用户名: 密码: 验证码:
合金元素对热浸镀锌界面反应影响及相关相平衡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热浸镀锌用于钢铁防护已有100多年的历史,但含硅钢的硅反应性和热浸镀锌时镀锌设备的腐蚀这两大问题一直困扰着镀锌业。目前抑制硅反应性的最有效方法是在锌池中添加合金元素,最常用的元素为镍。但镍仅对硅含量小于0.2%的钢的硅反应性有较好的抑制作用,且镍的价格昂贵,在锌池中会形成大量的锌渣。因此有必要寻求一种低成本且能抑制高硅钢硅反应性的镀锌合金。为抑制Fe-Zn界面反应,提高镀层表面质量,降低成本,或使镀层获得更优异的使用性能,所有的热浸镀锌池中均添加了不同含量的铝。钴基合金因成本低使用性能好被广泛用于热浸镀锌的沉没辊等设备用材料,但随着锌池中铝含量的增加,镀锌设备的使用寿命大大缩短。因此,有必要了解钴基合金与锌铝熔池的相互作用。增加锌池中的铝含量可提高镀层的耐蚀性和耐热性,热浸镀55%Al-Zn是应用前景最好的一种镀锌技术,但铝含量高时,铁会与铝锌池中铝发生剧烈的放热反应,快速形成脆性的铁铝化合物,严重影响钢铁制品的性能。本工作围绕上述问题开展了相关研究工作。利用平衡合金法和扩散偶相结合的方法,借助扫描电镜-能谱仪-波谱仪、电子探针和X射线衍射等分析技术研究了Zn-Al-Co、Zn-Co-Ni和Zn-Fe-Co-Si系的相平衡。通过浸镀实验研究了Co、Ni、Si对热浸镀锌界面反应的影响,并对其作用机理进行了研究。
     为弄清钴基合金与锌铝熔池的相互作用及锌池中Co、Ni的协同加入对Fe-Zn界面反应的影响,本工作研究了Zn-Al-Co系450、600和800°C及Zn-Co-Ni系600和450°C的相关系。在Zn-Al-Co系450、600和800°C等温截面中分别存在10个、9个和7个三相区。除Al3Co外,其它的Al-Co二元化合物均能与液相平衡,AlCo能与所有的Co-Zn二元化合物平衡。Zn在AlCo和Al13Co4中的溶解度随着温度的升高而增大,在Al5Co2中的溶解度随温度升高而减小,其在AlCo、Al5Co2和Al9Co2中的最大溶解度分别为12.0、18.1和1.6at.%。Al在Co-Zn化合物中的溶解度有限,分别不超过0.1、0.3、0.9和1.4at.%。在本工作中,实验获得了CoZn和Co5Zn21的X射线衍射数据及晶体结构。在Zn-Co-Ni系600和450°C等温截面中,均存在三个三相区,α-Co/α-Ni、γ-Co5Zn21/γ-Ni4Zn22和γ2-CoZn13/δ-NiZn8分别形成连续固溶体。Ni在β1(CoZn)和γ1(CoZn9)中的最大溶解度分别为11.8和8.1at.%,Co在β1'(NiZn)中的最大溶解度为16.5at.%。没有三元化合物存在于Zn-Co-Ni三元系中。
     为研究Co对Fe-Zn界面反应的作用机理及为开发新型的Zn-Co基合金提供理论基础,本工作研究了Zn-Co-Si三元系450和600°C等温截面及Zn固定在93at.%的Zn-Fe-Co-Si四元系450°C富锌角的相关系。在Zn-Co-Si三元系450和600°C等温截面中分别存在9个和8个三相区,除β1外,CoSi相能与所有的二元Co-Zn金属间化合物共存。锌在Co-Si二元化合物中的溶解度随着温度的升高而增大,其在CoSi2,CoSi和Co2Si中的最大溶解度在450°C时分别为2.0、4.3和2.7at.%,在600°C时分别为2.0、6.2和5.4at.%。在Zn-Fe-Co-Si四元系450°C等温截面中存在两个四相区。ζ-FeZn13和ζ-CoZn13形成连续固溶体。铁在CoSi2中的溶解度不超过1.2at.%,而钴在FeSi2中的溶解度可达7.8at.%,锌在(Fe,Co)Si、FeSi2和CoSi2中的最大溶解度分别为1.9、1.5和2.9at.%。硅在二元金属间化合物ζ-FeZn13中的溶解度是极其有限的,但随着钴原子溶解到这个化合物中,硅在ζ-(Fe,Co)Zn13中的溶解度可达到0.8at.%。
     为开发低成本且能抑制高硅钢硅反应性的锌基合金,本工作对不同硅含量的铁硅合金在含不同Co、Ni成分的锌池中进行浸镀,研究了Co或Co-Ni的协同加入对镀层组织和生长动力学的影响。研究结果表明,锌池中适量的钴使ζ相呈致密的柱状分布,避免Diffused-△相及爆发组织的形成,提高了镀层表面质量。当锌池中加入钴后,金属间化合物层的生长受扩散控制,其厚度与浸镀时间呈抛物线关系。钴对含硅量不大于0.4wt.%的高反应性钢的Fe-Zn界面反应有较好的抑制作用。锌池中加入0.1wt.%Co抑制效果最佳。当浸镀时间不大于180s时,熔池中加入0.05~0.2Cowt.%或0.05Co-0.05Ni wt.%,对硅含量不大于0.5wt.%高反应性钢的Fe-Zn界面反应均有较好的抑制作用。用所获得的Zn-Fe-Co-Si四元系的相关系解释了钴对含硅钢界面反应的作用机理。随着钴溶解到ζ-FeZn13中,硅在该化合物中的溶解度可达0.8at.%,这避免了硅在ζ-FeZn13晶界的富集及液相通道的形成,促进致密的ζ-FeZn13相层形成,从而抑制了硅的反应性。
     为抑制热浸镀55%Al-Zn时Fe-Al界面反应,本工作研究了锌铝池中的硅对镀层组织和生长动力学的影响。研究结果表明,熔池中的硅能改变铁与铝锌熔体界面反应形成的化合物类型和顺序。含硅的Fe2Al5趋于稳定,能有效避免Fe基与熔体的直接接触,抑制热浸镀锌铝界面反应。当熔池中的Si含量分别为0.6、1.6、2.6、3.0和3.6wt.%时,Fe2Al5的扩散激活能分别为207、274、275、260和237KJ/mol。实验获得了不同浸镀条件下的Fe2Al5生长速度常数和熔池中不同含硅量时Fe2Al5的扩散激活能。获得了熔池中的硅对镀层中金属间化合物的形成顺序和组织演变的影响规律。该研究成果有助于优化热浸镀55%Al-Zn生产工艺、控制锌渣的形成及获得高性能的镀层。
Hot dip galvanizing used for steel protection has a history of over100years.However, Si reactivity and equipment corrosion have been troubling the galvanizingindustry. Galvanizing the steels in alloyed baths is one of the effective ways used tocontrol silicon reactivity. Nickel is the most used element added to zinc bath. However,The expensive nickel in zinc bath can only restrain the Si reactivity of the steel with lessthan0.2wt.%Si, and a mass of zinc dross would form as nickel element is added to zincbath. Therefore, it is necessary to develop a zinc-based alloy with lower cost to suppressthe Si reactivity of the steel with higher content of Si. All zinc baths contain differentlelves of aluminum for different purpose, such as suppressing Fe-Zn interface reaction,improving surface quality, or obtaining coating with better performance. Cobalt-basedsuper-alloys materials are used for both sink roll and stabilizer roll in the galvanizingindustry due to their relatively low cost and reasonably good performance. However, theservice life of Cobalt-based super-alloys are shorten as Al concentration in the molten zincbath increased. Therefore, it is necessary to understand the interaction of the Co-basedalloy and Zn-Al bath. To satisfy the demands for better corrosion-resistance andoxidation-resistance at elevated temperatures, higher levels of aluminum are added to Znbath. Hot dip55%Al-Zn is a very promising technique used for steel protection. However,the higher levels of aluminum would result in the strong and rapid exothermic reactionbetween the steel matrix and the A1-Zn bath. The brittle Fe-Al compounds whichseriously undermine the performance of the iron and steel products form quickly. Therelated researches are carried out about the above problems in the present work. The phaseequilibria of the Zn-Al-Co, Zn-Co-Ni and Zn-Fe-Co-Si systems have been determinedusing equilibrated alloys with the aid of a diffusion couple approach. The specimens wereinvestigated by means of scanning electron microscopy equipped with energy dispersiveX-ray spectroscopy, electron probe microanalysis and X-ray diffraction. The effect of Co,Ni, Si on interface reaction during the hot-dip galvanizing have been studied by hot-dipgalvanizing and hot-dip55%Al-Zn.
