MSF) and biologically metal (BDM)[J]. Marine Ecology Progress Series,2003,249:183-197.
    [51]Phinney J T, Bruland K W. Uptake of lipophilic organic Cu, Cd and Pb complexes in the coastal diatom Thalassiosira weissflogii[J]. Environmental Science & Technology,1994,28:1781-1790.
    [52]Wang W X, Guo L. Influences of natural colloids on metal bioavailability to two marine bivalves[J]. Environmental Science & Technology,2000,34:4571-4576.
    [53]Reinfelder J R, Fisher N S. The assimilation of elements ingested by marine copepods[J]. Science, 1991,251:794-796.
    [54]Di Toro D M, Mahony J D, Hansen D J, et al. Toxicity of cadmium in sediment:The role of acid volatile sulfide[J]. Environmental Toxicology and Chemistry,1990,9:1487-1502.
    [55]Fan W, Wang W X. Sediment geochemical controls on Cd, Cr and Zn assimilation by the clam Ruditapes philippinarum[J]. Environmental Toxicology and Chemistry,2001,20:2309-2317.
    [56]Taylor D. The significance of the accumulation of cadmium by aquatic organisms[J]. Ecotoxicology and Environmental Safety,1983,7(1):33-42.
    [57]Baines S B. Fisher N S, Kinney E L. Effects of temperature on uptake of aqueous metals by blue mussels Mytilus edulis from Arctic and temperate waters[J]. Marine Ecology Progress Series,2006, 308:117-128.
    [58]Buchwalter D B,Cain D J, Martin C A, et al. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility[J]. Proceedings of the National Academy of Sciences,2008,105:8321-8326.
    [59]马元庆,张秀珍,孙玉增,等.栉孔扇贝对重金属的富集效应研究[J].水产学报,2010,34(10):1572-1578.
    [60]谢文平,陈昆慈,朱新平,等.珠江三角洲河网区水体及鱼体内重金属含量分析与评价[J].农业环境科学学报,2010,29:1917-1923.
    [61]Uluturhan E, Kucuksezgin F. Heavy metal contaminants in Red Pandora(Pagellus erythrinus) tissues from the Eastern Aegean Sea, Turkey[J]. Water Research,2007,41(6):1185-1192.
    [62]Romeo M, Siau Y, Sidoumou Z, et al. Heavy metal distribution in different fish species from the Mauritania coast[J].Science of The Total Environment,1999,232(3):169-175.
    [63]Wang W X, Fisher N S. Modeling the influence of body size on trace element accumulation in marine mussels, Mytilus edulis[J]. Marine Ecology Progress Series,1997,161:102-115.
    [64]Ng T Y T, Wang W X. Interaction of Ag, Cd and Cu accumulation in the green mussel Perna viridis by metal co-exposure[J]. Environmental Toxicology and Chemistry,2007,26:1764-1769.
    [65]王文雄,潘进芬.重金属在海洋食物链中的传递[J].生态学报,2004,24(3):599-604.
    [66]Wang W X, Wong P. Dynamics of trace metal concentration in an intertidal rocky shore food chain[J]. Marine Ecology Progress Series,2006,52:332-337.
    [67]O'Connor T P. Recent trends in coastal environmental quality:results from the first five years of the NOAA mussel Water Project[R]. US Dept Commerce, NOAA, National Ocean Service.1992.
    [68]Ikemoto T, Tu N P, Okuda N, et al. Biomagnification of trace elements in the aquatic food web in the Mekong Delta, South Vietnam using stable carbon and nitrogen isotope analysis[J]. Archives of Environmental Contamination and Toxicology,2008,54(3):504-515.
    [69]Luoma S N, Rainbow P S. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept[J]. Environmental Science & Technology,2005,39:1921-1931.
    [70]Rainbow P S. Trace metal bioaccumulation:models, metabolic availability and toxicity[J]. Environment international,2007,33:576-582.
