用户名: 密码: 验证码:
不锈钢薄壁材料工件自动化机械抛光技术研究及工艺优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不锈钢薄壁材料小家电广泛应用于人们的日常生活中,比如电热水壶、咖啡壶、电热锅、电热杯等,具有极其广阔的市场空间。抛光是这些器具加工中最重要的一道工序,要求工件表面材料去除均匀,粗糙度值较低。不锈钢薄壁材料工件在抛光中具有工件表面易烧伤、变形、难以夹持等特点,属于难抛光材料。目前国内研究机构对不锈钢薄壁材料小家电自动化抛光技术的研究较少,且现有的少数设备具有限制性,还不能普遍应用于小家电抛光行业。国内生产企业主要还是采用手工抛光方式,存在抛光质量和生产效率低、污染严重、劳动力短缺等问题,严重制约了该生产行业的发展。
     在不锈钢薄壁材料小家电中,电热水壶因其形状相对复杂,具有典型性,因此,本文主要以电热水壶抛光为研究对象,结合电热水壶工业实际生产背景,针对现有设备的不足,研究了一套适合不锈钢薄壁材料工件抛光的高效自动化机械抛光技术,并研发出了相应的机械抛光机床和自动化控制系统。这一研究对改善我国不锈钢薄壁材料小家电抛光及同类型家用器具产品行业普遍依赖手工方式的现状具有重要意义。
     第一,针对不锈钢工件建立表面材料去除率理论模型及工件表面粗糙度模型,为自动化机械抛光工艺提供了理论依据。(1)、运用弹塑性力学和磨粒磨削等理论建立了工件表面材料去除率模型,从微观角度揭示了磨粒和相关工艺参数与材料去除率之间的关系。模型表明,材料去除率与磨具旋转的切线速度、工件圆周线速度、工件进给速度和法向抛光压力等参数成正比,和磨具粒度大小、组织号等成非线性关系。(2)、基于回归分析和正交试验的方法建立了工件表面粗糙度和抛光工艺参数之间的关系模型,模型表明:加工表面粗糙度随法向抛光压力、工件圆周线速度和进给速度的增大而增大,随磨具旋转切线速度的增大而减小。运用数学仿真和试验验证的方法进行研究分析,仿真和试验有良好的一致性,证明了这两种建模方法的正确性,对自动化机械抛光工艺的合理规划具有指导意义。
     第二,为满足高效抛光的要求,提出了一种多工位多磨具自动化机械抛光技术,能够分别对工件外表面和内表而进行抛光,关键技术包括多工位多磨具抛光机床的结构设计、多工位姿态同步调整装置设计、工件夹具设计,并基于这一技术设计了相应的多工位多磨具机械抛光机床的自动化控制系统。根据实际生产加工中磨具需要自适应工件形状,提出了一种基于示教法的抛光刀位数据生成方法,用于自动化抛光系统中。
     第三、结合现行抛光工艺,提出了一套适合于不锈钢薄壁材料小家电自动化机械抛光的工艺方法。针对工件表面形状特征进行分片规划,设计了自动化机械抛光方案,采用螺旋式抛光路径作为抛光刀具的轨迹,并研究了刀具轨迹数据计算方法。通过一系列试验,并结合现行抛光经验,提出了一套适合小家电自动化机械抛光的粗抛、半精抛、精抛的工艺流程。
     第四、在保证工件抛光质量的前提下,尽可能提高加工效率,对自动化机械抛光工艺参数进行优化实验研究。用正交试验的方法,分别以材料去除率和表面粗糙度值为目标,得到了在给定实验条件下的最优工艺参数组合。实验表明工件表面材料去除率与法向抛光压力、磨具切线速度、工件圆周线速度和工件进给速度成正比,表面粗糙度与法向抛光压力、工件圆周线速度和进给速度成正比,与磨具切线速度成反比。
     第五、基于以上的研究,利用选取的最佳工艺参数组合,在多工位多磨具机械抛光机床上对电热水壶进行批量抛磨实验,实验表明,抛光后的工件表面抛光质量均匀,粗糙度值较低,达到企业质量要求,生产过程环保无污染,加工效率较手工提高3倍,证实了多工位多磨具自动化机械抛光方法的正确性和优越性。
Stainless steel thin-wall household appliances are widely used in our daily life, like electric kettle, dripolator, electric food warmer, and service plate, etc., which have a broad market prospect. Polishing is the most important procedure when processing the appliances. It's necessary for the surface material to be removed evenly with low roughness level, workpieces of stainless steel thin-wall materials are tend to burn, to transform, and hard to clamp during polishing. It's not easy for the material to be polished. So far, automatic polishing technique for home appliances of stainless steel thin-wall materials are lack of further study in the research institutes in China, and more over, there are some limitations in the few present equipments, which are not available for the wide use of home appliance polishing industry. At present, manual polishing is still mainly applied in home industry, which not only results in such problems as poor quality, low efficiency,.serious pollution and being short of hands, but also severely restricts the development of such industry.