     To understand interaction between cobalt-based alloys and the molten Al-Zn and theinfluence of contemporary use of Co and Ni in zinc bath on Fe/Zn interface reaction, thephase relations of the Zn-Al-Co system at450,600, and800°C and the Zn-Co-Ni systemat450and600°C have been investigated. Ten three-phase regions exist in the isothermalsection at450°C, nine at600°C and seven at800°C. The liquid phase is in equilibrium with all Al-Co compounds except Al3Co. AlCo phase can coexist with all Co-Zn binaryphases. The Zn solubility in AlCo and Al13Co4increases with temperature increases, andthat in Al5Co2decreases. The maximum solubility of Zn in AlCo, Al5Co2, Al9Co2is12.0,18.1and1.6at.%, respectively. The Al solubility in the Co-Zn compounds is extremelylimited, no more than0.1at.%,0.3at.%,0.9at.%and1.4at.%The X-ray powderdiffraction patterns and crystal structures of the CoZn and Co5Zn21have been obtainedexperimentally. Three three-phase regions have been confirmed in the isothermal sectionsof the Zn-Co-Ni ternary system at450°C and600°C, respectively. Three continuous solidsolutions regions, i.e., α-Co/α-Ni, γ-Co5Zn21/γ-Ni4Zn22and γ2-CoZn13/δ-NiZn8, exist in thesections The maximum solubility of Ni in β1(CoZn) and γ1(CoZn9) is11.8and8.1at.%,and that of Co in β1’(NiZn) is16.5at.%,. No true ternary compound was found inZn-Co-Ni ternary systems.
     To understand the mechanism of action of Co on Fe/Zn interface reaction and providethe theory foundation for development of zinc-based alloys, the phase relations of theZn-Co-Si ternary system at450and600°C and the450°C isothermal section ofZn–Fe–Co–Si quaternary system with the Zn content being fixed at93at.%have beeninvestigated. Nine three-phase regions exist in the isothermal section of Zn-Co-Si systemat450°C, and eight at600°C. The CoSi phase can coexist with all compounds in Zn-Cobinary system except the β1-CoZn phase. The Zn solubility in Co-Si binary compoundsincreases with temperature increases. The maximum solubility of Zn in CoSi2, CoSi andCo2Si is about2.0at.%,4.3at.%and2.7at.%at450°C, and2.0at.%,6.2at.%, and5.4at.%at600°C, respectively. It was found that2four-phase regions exist in the isothermalsection of Zn–Fe–Co–Si quaternary system at450°C. No true ternary or quaternarycompound was found in the present study. The ζ-FeZn13and ζ-CoZn13form a continuoussolid solution. The Fe solubility in CoSi2is no more than1.21at.%, whereas the Cosolubility in FeSi2is high up to7.8at.%. The maximum solubility of Zn in (Fe,Co)Si,FeSi2, and CoSi2is1.9,1.5,2.9at.%, respectively. The Si solubility in binary ζ-FeZn13phase is rather limited, with Co dissolving in this compound, the solubility of Si is up to0.8at.%.
     To develop a low cost zinc-based alloy used for suppressing the Si reactivity of thesteel with higher content of Si, the interface reactions between the iron-silicon alloys anddifferent baths containing Co or Co and Ni have been studied. An appropriate amount ofCo in Zinc bath make the ζ phase be columnar, and avoid the formation of the diffused-△phase and outbreak microstructure. When Co element was added into zinc bath, thegrowth of the intermetallic layers was diffusion-controlled, in which its thickness increased parabolically with immersion time. The suppressing effect of Co in the zinc bathon silicon reactivity of iron–silicon alloys with no more than0.4wt.%Si is better, and thebest effet is achieved when Co content increased to0.1wt.%. Adding0.05~0.2wt.%Coor0.05Co+0.05Ni wt.%to zinc bath can effectively restrain Fe/Zn interface reaction ofhigher reactivity steel with no more than0.5wt.%Si when immersion time is on morethan180s. The mechanism of action of Co on Fe/Zn interface reaction is explained usingthe phase relations of the Zn-Fe-Co-Si quaternary system. The Si solubility in the ζ-FeZn13phase is up to0.8at.%with Co dissolving in this compound, which avoids the enrichingof silicon at the boundary of ζ-FeZn13phase and the forming of the liquid channel. Thecompact ζ-FeZn13layer could form, and the silicon reactivity during the hot-dipgalvanizing of the Si-containing steel is restrained.
     To supress Fe/Al interface reaction, the effect of silicon in the55%Al-Zn bath on themicrostructure and the growth kinetics of the coating has been investigated. The typiesand forming sequence of intermetallic compounds in the55%Al-Zn coating were changedas silicon is added to the bath. The containing-Si Fe2Al5tends to stable. The interfacereaction can be effectively holded back by Fe2Al5with Si. The activation energy of Fe2Al5was evaluated to be207,274,275,260, and237kJ/mol, when the content of silicon in thebath is0.6,1.6,2.6,3.0, and3.6(wt.%) respectively. The growth rate constant of Fe2Al5was obtained under different conditions. The forming sequence of intermetalliccompounds and the evolving regulars of the microstructure in the coating have beeninvestigated. The results obtained by present work could help to optimize technologicalparameters, control zinc dross forming and obtain high performance coating.
引文
[1]杨瑞成,蒋成禹,初福民.材料科学与工程导论[M].哈尔滨:哈尔滨工业大学出版社,2002:15.
    [2]柯伟,中国腐蚀调查报告[M].北京:化学工业出版社,2003.
    [3]陈鸿海主编,金属腐蚀学[M].北京:北京理工大学出版社,1995.
    [4]顾国成,吴文森编著.钢铁材料的防蚀涂层[M].北京:科学出版社,1987.
    [5]利亚霍维奇,孙一唐.金属和合金的化学热处理手册[M].上海:上海科技出版社,1986.
    [6] A.R. Marder. The metallurgy of zinc-coated steel [J]. Progress In Materials Science,2000,45(3):191-271.
    [7] B. Meuthen, R. Pankert. Status of wide galvanizing in Japan [J].Stahl Eisen,1990,110(6):75-80.
    [8]陈厚载.热镀锌技术(1000例)[M].上海:上海交通大学出版社,1994.
    [9] V. Ross Nicolas, W. Scherer Ronald, G. Jancosek David. Induction heating of strip for galvanneal[J]. Iron and Steel Engineer,1988,65(1):40-45.