    [71]Wang W X, Rainbow P S. Comparative approach to understand metal accumulation in aquatic systems[J]. Comparative Biochemistry and Physiology,2008,148C:315-323.
    [72]Amiard-Triquet C, Jeantet A Y, Berthet B. Metal transfer in marine food chain:Bioaccumulation and toxicity[J]. Acta Biologica Hungarica,1993,44:387-409.
    [73]Eagles-Smith C A, Suchanek T H, Colwell A E, et al. Mercury trophic transfer in a eutrophic lake:the importance of habitat-specific foraging[J]. Ecological Applications,2008,18(8) Suppl:A196-212.
    [74]Eagles-Smith C A, Suchanek T H, Colwell A E, et al. Changes in fish diets and food web mercury bioaccumulation induced by an invasive planktivorous fish[J]. Ecological Applications,2008,18(8) Suppl:A213-226.
    [75]Chen C Y, Folt C L. Bioaccumulation and diminution of arsenic and lead in a freshwater food web[J]. Environmental Science & Technology,2000,34(8):3878-3884.
    [76]Yan Q L, Wang W X. Metal exposure and bioavailability to a marine deposit-feeding sipuncula, Sipunculus nudus[J]. Environmental Science & Technology,2002,36:40-47.
    [77]Zhang L, Wang W X. Gastrointestinal uptake of cadmium and zinc by a marine teleost Acanthopagrus schlegili[J]. Aquatic Toxicology,2007,85:143-153.
    [78]仇付国,高始涛,陈顷.健康风险暴露评价研究进展[J].安全与环境学报,2012,12(1):126-129.
    [79]蔡文杰,江研因.甲基汞暴露健康风险评价的研究进展[J].环境与健康杂志,2008,25(1):77-81.
    [80]Hays S M, Becker R A, Leung H W, et al. Biomonitoring equivalents:a screening approach for interpreting biomonitoring results from a public health risk perspective[J]. Regulatory Toxicology and Pharmacology,2007,47(1):96-109.
    [81]Hays S M, Aylward L L. Using biomonitoring equivalents to interpret human biomonitoring data in a public health risk context[J]. Journal of Applied Toxicology,2009,29(4):275-288.
    [82]郑守仁.2004.21世纪长江治理开发与流域可持续发展[J].三峡大学学报.26(2):97-103.
    [83]马志林.三峡库区坡耕地水土流失特征及防治效应研究[D].北京:北京林业大学,2009.
    [84]温熙胜.三峡库区坡耕地土壤侵蚀研究[D].北京:北京林业大学,2007.
    [85]廖纯艳.三峡库区水土流失防治的实践与发展对策[J].中国水土保持,2009,1:1-4.
    [86]张永跃.三峡库区重庆段水体中营养盐负荷与藻类调查分析[D].重庆:重庆大学,2006.
    [87]胡重江,李英文,马跃岗,等.三峡库湾水域资源开发与利用[J].中国水产,2005,5:76-78.
    [88]Xu Y, Zhang M, Wang L, et al. Changes in water types under the regulated mode of water level in Three Gorges Reservoir, China[J]. Quaternary International,2011,244:272-279.
    [89]Xu Y, Cai Q, Shao M, et al. Seasonal dynamics of suspended solids in a giant subtropical reservoir (China) in relation to internal processes and hydrological features[J]. Quaternary International,2009, 208:138-144.
    [90]Wetzel R G Limnology:Lakes and river ecosystems:3rd ed[M]. California:Academic Press,2001.
    [91]Shao M, Xu Y, Cai Q. Effects of reservoir mainstream on longitudinal zonation in reservoir bays[J]. Journal of Freshwater Ecology,2010,25(1):107-117.
    [92]王岚.三峡水库香溪河库湾浮游植物时空动态及藻类水华过程与模型研究[D].北京:中国科学院研究生院,2011.