     Among stainless steel household appliances, electric kettle is typical for its relatively complex shape. So, this thesis mainly focuses on electric kettle polishing:in connection with the real productive background of the electric kettle of stainless steel, and in frference to the lack of equipment, this thesis studies a set of high-efficient automatic mechanic polishing technique fit for stainless steel electric kettle polishing as well as develops a corresponding mechanical polishing machine tool and automatic control system. This research is important for improving the present manual method which is widely used in our electric kettle polishing and the same type of other household appliances industry.
     Firstly, for stainless steel parts, setting up a theoretical module of surface material removal rate and a module of surface roughness of workpiece supplies a theory basis for automatic mechanical polishing technique.(1). applying theories of elastic mechanics and abrasive grinding in setting up a module of surface material removal rate proclaims, from the microscopic point of view, the relation between abrasive particles with its related process parameters and material removal rate. The models show, material removal rate is in proportion to mold rotating tangential velocity, workpiece peripheral velocity, feeding speed of workpiece as well as normal polishing pressure parameters, and has non linear relation with die granule size and its structure.(2) the setting up of the module of the relation between surface roughness of workpiece and polishing process parameters, based on the method of regression analysis and orthogonal test, proclaims that the roughness of the work surface grows with the increase of polishing pressure, workpiece peripheral velocity as well as feeding speed, and reduces with the increase of the mold rotating tangential velocity. Applying the method of mathematical simulation and experimental validation to the study and analysis, we can see the fine consistency between simulation and experiment, which proves that the two methods of setting up modules are correct, and which has a directive significance in making rational planning for automatic mechanical polishing technique.
     Secondly, to meet the demand for highly efficient polishing, this study suggests a kind of automatic mechanical polishing technique for multi-position and multi-abrasive tools, which can respectively polish both external surface and internal surface of the workpiece. The key technique includes structure designs for polishing machine tools of multi-position and multi-abrasive tools, designs for multi-station shapes synchronizing controls, and designs for workholders. And based on this technique, a corresponding automatic control system for mechanical polishing machine tools of multi-position and multi-abrasive tools is designed. According to the fact that real productive process needs the self-adapting of the abrasive tool to the forms of workpiece, a method based on lead-through teaching for the data generation of polishing tool positions is proposed to be used in the automatic polishing system.
     Thirdly, in the connection with the existing polishing technique, it proposes a set of methods fit for the automatic mechanical polishing technique for stainless household appliances. By making respective programs according to the characteristics of the surface shapes of household alliances, it has designed an automatic mechanical polishing plan, which adopts spiral polishing tool-path as the path of the polishing tools, and it also has studied the tool path data computing methods. Through a series of experiments and with the help of the existing polishing experience, it provides a set of process fit for the technique of rough polish, half-finishing polish, and finishing polish in automatic mechanical polishing of household appliances.
     Fourthly, under the premise of the polishing quality being ensured, it tries hard to raise the working efficiency so as to optimize the experiment research on the automatic mechanical polishing technique parameter. By using the orthogonal experiment method, and taking material removal rate and surface roughness value respectively as the aim, the best combination of process parameters has been received under the given test condition. Experiment shows that workpiece surface material removal rate is in proportion to normal polishing pressure, mold tangent speed, workpiece peripheral velocity and feeding speed of workpiece; while, though the surface roughness is in proportion to normal polishing pressure, mold tangent speed and feeding speed of workpiece, it is inversely proportional to mold tangent speed.
     Fifthly, according to the research above, the batch experiment, by making good use of the best combinations of process parameters, is made on polishing electronic kettle on the mechanical polishing machine tool with multi-position and multi-abrasive tools, which shows that the quality of the polished surface of the workpiece is uniform and the value of the roughness is low, which meets the enterprise quality requirements with no pollution in the productive process and with the working efficiency being3times as high as the one of manual polishing, and proves the validity and superiority of the method of automatic mechanical polishing with multi-stations and multi-abrasive tools.