    [10] J.G. Ritchie. Application of galvanized high strength bolts to steel structures in Australia [C].Proceedings of the9th international Conference on Hot Dip Galvanizing.1971:305.
    [11]李九龄.从热镀锌史看美钢联发的发展[J].武钢技术,1995(1):10-13.
    [12]赵翠云.中国有色金属工业协会铅锌分会[A].中国锌工业的发展现状与发展趋势[C].北京:中国2010带钢连续镀锌发展论坛,2010:59-80.
    [13]张启富,刘邦津,黄建中.现代钢带连续热镀锌[M].北京:冶金工业出版社,2007.
    [14] J. Schramm Iron-zinc system [J]. Zeitschrift fuer Metallkunde,1936,28(7):203-207.
    [15] J. Schramm X-ray investigation of phases and phase boundaries in systems of zinc with iron,cobalt and nickel [J]. Zeitschrift fuer Metallkunde,1938,30(4):122-130.
    [16] P. Stephan, J.S. Philip, H. Klaus. A thermodynamic evaluation of the iron-zinc system[J].Thermochimica Acta,1988,129(1):77-87.
    [17] H. Stadelmaier, R. Bridgers. Iron side of iron zinc system [J]. Metall,1961,15(8):761-763.
    [18] S. Hassamb, P. Kovatchev, N. Stojcev. Iron Side of the Fe-Zn Phase Diagram [J]. Zeitschrift fuerMetallkunde,1972,63(6):348-350.
    [19] J.Y. Dauphin, P Perrot. U.G.Tchissambot. Thermodynamic Description of the Iron-Zinc System [J].Mem. Etud. Sci. Rev. Metall.,1987,8(6):329-336.
    [20] P. Perrot, J.Y. Dauphin. Calculation of the Fe-Zn-Si phase diagram between773and1173K [J].Calphad,1988,12(1):33-40.
    [21] S. Petersen, P.J. Spencer, K. Hack. A thermodynamic evaluation of the iron-zinc system [J].Thermochimica Acta,1988,129(1):77-87.
    [22] G. Reumont, P. Perrot, J. Fiorani, J. Hertz. Thermodynamic assessment of the Fe-Zn system [J].Journal of Phase Equilibria and Diffusion,2000,21(4):371-378.
    [23] X.P. Su, N.Y. Tang, M. Toguri Jim. Thermodynamic evaluation of the Fe-Zn system [J]. Journal ofAlloys and Compounds,2001,325(1-2):129-136.
    [24] N. Jinichiro, V. Malakhov Dmitri, R.A. Purdy Gary. Crystallographically consistent optimizationof the Zn-Fe system [J]. Calphad,2005,29(4):276-288.
    [25] W.Xiong, Y. Kong, Y. Du, Z.K. Liu, M. Selleby, W.H. Sun. Thermodynamic investigation of thegalvanizing systems, I: Refinement of the thermodynamic description for the Fe-Zn system [J].Calphad,2009,33(2):433-440.
    [26] T.B.Massalski, Phase Diagrams [M]. ASM Mctals Handbook,1992,3:206.
    [27] Ortrud Kubaschewski. Iron-Zinc. Iron-Binary Phase Diagram [M]. Springer-Verlag, Berlin,1982:172-175.
    [28] Y. Liu, X.P. Su, F.C. Yin, Z. Li, Y.H. Liu. Experimental determination and atomistic simulation onthe structure of FeZn13[J]. Journal of Phase Equilibria and Diffusion,2008,29(6):488-492.
    [29] R. Belin, M. Tillard, L. Monconduit. Redetermination of the iron-zinc phase FeZn13[J]. ActaCrystallographica Section C,2000,56(3):267-268.
    [30] D.C. Cook, R.G.Grant. Identification of the Iron-Zinc phases in galvanneal steel coatings bymossbauer spectroscopy and X-Ray diffraction. Phase I: Characterization of the Fe-ZnIntermetallic Phases [R]. International Lead Zinc Research Organization Report,1993.1-108.
    [31] H.E. Belin Claude, C.H. Belin Renaud. Synthesis and crystal structure determinations in the Γ andδ phase domains of the Iron-Zinc system:Electronic and bonding analysis of Fe13Zn39and FeZn10,a subtle deviation from the Hume-Rothery standard [J]. Journal of Solid State Chemistry,2000,151(1):85-95.
    [32] F. Bastin Guillaume, J.J. Van Loo Frans, D. Rieck Gerard. On the δ phase in the Fe-Zn system[J].Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques,1977,68(5):359-361.
    [33] A.S. Koster, J.C. Schoone. Structure of the cubic Iron-Zinc phase Fe22Zn78[J]. ActaCrystallographica Section B,1981,37(10):1905-1907.
    [34] J.K. Brandon, R.Y. Brizard, P.C. Chieh, R.K. Mcmillan, W.B. Pearson, New refinements of theγ-brass type structures Cu5Zn8, Cu5Cd8and Fe3Zn10[J]. Acta Crystallographica Section B,1974,30(6):1412-1417.
    [35] C.E. Jordan, A.R. Marder. Fe-Zn phase formation in interstitial-free steels hot-dip galvanized at450°C. Part II.0.20wt%Al-Zn baths [J]. Journal of Materials Science,1997,32:5603-5610
    [36] G. F. Bastin, F.J.J. van Loo, G.D.Rieck. On the delta-phase in the Fe-Zn system [J]. Z Metallkde,1977,68(5):359-361
    [37] J. Mackowiak, N.R. Short. Metallurgy of galvanized coatings [J]. International Metals Reviews,1979,24(1):1-19.
    [38] P.J. Gellings, E.W. de Bree, G. Gierman. Synthesis and Characterization of HomogeneousIntermetallic Fe-Zn Compounds: The Delta1Phase [J]. Z Metallkde,1979,70(5):312-314.
    [39] C.E. Jordan, A. Marder. Fe-Zn phase formation in interstitial-free steels hot-dip galvanized at450°C: Part I0.00wt%Al-Zn baths [J]. Journal of Materials Science,1997,32(21):5593-5602.
    [40]李智,苏旭平,尹付成,贺跃辉.钢基热浸镀锌的研究[J].材料导报,2003,17(12):12-14.
    [41]李金桂,吴再思.防腐蚀表面工程技术[M].北京:化学工业出版社,2003:176-251.
    [42] R.W. Sandelin. Galvanizing characteristics of different types of steel [J]. Wire and Wire Products,1940,15(11-12):655-676.
    [43] ILZRO Project ZM-375, Progress Report No.1, August1990.
    [44] D.C. Pearce, ASARCO Research. Report,1974.
    [45] X.P. Su, N.Y. Tang, J.M. Toguri,450℃isothermal section of the Zn-Fe-Si ternary phase diagram,Can. Metall.Quart.,2001,40(3):377-384.
    [46] M. Gilles and R. Sokolowski. The Zinc-Tin galvanizing alloy: A unique Zinc alloy for galvanizingany reactive steel grade, Proc., Intergalva97, Birmingham, UK, June8-11, EGGA,1997.
    [47] M. Taylor and S. Murphy. A Decade of Technigalva, Proc.,Intergalva97, Birmingham, UK, June8-11, EGGA,1997.
    [48] R.W. Sandelin. Galvanizing characteristics of different types of steel[J]. Wire and Wire Products,1941,16(1):28-35.
    [49]车淳山. Sandelin效应机理及其抑制方法研究[D].华南理工大学,博士学位论文,2005,128.
    [50] R.W. Richards, H.Clarke, F.E. Goodwin. Analysis of galvanized coatings Proc17th Inter GalvaConf. Paris: EGGA.1994: GC8/1-GC8/16.