    [93]邵美玲.水库群底栖动物生态学研究—以三峡水库湖北段和香溪河流域为例[D].北京:中国科学院研究生院,2008.
    [94]蔡庆华,孙志禹.三峡水库水环境与水生态研究的进展与展望[J].湖泊科学,2012,24(2):169-177.
    [95]张亮.长江三峡江段鱼类碳、氮稳定性同位素研究[D].武汉:中国科学院水生生物研究所,2007.
    [96]吴强,段辛斌,徐树英,等.长江三峡库区蓄水后鱼类资源现状[J].淡水渔业,2007,37(2):70-75.
    [97]Gao X, Zeng Y, Wang J, et al. Immediate impacts of the second impoundment on fish communities in the Three Gorges Reservoir[J]. Environmental Biology of Fishes,2010,87(2):163-173.
    [98]Xie P. Three-Gorges Dam:risk to ancient fish[J]. Science,2003,302(5648):1149-1151.
    [99]黄悦,范北林.三峡工程对中下游四大家鱼产卵环境的影响[J].人民长江,2008,39(19):38-41.
    [100]段辛斌,陈大庆,刘绍平,池成贵,杨如恒.长江三峡库区鱼类资源现状的研究[J].水生生物学报,2002,26(6):605-611.
    [101]吴光应,刘晓霭,万丹.万三峡库区大宁河回水段水华暴发时空分布特征分析[J].中国环境监测,2010,26(3):69-74.
    [102]Chasar L C, Scudder B C, Stewart A R, et al. Mercury cycling in stream ecosystems.3. Trophic dynamics and methylmercury bioaccumulation[J]. Environmental Science & Technology,2009, 43(8):2733-2739.
    [103]Mendil D, Unal O F, Tuzen M, et al. Determination of trace metals in different fish species and sediments from the River Yesilirmak in Tokat, Turkey[J]. Food and Chemical Toxicology,2010,48: 1383-1392.
    [104]宋金明,李延,朱仲斌.Eh和海洋沉积物氧化还原环境的关系[J].海洋通报,1990,9(4):33-39.
    [105]徐小清,丘昌强,邓冠强,等.水库鱼体汞积累的预测[J].水生生物学报,1998,22(3):244-250.
    [106]靳立军,徐小清.三峡库区地表水和鱼体中甲基汞含量分布特征[J].长江流域资源与环境,1997,6(4):324-328.
    [107]Zhang Z, He L, Li J, et al. Analysis of Heavy Metals of Muscle and Intestine Tissue in Fish-in Banan Section of Chongqing from Three Gorges Reservoir, China[J]. Polish Journal of Environmental Studies,2007,16(6):949-958.
    [108]Zhang L, Zang X, Xu J, et al. Mercury bioaccumulation in fishes of Three Gorges Reservoir after impoundment [J]. Bulletin of Environmental Contamination and Toxicology,2007,78:262-264.
    [109]王文义.三峡库区蓄水前重庆段鱼类中重金属含量水平调查[J].水资源保护,2008,24(5):34-37.
    [110]闫海鱼,冯新斌,刘霆,等.贵州百花湖鱼体汞污染现状[J].生态学杂志,2008,27(8):1357-1361.
    [111]蒋红梅,冯新斌.水库汞生物地球化学循环研究进展[J].水科学进展,2007,18(3):462-467.
    [112]Jarman W M, Hobson K A, Sydeman W J, et al. Influence of trophic position and feeding location on contaminant levels in the Gulf of the Farallones food web revealed by stable isotope analysis[J]. Environmental Science & Technology,1996,30(2):654-660.
    [113]Chen C Y, Folt C L. High plankton densities reduce mercury biomagnifications[J]. Environmental Science & Technology,2005,39(1):115-121.
    [114]Chi Q, Zhu G, Langdon A. Bioaccumulation of heavy metals in fishes from Taihu Lake, China [J]. Journal of Environmental Sciences,2007,19:1500-1504.