引文
[1]李伯民,赵波.现代磨削技术[M].北京:机械工业出版社,2003,385-386
    [2]陈剑飞.磨削加工学[M].河南:科学技术出版社,1994,6-7
    [3]王维朗,潘复生,陈延君,黄云,许春霞.不锈钢材料砂带磨削试验[J].重庆大学学报(自然科学版),2006,29(10):91-95
    [4]黄旭辉.不锈钢的磨削加工[J],机械工程师,1999,3:43-44
    [5]吕戊辰.表面加工技术[M].辽宁:科学技术出版社,1984,35-40
    [6]朱怀义,赵中奎.微细加工技术[M].北京:科学出版社,1983,105-107
    [7]董梅粤.现代加工方法[M].北京:国防工业出版社,1987,23-30
    [8]高兴军,赵恒华精密和超精密磨削机理及磨削砂轮选择的研究[J].机械制造,2004,42(483):43-44
    [9]冯宝富,赵恒华,蔡光起,金滩.高速单颗磨粒磨削机理的研究[J].东北大学(自然科学版),2002,23(5):470-473
    [10]李宝膺,华丽,石占先.不锈钢抛光工艺与磨具选择[J].金刚石与磨料磨具工程,2007,160(4):72-74
    [11]F.T法拉戈著,李长林译.美国磨削技术[M].北京:机械工业出版社,1990,87-88
    [12]赵兴科,王中,郑玉峰,赵连城.抛光技术的现状[J].表而技术,2000,29(2):6-7
    [13]Guvenc,L and Srinivasan,K.An overview of robot-assisted die and mold polishing with emphasis on process modeling. Manufacturing Systems,1997,16(1):49-59
    [14]张成光,缪娟,刘传绍,张成红.超声振动研磨加工模型理论研究[J].煤矿机械,2007,28(2):96-97
    [15]Roswell,A., Xi,F and Liu,G..Modeling and analysis of contact stress for automated polishing. Machine Tools & Manufacture,2006,46:424-435
    [16]姚彤.不锈钢的抛光[J].情报指挥控制系统与仿真技术,1998,8:62-65
    [17]张述林1Cr18Ni9Ti不锈钢彩色化的研究[J].四川轻化工学院学报,2000,13(2):56-59
    [18]张述林,王晓波,陈世波.不锈钢抛光[J].Electroplating & Pollution Control,2006,26(3):34-35
    [19]郭贤烙,易翔.不锈钢电化学抛光技术研究[J].电镀与涂饰,2001,20(5):11-13
    [20]杨建桥,霍苗.不锈钢杯内壁的电化学抛光[J].电镀与涂饰,2009,31(5):24-29
    [21]唐昌松,徐恳.电解抛光在不锈钢表面处理中的工程应用[J].机械制造,2008,46(531):57-58
    [22]杨世春,汪鸣铮,张银喜.表面质量与光整技术.北京:机械工业出版社,2000:34-110
    [23]谢国如.砂带磨削及其应用研究[J].精密制造与自动化,2004,4:14-16
    [24]龚正.砂带磨削的机理及砂带磨损的探讨[J].上海第二工业大学学报,1991,1:25-31
    [25]周鹏,砂带磨削参数采集实验装置的研制[硕士学位论文]重庆,重庆大学,2003
    [26]李虹,丁爱玲,李伯民.砂带磨削技术的应用与发展[J].华北工学院学报,1999,2(4):330-333
    [27]方强.砂带磨削技术的发展及其关键技术[J].广西工学院学报,1997,8(4):63-67
    [28]黄云,杨春强,黄智.304不锈钢砂带磨削试验研究[J].中国机械工程,2011,22(3):291-294
    [29]S. Mezghani, M. El Mansori, E. Sura, Wear mechanism maps for the belt finishing of steel and cast iron. Wear,2009,267(1-4):86-91
    [30]M. Bigerelle, A. Gautier, B. Hagege, et al. Roughness characteristic length scales of belt finished surface. Journal of Materials Processing Technology,2009,209(20): 6103-6116
    [31]蔡光起,赵恒华,高兴军.高速高效磨削加工及其关键技术[J].机械制造技术与机床,2004,11:42-45
    [32]陈廉清,俞利锋.砂带磨削及其机床设计[J].机床与液压,1999,3:60-61
    [33]黄云,黄智.现代砂带磨削技术及工程应用[M].重庆:重庆大学出版社,2009,304-315
    [34]毕波.铝合金材料砂带磨削机理的试验研究[硕士学位论文],沈阳东北大学,2009
    [35]刘星.铝合金轮毂局部难加工表面砂带抛磨方法研究[硕士学位论文],武汉华中科技大学,2009
    [36]黄云,黄智.砂带磨削的发展及关键技术[J].中国机械工程,2007.18(18):2263-2267
    [37]Yanagi K,Tsukacla Y,Yamada R.Surface topography assessment of high-precision coated abrasive tape and estimation of its maching performance[J].Annals of the CIRP,1992,41(1):112-119
    [38]朱派龙.国内外砂带磨削新进展[J].机械工艺师,1993,(6):36-44
    [39][美]Gagliardi J J, Duwell E J.Coated Abrasive-currenl Products and Uses 27th [M].AES.1989.74-79
    [40]薛小飞.汽轮机叶片材料砂带磨削的相关研究[硕士学位论文],沈阳,东北大学,2008
    [41]刘星.铝合金轮毂局部难加工表面砂带抛磨方法研究[硕士学位论文],武汉,华中科技大学,2009
    [42]罗重常.接触板式平而砂带磨削温度的试验研究[J].磨料、磨具与磨削,1992,(1):67
    [43]崔一辉,负超,李成群,王媛媛,孙云权.基于复杂曲面加工的机器人砂带磨削系统的设计及其试验分析[J].中国机械工程,2009,20(10):1144-1154
    [44]Nagata F Wutunube K, Fujirnoto Y,et al.3DMaching and Finishing Svsterm for New Designed Furniture [C] Proceedings of the 2002 Japan-USA Symposium on Flexible Autornution. Hiroshima,2002:1239-1245.