    [51] J. Pelerin, J. Hoffman, V. Leroy. Influence of silicon and phosphorus on the commercialgalvanization of mild steels [J]. Metall,1981,35(9):870-873.
    [52] J. Zervoudis, G. Anderson. A Review of Bath Alloy Additives and their Impact on the Quality ofthe Galvanized Coating [C].6th Asia Pacific General Galvanizing Conference, Australia,2005:1-17.
    [53]王启运.含硅钢热镀锌技术浅析[J].梅山科技,2007, S129-32.
    [54]焦帅.含硅活性钢在Zn-Sn合金浴中热浸镀锌的研究[D].广州:华南理工大学,硕士学位论文.2005.
    [55] D. Horstmann. Reaction Between Liquid Zinc and Silicon-free and Silicon-containing Steels [C].in Proceedings, Seminar on Galvanizing of Silicon Containing Steels, Liege, Belgium,International Lead Zinc Research Organization (ILZRO).1975,86-95.
    [56] E. Riecke, B. Johnen, H.J. Grabke. Influence of alloying elements on the corrosion and hydrogenuptake of iron in sulphuric acid [J]. Werkstoff und Korrosion,1985,36(10):435-441.
    [57] M.S. Kozdras, P. Niessen. Silicon-induced destabilization of galvanized coatings in the Sandelinpeakl region [J]. Metallography,1989,22(3):253-267.
    [58] J. Foct, Perrot P, Reumont G. Interpretation of the role of silicon on the galvanizing reaction Basedon kinetics, Morphology and Thermodynamics[J]. Scripta Metallurgica,1993,28(10):1195-1200.
    [59] M. Bretez, J.Y. Dauphin, J. Foct, P. Perrot. Phase relations and diffusion paths in the system Zincvapor-Iron Silicon alloys at773and973K [J]. Zeitschrift Fur Metallkunde,1987,78(2):137-140.
    [60] X.P. Su, F.C. Yin, Z. Li, N.Y. Tang, M.X. Zhao, Thermodynamic calculation of the Fe-Zn-Sisystem [J]. Journal of Alloys and Compounds,2005,396(1-2):156-163.
    [61]苏旭平,李智,尹付成,贺跃辉,潘世文.热浸镀中硅反应性研究[J].金属学报,2008,44(6):718-722.
    [62] B.C. Peng, J.H. Wang, X.P. Su, Z. Li. F.C.Yin. Effects of zinc bath temperature on the coatings ofhot-dip galvaniazing [J]. Surface Coatings Technology,2008,202:1785-1788.
    [63] J.T. Lu, C.S. Che, G. Kong, Q.Y. Xu, J.H. Chen. Influence of silicon on the α-Fe/Γ interface ofhot-dip galvanized steels[J]. Surface and Coatings Technology,2006,200(18-19):5277-5281.
    [64] A.R.B. Verma, W.J. van Ooij. High-temperature batch hot-dip galvanizing. Part1. Generaldescription of coatings formed at560℃, Surface and Coating Technology [J].1997,89:132-142.
    [65] A. R. B. Verma, W. J. van Ooij. High-temperature batch hot-dip galvanizing. Part2. Comparisonof coatings formed in the temperature range520-555℃, Surface and Coating Technology [J].1997,89:143-150.
    [66] B. Zhang. Development of corrosion resistant galvanizing alloys [D]. Birmingham: The Universityof Birmingham, Ph. D thesis on Metallurgy and Materials.2005.255.
    [67] N.Y. Tang. Control of Silicon Reactivity in General Galvanizing[J]. Journal of Phase Equilibriaand Diffusion,2008,29(4):337-344.
    [68] Syahbuddin, P. R. Munroe, C.S. Laksmi, B. Gleeson. Effects of0.1and0.2wt.%aluminiumaddition to zinc on the interdiffusion between zinc and iron at400°C [J]. Materials Science andEngineering A,1998,251(1-2):87-93.
    [69] Y. Morimoto, E. Mcdevitt, M. Meshii. Characterization of the Fe-Al Inhibition Layer Formed inthe Initial Stages of Hot-dip Galvannealing [J]. ISIJ (The Iron and Steel Institute of Japan)International,1997,37(9):906-913.
    [70]朱立,鞍钢技术热镀锌钢板概述(第十讲热镀锌合金钢板)1997,37(8):776-782.
    [71] G. Reumont, P. Perrot, J. Foct, Thermodynamic study of the galvanizing process in a Zn-0.1%Nibath [J]. Journal of Materials Science,1998,33(19):4759-4768.
    [72]孔纲,卢锦堂,陈锦虹,许乔瑜,刘丽霞.热浸Zn-Ni合金镀层技术的研究与应用[J].腐蚀科学与防护技术,2001,13(04):223-225.
    [73]卢锦堂,陈锦虹,许乔瑜等.锌浴中镍含量热浸锌镀层厚度的影响[J].材料保护,2001,34(4):15-16
    [74]王辉,锌镍合金的研发及在含硅活性钢热镀锌领域的应用[J].中国有色金属学报,2007,2:23-26+36.
    [75]卢锦堂,,焦帅,车淳山,孔纲.锌浴中加锡对0.37%Si钢热浸镀锌的影响[J].材料保护,2005,38(2):47-49.
    [76]孔纲,卢锦堂,陈锦虹,许乔瑜,眭润舟.锌浴中元素对钢结构件热镀锌的影响[J].表面技术2003,32(4):7-11.
    [77]郭太雄,瞿祖贵.热镀锌影响因素综述[J].轧钢,2000,17(001):48-51.
    [78] J.J. Sebisty, R.H. Palmer. Hot dip galvanizing with less common bath additions[C]. in Proceedingsof7th international hot dip galvanzing conference. Paris.1964.235-266.
    [79] Anon. Galvanized tightens its grip [J]. Iron Age,1967,200(5):49-52.
    [80] J. Zervoudis. Reactive Steel Galvanizing with Zn-Sn-V (Ni) Alloys[C].19th internationalgalvanizing conference, Berlin,2000.
    [81] X.P. Su, C.J. Wu, D.N. Liu, F.C. Yin, Z.X. Zhu, S. Yang. Effwct of vanadium on galvanizingSi-containing steels [J]. Surface&Coating Technology,2010,205:213-218
    [82]桂艳.热浸Zn-Ti合金镀层的耐腐蚀性能[J].表面技术,2008,37(5):33-35.
    [83]许乔瑜,桂艳,卢锦堂,孔纲,车淳山.热浸Zn-Ti合金镀层的显微组织与耐蚀性能[J].华南理工大学学报(自然科学版),2008,36(7):82-86.
    [84] Q.Y. Xu, Y. Gui, J.T. Lu, G. Kong, C.S. Che. microstructure and corrosion risistance of hot dipgalvanizing Zn-Ti coating7th Asia Pacific General Galvanizing Conference.2007:71-75.
    [85]李发国,尹付成,苏旭平,李智.钴对含硅钢镀锌层的组织和生长动力学的影响[J].2010,20(1):86-91.
    [86]李智.硅反应性及合金元素对热浸镀锌影响的研究[D].长沙:中南大学,博士学位论文.2008.
    [87] K. Zhang and N.Y. Tang. On the wear of a Cobalt–based superalloy in Zinc baths [J].Metallurgical and Materials Transactions A,2003,34A,2387-2396.
    [88] T. Tomita, Y. Takatani, Y. Kobayashi, Y. Harada and H. Nakahira. Durability of WC/Co sprayedcoatings in molten pure Zinc [J]. ISIJ (The Iron and Steel Institute of Japan) International,1993,33(9):982-988.