    [115]徐小清,丘昌强,邓冠强,等.长江水系河流与水库中鲤鱼的元素含量特征[J].长江流域资源与环境,1998,7(3):267-273.
    [116]蔡深文,倪朝辉,李云峰,等.长江上游珍稀、特有鱼类国家级自然保护区鱼体肌肉重金属残留调查与分析[J].中国水产科学,2011,18(6):1351-1357.
    [117]Yi Y, Yang Z, Zhang S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin [J]. Environmental Pollution,2011,159:2575-2585.
    [118]祁俊生,傅川,黄秀山,等.微量元素在三峡库区水域生态系统中的迁移[J].重庆大学学报(自然科学版),2002,15(1):17-20.
    [119]王健康,高博,周怀东,等.三峡库区蓄水运用期表层沉积物重金属污染及其潜在生态风险评价[J].环境科学,2012,33(5):1693-1699.
    [120]安立会,张艳强,郑丙辉,等.三峡库区大宁河与磨刀溪重金属污染特征[J].环境科学,2012,33(8):2592-2598.
    [121]何天容,吴玉勇,潘鲁生,等.红枫湖鱼体中汞形态分布特征[J].西南大学学报(自然科学版),2010,32(7):78-82.
    [122]Li S, Zhou L, Wang H, et al. Feeding habits and habitats preferences affecting mercury bioaccumulation in 37 subtropical fish species from Wujiang River, China[J].Ecotoxicology,2008, 18(2):204-210.
    [123]Willis J N, Sunda W G. Relative contributions of food and water in the accumulation of zinc by 2 species of marine fish[J]. Marine Biology,1984,80(3):273-279.
    [124]Vander Zanden M J, Vadeboncoeur Y. Fishes as integrators of benthic and pelagic food webs in lakes[J]. Ecology,2002,83(8):2152-2161.
    [125]Vander Zanden M J, Cabana G, Rasmussen J B. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data[J]. Canadian Journal of Fisheries and Aquatic Sciences,1997,54(5):1142-1158.
    [126]Croteau M, Luoma S N, Stewart A R. Trophic transfer of metals along freshwater food webs: Evidence of cadmium biomagnification in nature[J]. Limnology and Oceanography,2005,50(5): 1511-1519.
    [127]Prahalad A K, Seenayya G.In situ compartmeniation and biomagnification of copperand cadmium in industrially polluted Husainsagar Lake, Hyderabad, India[J]. Archives of Environmental Contamination and Toxicology,1986,15:417-425.
    [128]Cui B, Zhang Q, Zhang K, et al. Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the Yellow River Delta, China[J]. Environmental Pollution,2011,159: 1297-1306.
    [129]Driscoll C T, Yan C, Schofield C L. The mercury cycle and fish in the Adirondack lakes[J]. Environmental Science & Technology,1994,28(3):136-143.
    [130]Schwindt A R, Fournie J W, Landers D H, et al. Mercury concentrations in salmonids from western US national parks and relationships with age and macrophage aggregates [J]. Environmental Science & Technology,2008,42(4):1365-1370.
    [131]黄真理,常剑波.鱼类体长与体重关系中的分形特征[J].水生生物学报,1999,23(4):330-336.
    [132]Meador J P, Ernest D W, Kagley A N. A comparison of the non- essential elements cadmium, mercury and lead found in fish and sediment from Alaska and California[J]. Science of Total Environment,2005,339:189-205.
    [133]曾乐意,闫玉莲,谢小军.长江朱杨江段几种鱼类体内重金属铅、镉和铬含量的研究[J].淡水渔业,2012,42(2):61-65.
    [134]冉祥滨,于志刚,陈洪涛,等.三峡水库蓄水至135m后坝前及香溪河水域溶解无机汞分布特征研究[J].环境科学,2008,29(7):1775-1779.