    [45]Wilhelmus A.C, M. Messelink, Reto Waeger. Prepolishing and finishing of optical surfaces using fluid Jet polishing [J]. Proceedings of SPIE, Optical Manufacturing andTestingVI,2005,5869:709-712
    [46]Charlton P, Blunt L. Surface and form metrology of polished "freeform" biological surfaces[J]. Wear.2008,264(5-6):394-399.
    [47]新材料与新工艺,军民两用技术与产品[M],2007,(4):23
    [48]王桂莲.微小研抛机器人加工大型曲面工艺规划技术[博士学位论文].长春,吉林大学,2010
    [49]何洋.基于刚性散体的抛光头柔度控制与抛光技术研究[硕士学位论文].杭州,浙江工业大学,2008.
    [50]贾平平.螺旋复杂曲面数控抛光技术的研究[硕士学位论文].沈阳,沈阳工业大学,2008
    [51]舒锐,胡忠辉,周彦平.一种新型非球面数控抛光方法的研究[J].光学技术,2005,31(3):398-404
    [52]陈义.铝合金汽车轮毂曲面数字化抛光方法研究[硕士学位论文].武汉,华中科技大学,2005
    [53]Markus Schinhaerl, Gordon Smith, Richard Stamp. Mathmatical modeling of influence functions in computer-controlled polishing:Part 1 [J]. Applied Mathematical Modelling, 32 (2008):2888-2906.
    [54]Markus Schinhaerl, Rolf Rascher, Richard Stamp. Filter algorithm for influence functions in the computer controlled polishing of high-quality optical lenses [J]. International Journal of Machine Tools&Manufacture,47 (2007):107-111
    [55]张国斌,多自由度抛光系统柔性抛光头姿态控制策略研究[硕士学位论文].杭州,浙江工业大学,2009
    [56]Cai G Q, Iu Y S, Cai R, etnA. Analysis on lapping and polishing pressuredistribution[J]. Annals of the CIRP.1998,47(1):235-238.
    [57]Wang Y, Zhao Y. Modeling the effects of oxidizer, complexing agent and inhibitor on material removal for copper chemical mechanical polishing [J]. Applied Surface Science.2007,254(5):1517-1523.
    [58]Tam H Y, Cheng H B, Wang Y W. Removal rate and surface roughness in the lapping and polishing of RB-SiC optical components[J]. Journal of Materials Processing Technology.2007,192-193:276-280.
    [59]Wang Y, Zhao Y, An W, et al. Modeling the effects of cohesive energy for single particle on the material removal in chemical mechanical polishing at atomic scale[J]. Applied Surface Science.2007,253(23):9137-9141.
    [60]Ng D, Kulkarni M, Johnson J, et al. Oxidation and removal mechanisms during chemical-mechanical planarization[J]. Wear.2007,263(7-12):1477-1483.
    [61]Preston F W. The theory and design of plate glass polishing machines [J]. Journal of the Society of Glass Technology,1997,11:214-256.
    [62]王健.大口径高精度光学元件数控抛光技术研究[硕士学位论文].成都,四川大学,2004
    [63]彭小强,戴一帆,李圣怡.磁流变抛光的材料去除数学模型[J].机械工程学报,2004,40(4):67-70
    [64]唐宇,戴一帆,彭小强.磁流变抛光工艺参数优化研究[J].中国机械工程,2006,17(82):324-327.