    [89] T. Kazumi, T. Tomita, Y. Kobayashi, T. Yasuyuki and Y. Harada. Durability of sprayed WC/Cocoatings in Al-added Zinc bath [J], ISIJ (The Iron and Steel Institute of Japan) International,1994,34(10):822-828.
    [90]刘邦津.钢材的热浸镀铝[M].北京:冶金工业出版社,1995:1-90:176-190.
    [91]李磊,桑格,蒋刚.热浸镀铝的研究动态[J].材料导报,2008,22(4):76-78.
    [92]孙捷,万明攀,热浸镀锌和热浸镀铝钢铁件的耐蚀性能比较及应用[J].材料科学,2010,2:75-77.
    [93]邸柏林,论钢铁的铝锌合金热浸镀层[J].表面技术,1994,23(1):1-5,47.
    [94] H.E. Townsend et al. Hot-dip coated sheet steel—A review[J]. Materials Performance,1986,25(8):36–46.
    [95] H.E. Townsend et al. Twenty-year atmospheric corrosion tests of hot-dip coated sheet steel [J].Materials Performance,1987,26(7):37-41.
    [96] H.E. Townsend et al. Twenty-five year corrosion of55%Al-Zn alloy coated steel sheet[J].Materials Performance,1993,32(4):68-71.
    [97]李华飞,郑家,俞郭义.钢板热浸镀55%Al-Zn合金新工艺[J].材料与表面处理,2001,1:39-41.
    [98] J. Nicholls. Hot-dipped aluminum coatings [J]. Anti-Corrosion Methods and Materials,1964,11:16-21.
    [99]刘洪福,牛宗伟,赵东山.热浸镀铝技术研究进展与展望[J].全面腐蚀控制,2011,25(11):11-14.
    [100]张伟,范志康,郭献军.热浸镀铝钢渗铝层的微观组织及其形成机理研究现状[J].机械工程材料,2006,30(1):9-11.
    [101] W.J. Cheng, Y.Y. Chang, C.J. Wang. Observation of high temperature phase transformation in thealuminized Cr-Mo steel using EBSD [J]. Surface&Coating Technology,2008,203:401-218.
    [102]夏原,姚枚,李铁蕃.热浸铝镀层的微观结构及形成机理[J].中国有色金属学报,1997,7(4),154-158.
    [103]夏原,姚枚,李铁蕃. Q235钢热浸镀铝初期镀层组织结构的变化[J].金属热处理学报,1998,19(2),34-38.
    [104] T. Heumann, N. Dittrich. Structure character of the Fe2Al5intermetallics compound in hot dipaluminizing process [J].Z Metallk,1959,50:617-623.
    [105] Gal Hameed Awan, Faizul Hasan. The morphology of coating/substrate interface in hot-dip-aluminized steels [J]. Materials Science and Engineering A,2008,472(1-2):157-165.
    [106] S.H. Hwang, J.H. Song, Y S.Kim. Effects of carbon content of carbon steel on its dissolution intoa molten aluminum alloy [J]. Materials Science and Engineering A,,2005,390(1-2):437-352.
    [107] H.R. Shahverdi, M.R. Ghomashchi, S. Shabestari, J. Hejazi. Microstructural analysis ofinterfacial reaction between molten aluminium and solid iron [J]. Journal of Materials ProcessingTechnology,2002,124(3):345-352.
    [108] Y.J. Li, J. Wang, X. Holly. X-ray diffraction and TEM analysis of Fe-Al alloy layer in coating ofnew hot dip aluminized steel [J]. Materials Science and Technology,2003,19(5):657-660.
    [109] S. Kobayashi, T. Yakou. Control of intermetallic compound layers at interface between steel andaluminum by diffusion treatment [J]. Materials Science and Engineering A,2002,338:44-53.
    [110] K. Bouché, F. Barbier, A. Coulet. Intermetallic compound layer growth between solid iron andmolten aluminum [J]. Materials Science and Engineering A,1998,249(1-2):167-175.
    [111] A. Behadur, O.N. Mohanty. Structural studies of hot dip aluminized coating on mild steel [J].Materials Transactions JIM,1991,32(11):1053-1061.
    [112] C.A. Handwerker, J.W. Cahn, J.R. Manning. Thermodynamic and kinetics of reactions atinterface in composites [J]. Materials Science and Engineering A,1990,126(1-2):173-189.
    [113] D.Q. Wang, Z Y. Shi. Aluminizing and oxidation treatment of1Cr18Ni9stainless steel [J].Applied Surface Science,2004,227(1-4):255-260.
    [114]史良权.热镀铝锌合金钢板[J].世界钢铁,2003,3(3):4-11.
    [115]宋加.锌铝合金镀层钢板的发展与前景[J].轧钢,1994,(001):52-55.
    [116] J.H. Selverian, A.R. Marder, M.R. Notis. The reaction between solid iron and liquid Al-Zn baths[J]. Metallurgical Transactions A,1988,19A:1193-1203.
    [117]许秀飞.带钢热镀锌技术问答[M].北京:化学工业出版社.2007.
    [118] H. Townsend, J. Zoccola. Atmospheric corrosion resistance of55%Al-Zn coated sheet steel:13year test results[J]. Materials Performance,1979,18(10):13-20.
    [119]徐滨士,刘世参,中国机械工程学会等.中国材料工程大典:材料表面工程[M].化学工业出版社,2006.
    [120] S. Denner, R. Jones, R. Thomas. Hot dip aluminizing of steel strip [J]. Journal of iron and steelresearch international,1975,48(3):241-252.
    [121] T. Sasaki, T. Yakou. Feature of intermetallic compounds steels formed using aluminum foil [J].Surface and Coatings Technology,2006,201:2131-2139.
    [122] C.J. Wang, S.M. Chen. The high-temperature oxidation behavior of hot-dipping Al–Si coating onlow carbon steel [J]. Surface&Coatings Technology,2006(200):6601–6605.
    [123] W.J. Cheng, C.J. Wang. Study of microstructure and phase evolution of hot-dipped aluminidemild steel during hightemperature diffusion using electron backscatter diffraction [J]. AppliedSurface Science.2011,257:4663–4668.
    [124] J.S. Sheasby. Powder metallurgy of iron-aluminum [J]. The International Journal of PowderMetallurgy and Power Technology,1979,15(4):301-305.
    [125] D.J. Lee, R.M. German. Sintering behavior of iron-aluminum powder mixes[J]. The InternationalJournal of Powder Metallurgy and Power Technology,1985,21(1):9-21.
    [126]王兴庆,隋永江,吕海波.铁铝原子在金属间化合物形成中的扩散[J].上海大学学报(自然科学报),1998,4(6):661-667.
    [127] T.Shih, S.H. Tu. Interaction of steel with pure Al, Al-7Si and A356alloys [J]. Materials Scienceand Engineering A,2007,454-455:349-356.
    [128] D.Naoi, M. Kajihara. Growth behavior of Fe2Al5during reactive diffusion between Fe and Al atsolid-state temperatures [J]. Materials Science and Engineering A,2007,459:375-382.
    [129] M. Kajihara, Quantitative Evaluation of Interdiffusion in Fe2Al5during reactive riffusion in thebinary Fe-Al system [J]. Materials Transactions,2006,47(6):1480-1484.
    [130] K. Shibata, S. Morozumi, S. Koda. J. Jpn.Inst. Met.,1966,30:382.
    [131] D. Gittings, D. Rowland, J. Mack. Effect of Bath Composition on Aluminum Coatings on Steel[J].Transactions of the American Society for Metals,1951,43:587-593.
    [132]李晓源,文九巴,李全安等.稀土镧对热浸镀铝层耐蚀性的影响[J].机械工程材料,2004,28(007):40-42.