    [135]Stewart A R, Luoma S N, Schlekat C E, et al. Food web pathway determines how selenium affects aquatic ecosystems:A San Francisco Bay case study[J]. Environmental Science & Technology, 2004,38:4519-4526.
    [136]Matthew M, Chumchal K, Hambright D. Ecological Factors regulating mercury contamination of fish from Caddo Lake, Texas, USA[J]. Environmental Contamination and Toxicology,2009,28(5): 962-972.
    [137]Cossa D, Harmelin-Vivien M, Mellon-Duval C. Influences of bioavailability, trophic position, and growth on methylmercury in hakes (Merluccius merluccius) from Northwestern Mediterranean and Northeastern Atlantic [J]. Environmental Science & Technology,2012,46(9):4885-4893.
    [138]Post D M. Using stable isotopes to estimate trophic position:models, methods and assumptions[J]. Ecology,2002,83:703-718.
    [139]徐军.应用碳、氮稳定性同位素探讨淡水湖泊的食物网结构和营养级关系[D].武汉:中国科学院水生生物研究所,2005.
    [140]肖尚斌,刘德富,王雨春,等.2011.三峡库区香溪河库湾沉积物重金属污染特征[J].长江流域资源与环境,20(8):983-989.
    [141]Xu J, Xie P. Studies on the food web structure of Lake Donghu using stable carbon and nitrogen isotope ratios[J]. Journal of Freshwater Ecology,2011,19(4):645-650.
    [142]Gray J S. Biomagnification in marine systems:the perspective of an ecologist[J]. Marine Pollution Bulletin,2002,45:46-52.
    [143]Quinn M R, Feng X H, Folt C L, et al. Analyzing trophic transfer of metals in stream food chains using nitrogen isotopes[J]. Science of the Total Environment,2003,317:73-89.
    [144]Park J, Curtis L R. Mercury distribution in sediments and bioaccumulation by fish in two oregon reservoirs:point-source and nonpoint-source impacted systems[J]. Archives of Environmental Contamination and Toxicology,1997,33(4):423-429.
    [145]Cheung K C, Leung H M, Wong M H. Metal concentrations of common freshwater and marine fish from the Pearl River Delta, south China[J]. Archives of Environmental Contamination and Toxicology,2008,54(4):705-715.
    [146]Anna F, Janos S, Andras S. Age-and size-specific patterns of heavy metals in the organs of freshwater fish Abramis brama L. populating a low-contaminated site[J]. Water Research,2003,37: 959-964.
    [147]James P M, Don W E, Anna N K. A comparison of the non-essential elements cadmium, mercury and lead found in fish and sediment from Alaska and California[J]. Science of Total Environment,2005, 339:189-205.
    [148]夏泽慧,王兴明,楼巧婷,等.合肥市场6种淡水鱼体内Cu、Pb和Cd的分布及食用风险[J].环境科学研究,2012,25(3):311-315.
    [149]马晓利,刘存歧,刘录三,等.基于鱼类食性的白洋淀食物网研究[J].水生态学杂志,2011,32(4):85-90.
    [150]李斌,王志坚,金丽,等.人为营养物质输入对汉丰湖不同营养级生物的影响—稳定C、N同位素分析[J].生态学报,2012,32(5):1519-1526.
    [151]Lavoie R A, Hebert C E, Rail J F, et al. Trophic structure and mercury distribution in a Gulf of St. Lawrence (Canada) food web using stable isotope analysis[J]. Science of the Total Environment, 2010,408:5529-5539.
    [152]Wyn B, Kidd K A, Burgess N M, et al. Mercury biomagnification in the food webs of acidic lakes in Kejimkujik National Park and National Historic Site, Nova Scotia[J]. Canadian Journal of Fisheries and Aquatic Sciences,2009,66:1532-1545.
    [153]Zhang L, Campbell L M, Johnson T B. Seasonal variation in mercury and food web biomagnification in Lake Ontario, Canada[J]. Environmental Pollution,2012,161:178-184.