    [133] F. Garcia, A. Salinas, E. Nava. The role of Si and Ti additions on the formation of the alloy layerat the interface of hot-dip Al-Zn coatings on steel strips [J]. Materials Letters2006,60:775-778.
    [134] J.H. Selverian, A.R. Marder, M.R. Notis. The effect of silicon on the reation between solid ironand liqiud55Wt Pct Al-Zn baths [J]. Metallurgical Transactions A,1989,20A:543-555.
    [135] P. Dominic, X. Baojing, D. Rian. Formation of intermetallic phases on55%wt.%Al-Zn-Si hotdip strip [J]. Materials Science and Engineering A,2006,420:144-149.
    [136] R.Y. Chen, D.J. Wlllis. The behavior of silicon in the solidification of Zn-55Al-1.6Si coating onsteel [J]. Metallurgical and Materials Transactions A,2005,36A,117-128.
    [137] N. Y. Tang Y. H. Liu. Discussion of “Interfacial Layer in Coatings Produced in Molten Zn-AlEutectoid Alloy Containing Si”[J]. Metallurgical and Materials Transactions A,2005,36(9):2541-2544.
    [138] A. Semoroz, Y. Durandet, M. Rappaz. Ebsd characterization of dendrite growth directions,texture and misorientations in hot-dipped Al-Zn-Si coatings [J]. Acta Materials,2001,49:529-541.
    [139] N. Ebrill, Y. Durandet, L. Strezov. Dynamic reactive wetting and its role in hot dip coating ofsteel sheet with an Al-Zn-Si alloy [J]. Metallurgical and Materials Transactions B,2000,31:1069-1079.
    [140] G. Eggeler, W. Auer, H. Kaesche. On the influence of silicon on the growth of the alloy layerduring hot dip aluminizing[J]. Journal of Materials and Science,1986,21:3348-3350.
    [141] J.B. Newkirk[M]. Israel: Freund Publishing House,1980.142.
    [142] Z.F. Zhou et al. The formation and growth of the interfacial alloy layer in Zn-55%Al-1.5%Sihot-dipped coating[J], Galvatech95:289-294.
    [143] N. Komatsu. Investigation on the bonding of steel and aluminum. J Jpn Met,1981,45:416-420.
    [144] R. Jones, S. Denner. Hot-Dip Aluminising of Steel–Theory and Practice. Proceedings ofInterfinish,1980,80:371-376.
    [145]孟荣祥,杨熙珍.硅的添加量对Al-Zn合金热浸镀层的组织和耐蚀性别的影响[J].中国腐蚀与防护学报,19866(2):91-102.
    [146] O. Uwakweh, A. Jordan Application of metastable transformation of mechanically alloyedFe-Zn-Si in equilibrium phase studies [J]. J Phase Equilibria,1997,18(5):448-457.
    [147] W. K ester, T. Goedecke Das dreistoffsystem eisen-silizium-zink[J]. Z Metallkde,1968,59(8):605-613.
    [148] J. Foct, G. Reumont, P. Perrot. The morphology of Zinc coatings[A]. In: Marder, eds. Phys. Met.of Zinc Coated Steel[C]. California: Minerals, Metals&Materials Soc (TMS),1993,1-9.
    [149] P. Perrot, J.Y. Dauphin. Calculation of the Fe-Zn-Si phase diagram between773and1173K[J].Calphad,1988,12(1):33-40.
    [150] O. Uwakweh, A. Jordan, P. Maziasz. Thermal transformations in mechanically alloyed Fe-Zn-Simaterials[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and MaterialsScience,2000,31(11):2747-2754.
    [151] N.Y. Tang, X.P. Su. On the ternary phase in the zinc-rich corner of the Zn-Fe-Al system attemperatures below450°C[J]. Metallurgical and Materials Transactions A.2002,33(5):1559-1561.
    [152] J. Nakano, D.V. Malakhov, S. Yamaguchi, et al. A full thermodynamic optimization of theZn–Fe–Al system within the420–500C temperature range[J]. Calphad,2007,31(1):125-140.
    [153] Y. Chung, J.M. Toguri, R. Sridhar. Thermodynamic properties of dilute aluminum in liquidzinc[J]. Canadian Metallurgical Quarterly,2001,40(2):185-192.
    [154] P. Perrot, J.C. Tissier, J.Y. Dauphin. Stable and metastable equilibria in the Fe-Zn-Al system at450°C[J]. Z Metallkde,1992,83(11):786-790.
    [155] S.A. Costae, R.R. Avillez, K. Marques Preliminary assessment of the Zn-rich corner of theAl-Fe-Zn system and its implications in steel coating[J]. Zeitschrift fuer Metallkunde,1999,90(1):38-43.
    [156] N Y. Tang.450°C isotherm of Zn-Fe-Al phase diagram update [J]. Journal of Phase Equilibriaand Diffusion,1996,17(5):396-398.
    [157] K.W. Bai, P. Wu. Assessment of the Zn–Fe–Al system for kinetic study of galvanizing [J].Journal of Alloys and Compounds,2002,347(1-2):156-164.
    [158] W. K ester, T. Goedecke. Ternary Iron Aluminum Zinc System [J]. Z Metallk,1970,61(9):649-658.
    [159] N.Y. Tang, O. Uwakweh, Liu Zhentong. Discussion of`Kinetics and phase transformationevaluation of Fe-Zn-Al mechanically alloyed phases[J]. Metallurgical and Materials TransactionsA: Physical Metallurgy and Materials Science,1997,28A (11):2433-2434.
    [160] F. Peng, F.C. Yin, X.P. Su, L. Zhi, M.X. Zhao,560℃isothermal section of Zn-Fe-Ni system atthe Zn-rich corner [J]. Journal of Alloys and Compounds,2005,402(1-2):124-129.
    [161] F.C. Yin, X.P. Su, X.M. Wang, H. Tu, M.X. Zhao,560℃isothermal section of the Zn–Fe–Ni–Siquaternary system atthe zinc-rich corner [J]. Int. J. Mat. Res.(formerly Z. Metallkd.),2009,100:1-6.
    [162] S.W. Pan, F.C. Yin, M.X. Zhao, Y. Liu, X.P. Su,The zinc-rich corner of the450℃isothermalsection of the Zn–Al–Fe–Si quaternary system [J], Journal of Alloys and Compounds,2009,470(1-2):600-605.
    [163] X.H. Tang, F.C. Yin, X.M. Wang, J.H. Wang, X.P. Su, N.Y. Tang, The450°C isothermal sectionof the Zn-Fe-Ti system [J]. Journal of Phase Equilibria and Diffusion,2007,28(4):355-361.
    [164] C.J. Wu, X.P. Su, D.N. Liu, X.M. Wang, F.C. Yin, Z.X. Zhu, Z. Li. Experimental investigation ofthe Zn-Fe-V system at450℃[J]. International Journal of Materials Research,2010,101(12):1476-1483.
    [165] F.C. Yin, S. Zheng, X.M. Wang, Z. Li, M.X. Zhao.450°C isothermal section of the Al-V-Znsystem [J]. Journal of Phase Equilibria and Diffusion,2012,33(3):167-175.
    [166] N.Y. Tang, X.P. Su, X.B. Yu. The Zn-rich corner of the Zn-Fe-Co system at450°C[J].International Journal of Materials Research,2003,02:116-121.
    [167] Z. Li, X.P. Su,Y.H. He.450oC isothermal section of the Zn-Fe-Bi ternary phase diagram[J].Journal of Alloys and Compounds,2008,462(1-2):320-327
    [168] Y.X. Liu, F.C. Yin, Y. Liu, Zh. Li, J.H. Wang, X.P. Su. The450°C isothermal section of theZn-Bi-Ni system [J]. Journal of Phase Equilibria and Diffusion,2008,29(6):493-4993.
    [169] C. Xu, F.C. Yin, M.X. Zhao, Y.X. Liu, X.P. Su. Phase equilibria of the Zn–Bi–Ni system at600°Cand750°C [J]. Joural of Alloys and Compounds,2010,506:125-130.
    [170] C.M. Liu, J.H. Wang, F.C. Yin, Z. Li, X.P. Su. The Zn-rich corner of the450°C isothermalsection of the Zn–Bi–Fe–Ni quaternary system [J]. Journal of Alloys and Compounds,2009,482(1-2):213-218.
    [171] M. Ai, F. Yin, Y. Liu, X.M. Wang, M.X.Zhao, X.P. Su. Experimental study of the phase relationsin the Fe–Zn–Cr system at600°C [J]. International Journal of Materials Research,2008,99(2):138-144.
    [172] H. Tu, X.P. Su, F.C. Yin, X.M. Wang, J.H. Wang.450C isothermal section of the Zn–Fe–Nbternary system at the Zn-rich corner [J]. Journal of Alloys and Compounds,2009,485(1-2):270-274.
    [173]陆学善.相图与相变[M].合肥:中国科学技术大学出版社,1990:1-2.
    [174]郝士明.局域平衡原理与相图的扩散偶法测定[J].材料与冶金学报,2003,2(3):203-209.
    [175]金展鹏.三元扩散偶及其在相图研究中的应用[J].中南大学学报(自然科学版),1984.
    [176]高小威. Nb-15W-5Mo-Zr-C系富Nb角及Nb-Mo-Zr系1100℃相关系研究[D].中南大学,硕士学位论文,2005.
    [177] J.C. Zhao. Methods for phase diagram determination[M]. Elsevier Science Ltd,2007.
    [178]谷祝平.光学显微镜[M].甘肃人民出版社,1985.
    [179]廖乾初,蓝芬兰.扫描电镜原理及应用技术[M].冶金工业出版社,1990.
    [180]朱宜,电子,汪裕苹等.扫描电镜图象的形成处理和显微分析[M].北京大学出版社,1991.
    [181] H. Hasence, T. Nishizawa. Applicatin of phase diagram in metallurgy and ceramics
    [M].Washington DC: NBS Special Pub.1978,2:911-945.
    [182] Z.P. Jin. A study of the range of stability of sigma phase in some ternary system [J]. Scand J.Metallurgy,1981,10:178-187.
    [183]郭旭峡,资文华,丑修建,陈庆华.热浸镀铝工艺及镀层分析[J].昆明理工大学学报(理工版),2004,29(2):19-22.
    [184]孙克宁,孙雪等.热浸镀铝工艺及水溶液助镀剂的研究[J].电镀与环保,2001,21(3):29-32.
    [185]王光文,刘炳,石传美.溶剂法热浸镀工艺及性能研究[J].涂装与电镀,2008,5:25-29.
    [186]孔纲,卢锦堂,许乔瑜.热浸镀锌助镀工艺的研究与应用[J].材料保护,2005,38(8):56-58.
    [187]周济.热镀锌、电镀锌及锌合金创新生产工艺实用全书[M].北京:北京工业大学出版社,1872008:45-46.
    [188] T.B. Massalski, H. Okamoto, PR. Subramanian, L. Kacprzak. Binary alloy phase diagrams [M],2nd ed., ASM;1990.
    [189] B. Grushko, R. Wittenberg, K. Bickmann, C. Freiburg. The constitution of aluminum-cobaltalloys between Al5Co2and Al9Co2[J]. Journal of Alloys and Compounds,1996,233(1-2):279-287.
    [190] T. G decke and M. Ellner, Phase equilibria in the aluminum-rich portion of the binary systemCo-Al and in the Co/Al-Rich portion of the ternary system Co-Ni-Al [J]. Zeitschrift FuerMetallkunde,1996,87(11):854-864
    [191] B. Grushko, C. Freiburg, K. Bickmann, RZ. Wittenberg, Discussion of the Al-Co phase diagram[J]. Zeitschrift Fuer Metallkunde,1997,88(5):379-381.
    [192] M. Mihalkovi, M. Widom. First-principles calculations of cohesive energies in the Al-Co binaryalloy system [J]. PHYSICAL REVIEW B,2007,75(1):014207-1-014207-10.
    [193] G.P. Vassilev and M. Jiang. Thermodynamic optimization of the Co-Zn system [J]. Journal ofphase equilibria and diffusion,2004,25(3):259-268.
    [194] I. Isom ki and M. H m l inen. Thermodynamic evaluation of the Co-Zn system [J]. J. AlloysCompd,2004,375:191-195.
    [195] M. Hansen and K. Anderko, Constitution of binary alloys [M].2nd Edition, McGraw-Hill BookCompany, New York,1958, p1488.
    [196] F. Lihl and E. Weisberg. Phase Boundaries in the System Co-Zn [J]. Zeitschrift Fuer Metallkunde,1955,46:579-581.
    [197] W. K ster and E. Wagner. Effect of the elements Al, Ti, V, Cu, Zn, Sn and Sb on the polimorphictransition of the cobalt [J] Zeitschrift Fuer Metallkunde,1937,29:230-232.
    [198] T. Takayama, S. Shinohara, K. Ishida, and T. Nishizawa. Anomalies in phase equilibria due tomagnetic transition in Fe-Zn, Co-Zn, and Fe-Co-Zn systems [J]. Journal of Phase Equilibria,1995,16(5):390-395.
    [199] S.L. Chen and Y. A. Chang. A thermodynamic analysis of the Al-Zn system and phase diagramcalculation [J]. Calphad,1993,17(2):113-124.
    [200] S. An Mey. Reevaluation of the Al-Zn system [J]. Zeitschrift Fuer Metallkunde,1993,84(7):451-455
    [201] E. Butchers, W. Hume-Rothery. On constitution of Aluminum-Magnesium-Manganese-Zincalloys: Solidus[J]. Inst.Met.,1945,71:291-311.
    [202] C.T. Heycock, F.H. Neville. Complete Freezing-Point Curves another Metal[J]. Chem. Soc.,1987,71:383-385.
    [203] T. Isihara. On the equilibrium diagram of the Aluminum-Zinc system[J]. Sci. Rep. Tohoku Univ.,1925,13:427-442.
    [204] E. Pelzel. Liquidus and solidus curves in Zinc Aluminum system between30and70%Aluminum[J]. Z. Metallkd.,1949,40(4):134-136.
    [205] G.V. Raynor, C. R. Faulkner, J. D. Noden and A. R. Harding. Ternary alloys formed byAluminum, transitional Metals and divalent Metals [J]. Acta Metallurgica,1953,1:629-648.
    [206] N.Y. Tang, Y.H. Liu, and K. Zhang, Development of higher order phase diagrams for practicalapplications in galvanizing [C],44th Mechanical Working and Steel ProcessingConf. Proc., Iron Steel Soc.,Warrendale, PA,2002.815-821
    [207] F.A. Sidorenko, A.P. Kotov, L.P. Zelenin, P.V. Gel'd. Physical properties of mutual FeAl-CoAlsolid solutions [J]. Physics of Metals and Metallography,1973,35(1):209-211.
    [208] U. Burkhardt, M. Ellner, Y.Grin', B. Baumgartner. Powder diffraction refinement of the Co2Al5structure [J]. Powder Diffraction,1998,13:159-162.