    [154]Larssen T. Mercury in Chinese reservoirs[J]. Environmental Pollution,2009,158,24-25.
    [155]Chen C Y.Stemberger-R-S, Klaue B, et al. Accumulation of heavy metals in food web components across a gradient of lakes[J]. Limnology and Oceanography,2000,45(7):1525-1536.
    [156]Jara-Marini M E, Soto-Jimenez M F, Paez-Osuna F. Trophic relationships and transference of cadmium, copper, lead and zinc in a subtropical coastal lagoon food web from SE Gulf of CaliforniafJ]. Chemosphere,2009,77:1366-1373.
    [157]Campbell L M, Norstrom R J, Hobson K A, et al. Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay)[J]. Science of The Total Environment, 2005,351-352:247-263.
    [158]Marin-Guirao L, Lloret J, Marin A. Carbon and nitrogen stable isotopes and metal concentration in food webs from a mining-impacted coastal lagoon[J]. Science of the Total Environment,2008, 393(1):118-130.
    [159]Wang W X. Interactions of trace metals and different marine food chains[J]. Marine Ecology Progress Series,2002,243:295-309.
    [160]祝云龙,姜加虎,黄群,等.大通湖及东洞庭湖区生物体重金属的水平及其生态评价[J].湖泊科学,2007,19(6):690-697.
    [161]Eisler R. Trace metal concentrations in marine organism[M]. New York:Pergamon Press,1981.
    [162]Zhang L, Wang W X. Effects of Zn pre-exposure on Cd and Zn bioaccumulation and metallothionein levels in two species of marine fish[J]. Aquatic Toxicology,2005,73:353-369.
    [163]Kidd K A, Bootsma H A, Hesslein R H, et al. Mercury concentrations in the food web of Lake Malawi, East Africa[J]. Journal of Great Lakes Research,2003,29:258-266.
    [164]Snodgrass J W, Jagoe C H, Bryan A L, et al. Effects of trophic status and wetland morphology, hydroperiod, and water chemistry on mercury concentrations in fish[J]. Canadian Journal of Fisheries and Aquatic Sciences,2000,57:171-180.
    [165]Sorensen J A, Kallemeyn L W, Sydor M. Relationship between mercury accumulation in young-of-the-year yellow perch and water-level fluctuations [J]. Environmental Science & Technology,2005,39:9237-9243.
    [166]Bowels K C, Apte S C, Maher W A, et al. Bioaccumulation and biomagnification of mercury in Lake Murray, Papua New Guinea[J]. Canadian Journal of Fisheries and Aquatic Sciences,2001,58: 888-897.
    [167]徐小清,丘昌强,邓冠强,等.三峡库区汞污染的化学生态效应[J].水生生物学报,1999,23(3):197-203.
    [168]胡征宇,蔡庆华.三峡水库蓄水前后水生态系统动态的初步研究[J].水生生物学报,2006,30(1):1-6.
    [169]Pinnegar J K, Polunin N V C. Contributions of stable-isotope data to elucidating food webs of Mediterranean rocky littoral fishes[J]. Oecologia,2000,122:399-409.
    [170]Fisher S J, Brown M L, Willis D W. Temporal food web variability in an upper Missouri River backwater:energy origination points and transfer mechanisms[J]. Ecology of Freshwater Fish,2001, 10:154-167.
    [171]Herwig B R, Soluk D A, Dettmers J M, et al. Trophic structure and energy flow in backwater lakes of two large floodplain rivers assessed using stable isotopes[J], Canadian Journal of Fisheries and Aquatic Sciences,2004,61:12-22.
    [172]曾庆飞,孔繁翔,张恩楼,等.稳定同位素技术应用于水域食物网的方法学研究进展[J].湖泊科学,2008,20(1):13-20.
    [173]万祎,胡建英,安立会,等.利用稳定氮和碳同位素分析渤海湾食物网主要生物种的营养层次 [J].科学通报,2005,50(7):708-712.