    [209] J. Grin, U. Burkhardt, M. Ellner, K. Peters, Crystal structure of orthorhombic Co4Al13[J]. Journalof Alloys and Compounds.1994,206(2):243-247.
    [210] A.M.B. Douglas,, The structure of Co2Al9[J]. Acta Crystallographica,1950,3:19-24.
    [211] H. Lind, M. Bostrom, V. Petricekc, S. Lidina. Structure of δ1-CoZn7.8[J], an example of a phasonpinning-unpinning transformation [J]. Acta Crystallographica,2003, B59:720-729.
    [212] J. Schramm. X-Ray Investigation of Phase and Phase Limits of the Zinc Alloy Systems With Iron,Cobalt and Nickel [J]. Z. Metallkde.,1938,30:122-30.
    [213] K.H.J. Buschow, P.G. van Engen, and R. Jongebreur. Magneto-optical properties of metallicferromagnetic materials [J]. J. Magnetism Magn. Mater,1983,38:1-22.
    [214] P.J. Brown. The structure of the ζ-phase in transition metal-Zinc alloy systems [J]. Acta Cryst,1962,15:608-612.
    [215] W. Ekman. X-ray studies of the Cobalt-Zinc gamma-phase [J]. Z. Physikal. Chem,1931,B12:57-78.
    [216] G.P. Vassilev, T.G. Acebo, and J.-C. Tedenac. Thermodynamic optimization of the Ni-Znsystem[J]. J. Phase Equilib,2000,21:287-301.
    [217] W. Xiong, H. Xu, and Y. Du, Thermodynamic investigation of the galvanizing systems, II:Thermodynamic evaluation of the Ni–Zn system [J]. CALPHAD,2011,35:276-283.
    [218] X.P. Su, N.Y. Tang, and J.M. Toguri. Thermodynamic assessment of the Ni-Zn system[J]. J.Phase Equilib,2002,23:140-148.
    [219] W. Heike, J. Schramm, O. Vaupel. The system Nickel-Zinc [J]. Metallwirtschaft,1936,15:655-62.
    [220] R.P. Anantatmula and D.B. Masson. Thermodynamic properties of solid Ni-Zn alloys by atomicabsorption [J]. Metallurgical Transactions,1974,5:605-613.
    [221] P. Wu, R. Kershaw, K. Dwight, and A.Wold. Growth and characterization of nickel-doped Zn Ssingle crystals [J]. Materials Research Bulletin,1989,24:49-53.
    [222] A. Johansson, H. Ljung, and S. Westman. X-ray and neutron diffraction studies on Γ-Ni,Zn andΓ-Fe,Zn [J].Acta Chem. Scand,1968,22:2743-2753.
    [223] K. Tamaru and A. Osawa. On a further investigation of the equilibrium diagram of the nickel-zincsystem [J]. Sci. Rep. Tohoku Imp. Univ,1935,23:794-815.
    [224] G. Nover and K. Schubert. The crystal structure of NiZn3[J]. J. Less-Common Met,1980,75:51-63.
    [225] J.K. Critchley and S. Denton. The crystal structure of δ-Ni-Zn [J]. J. Inst. Metals,1971,99:26-27.
    [226] W. K ster, H. Schmidt and E. Dahesh. Aush rtung von Kobalt-Nickel-Zink-Legierungen [J]. Z.Metallkd,1956,47(3):165-171.
    [227] G.P. Vassilev and S. Budurov. On the diagram of state of Co-Ni-Zn [J]. Izv. Akad. Nauk SSSR,Met,1980(2):229-234.
    [228] T. Nishizawa, K. Ishida, The Co-Fe (cobalt-iron) system [J]. Bulletin of alloy phase diagrams,1984,5(3):250-259.
    [229] I. Ohnuma, H. Enoki, O. Ikeda, et al. Phase equilibria in the Fe-Co binary system[J]. Acta Mater.,2002,50:379-393.
    [230] L. Kaufman, CalphadCalculation of quasi binary and quasiternary oxynitride systems,3(1979)275-291
    [231] K. Ishida, T. Nishizawa, M. Schlesinger. The Co-Si (cobalt-silicon) system [J]. Journal of PhaseEquilibria,1991,12(5):578-586.
    [232] L.J. Zhang, Y. Du, H.H. Xu, Z. Pan. Experimental investigation and thermodynamic descriptionof the Co-Si system [J]. Computer Coupling of Phase Diagrams and Thermochemistry,2006,30:470-481.
    [233] W. K ster, H. Schmid. Constitution and precipitation hardening of Fe-Co-Zn alloys[J]. Arch.Eisenhuttenwesen,1956,3:211-217(in German).
    [234] V. Raghavan, Co-Fe-Zn (Cobalt-Iron-Zinc)[J]. Journal of Phase Equilibria,2003,24(6):552-553.
    [235] R. Vogel, K. Rosenthal. The Fe-Co-CoSi-FeSi System [J]. Arch. Eisenhuettenwes,1935,9(6):293-299.
    [236] L.P. Zelenin, F.A. Sidorenko, L.V. Shchipanov. Investigation of the quasibinary section of thesystem L ebeauite-Cobalts Disilicide [J]. Tr. Ural’ sk Politekhn. Inst.,1965,144:74-77.
    [237] L.K. Fedorova, E.I. Gladyshevskii. The ternary system Co-Fe-Si [J]. Inorg. Mater.(Engl. Trans.),1975,11:316-318.
    [238] G.V. Raynor, V.G. Rivlin. Co-Fe-Si in phase equilibria in iron ternary alloys [J]. Inst. Metals,London,1988,406:256-267.
    [239] T. Kozakai, P.Z. Zhao, T. Miyazaki. Phase separations in Fe rich Fe base ternary ordering alloysystems[J]. Osaka,1990,23:32-33.
    [240] S.C. Ur, I.H. Kim, Phase transformation and thermoelectric properties of n-TypeFe0.98Co0.02Si2Processed by Mechanical Alloying [J]. Mater. Lett.,2002,57(3):543-551.
    [241] W. Wong-Ng, H. McMurdie, B. Paretzkin, C. Hubbard, and A. Dragoo. Powder Diffraction [J].1987,2:261.
    [242] B. Aronsson. Acta Chem. Scand.1960,14:1414.
    [243] G. Ghosh, G. V.Narasimha Rao, V. S. Sastry, A. Bharathi, Y. Hariharan, T.S. Radhakrishnan.X-ray powder diffraction data of CoSi [J]. Powder Diffraction,1997,12(4):252-254.
    [244] W. Wong-Ng, H. McMurdie, B. Paretzkin, C. Hubbard, A. Dragoo. Powder Diffraction,1987,2:110.
    [245] S. Geller, V. M. Wolontis, Acta Crystallogr.1955,8:83-87.
    [246] P.J. Brown. The structure of the ζ phase in the transition metal-zinc alloy systems [J]. ActaCrystallographica,1962,15:608-612.
    [247] J.C. Slater: J. Chem. Phys.,1964,41:3199.
    [248]张静.浅谈影响热浸镀锌锌层质量的因素分析[C].第二届薄钢板质量研讨会论文集,2002:131-134.
    [249]韩炜,尹付成,苏旭平,王建华,.徐琛.硅对Fe/Al固态扩散反应中Fe2Al5生长动力学的影响[J].材料热处理学报,2010,31(6):28-32.
    [250]孟荣祥,杨熙珍.热浸镀55%Al-Zn合金过程中化合物层生长动力学分析[J].中国腐蚀与防护学报,1987,1:8-18.
    [251]胡庚祥,钱苗根.金属学[M]].上海科学技术出版社,1980.122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700