    [174]Tuomola L, Niklasson T, de Castro E Silva E, et al. Fish mercury development in relation to abiotic characteristics and carbon sources in a six-year-old, Brazilian reservoir[J]. Science of the Total Environment,2008,390(1):177-187.
    [175]Saito L, Johnson B M, Bartholow J, et al. Assessing ecosystem effects of reservoir operations using food web-energy transfer and water quality models[J]. Ecosystems,2001,4:105-125.
    [176]Vanni M J, Arend K K, Bremigan M T, et al. Linking landscapes and food webs:Effects of omnivorous fish and watersheds on reservoir ecosystems[J]. BioScience,2005,55(2):155-167.
    [177]Mercado-Silva N, Helmus M R, Vander Zanden M J. The effects of impoundment and non-native species on a river food web in Mexico's central plateau[J]. River Research and Applications,2009, 25(9):1090-1108.
    [178]Schmidt S N, Olden J D, Solomon C T, et al. Quantitative approaches to the analysis of stable isotope food web data[J]. Ecology,2007,88:2793-2802.
    [179]Roach K A, Thorp J H, Delong M D. Influence of lateral gradients of hydrologic connectivity on trophic positions of fishes in the Upper Mississippi River[J]. Freshwater Biology,2009,54: 607-620.
    [180]Liu B, Yan H, Wang C, et al. Insights into low fish mercury bioaccumulation in a mercury-contaminated reservoir, Guizhou, China[J]. Environmental Pollution,2012,160:109-117.
    [181]Warner K A, Bonzongo J C J, Roden E E, et al. Effect of watershed parameters on mercury distribution in different environmental compartments in the Mobile Alabama River basin, USA[J]. Science of The Total Environment,2005,347:187-207.
    [183]Kidd K A, Bootsma H A, Hesslein R H, et al. Biomagnification of DDT through the benthic and pelagic food webs of-Lake-Malawi,East Afriea:impertanee-of trophic level and carbon source[J]. Environmental Science & Technology,2001,35(1):14-20.
    [183]Jardine T D, Kidd K A, Fisk A T. Applications, considerations, and sources of uncertainty when using stable isotope analysis in ecotoxicology[J]. Environmental Science & Technology,2006,40(24): 7501-7511.
    [184]Chen C Y, Dionne M, Mayes B M, et al. Mercury bioavailability and bioaccumulation in estuarine food webs in the Gulf of Maine[J]. Environmental Science & Technology,2009,43:1804-1810.
    [185]Wyn B, Kidd K A, Burgess N M, et al. Mercury biomagnification in the food webs of acidic lakes in Kejimkujik National Park and National Historic Site, Nova Scotia[J]. Canadian Journal of Fisheries and Aquatic Sciences,2009,66:1532-1545.
    [186]郑娜,王起超,郑冬梅.基于THQ的锌冶炼厂周围人群食用蔬菜的健康风险分析[J].环境科学 学报,2007,27(4):672-678.
    [187]李玉,冯志华,李谷祺,等.海产品中重金属Hg、Cd、Pb对人体健康的潜在风险评价[J].食品科学,2010,31(21):390-393.
    [188]葛奇伟,徐永健,葛君远.象山港养殖区缢蛏和泥蚶的Cu、Cd、Pb含量及其健康风险评价[J].环境科学学报,2012,32(8):2042-2048.
    [189]USEPA. Risk-based concentration table[R]. Philadelphia, PA:United States Environmental Protection Agency,2000.
    [190]蒋冬梅.重庆市城乡居民膳食结构与重金属摄入水平研究[D].重庆:西南大学,2007.
    [191]邹晓锦,仇荣亮,周小勇,等.大宝山矿区重金属污染对人体健康风险的研究[J].环境科学学报,2008,28(7):1406-1412.
    [192]国家体育总局.2010年国民体质监测报告[M].北京:人民体育出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700