    [65]温思炜.超精密双面抛光机动态仿真及工艺参数优化研究[硕士学位论文].杭州,浙江工业大学,2007
    [66]张峰.磁流变抛光技术的研究[博士学位论文].长春,中国科学院,2000
    [67]D.Fhorne. Optical Production Technology Adam Hilger. London,1972
    [68]F Preston.theory and design of plate glass polishing machines [J]. J Soc Glass Technol, 1927,11:214-256
    [69]张伟,李洪玉,金海.气囊抛光去除函数的数值仿真与试验研究[J],机械工程学报,2009,45(2):308-312
    [70]方慧,郭培基,余景池,等.液体喷射抛光技术材料去除机理的有限元分析[[J].光学精密工程.2006,14(2):218-223.
    [71]申儒林,钟掘.GMK硬盘磁头自由磨粒抛光材料去除机理研究[J].四川大学学报(工程科学版),2007,39(4):103-108.
    [72]王永光,赵永武,吴燕玲等.超精密抛光材料的非连续去除机理[[J].中国机械工程.2007,18(9):1032-1036.
    [73]Yang M Y, Lee H C. Local material removal mechanism considering curvature effect in the polishing process of the small aspherical lens die [J] Journal of Materials Processing Technology,2001,116:298-304.
    [74]张雷,袁楚明,周祖德,陈幼平.模具曲面抛光时表面去除的建模与试验研究[J].机械工程学报,2002,38(12):98-102
    [75]吴昌林,丁和艳,陈义.材料去除深度与磨粒的关系建模方法研究[J]中国机械工程.2011,22(3):300-304
    [76]丁和艳.铝合金车轮CNC机械抛光工艺优化的基础研究[博士学位论文].武汉,华中科技大学,2010.
    [77]陈义.铝轮毂曲面成套机械抛光技术研究[博士学位论文].武汉:华中科技大学,2010.
    [78]Zhao J, Kondo T, Narahara H et al. Study on automatic polishing of mould curved surface at constant pressure intensity [J]. Chinese Journal of Mechanical Engineering, 1994,7(4):296-302.
    [79]Zhao J, Saito K, Kondo T et al. A new method of automatic polishing on curved aluminium alloy surfaces at constant pressure [J]. International Journal of Machine Tools&Manufacture1995,35(12):1683 - 1692.
    [80]朱永伟,何建桥.固结磨料抛光垫作用下的材料去除速率模型[J].金刚石与磨料磨具工程,2006,153(3):38-45
    [81]黄智,基于虚拟仪器的砂带磨削性能参数测试系统的研究[硕士学位论文],重庆,重庆大学,2005.
    [82]李鑫,镁合金产品表面砂带磨削基础技术研究[硕士学位论文],重庆,重庆大学,2008.
    [83]全国磨料磨具标准化技术委员.GB/T 16458.1-1996磨料磨具术语第一部分:磨料术语.北京:中国标准出版社,1996.368-387
    [84]王先逵.精密加工技术使用手册.北京:机械工艺出版社,2001.98-218
    [85]全国磨料磨具标准化技术委员.涂附磨具用磨料粒度分析第1部分:粒度组成.北京:中国标准出版社,2000.94-99
    [86]Zhou X, Xi F. Modeling and predicting surface roughness of the grinding process. International Journal of Machine Tools & Manufacture,2002,42(8):969-977
    [87]全国磨料磨具标准化技术委员.JB/T 8339-96普通磨具组织号的测定方法.北京:中国标准出版社,1996.368-387
    [88]Hou Z B, Komanduri R. On the mechanics of the grinding process-Part I. Stochastic nature of the grinding process [J]. International Journal of Machine Tools and Manufacture,2003,43(15)1579-1593.
    [89]Xi F F, Zhou D. Modeling surface roughness in the stone polishing process [J]. International Journal of Machine Tools&Manufacture,2005,45:365-372.
    [90]Xie Y, Williams J A. The prediction of friction and wear when a soft surface slides against a harder rough surface [J].Wear 1996,196:21-34.
    [91]Cho S S, Ryu Y K, Lee S Y. Curved surface finishing with flexible abrasive tool [J].International Journal of Machine tools&Manufacture 2002,42:229-236.
    [92]Atkins A G, Liu J H. Toughness and the transition between cutting and rubbing in abrasive contactsf [J]. Wear,2007,262:146-159.
    [93]J. P. Urbanski, P. Koshy, R. C. Dewes, et al. High speed machining of moulds and dies for net shape manufacture [J]. Materials & Design,2000,21(4):395-402.
    [94]Peter Zelinski.Cutting Tools For High Speed Milling Of Aluminum [J]. Modern Machine Shop,2006,79(5):88-91
    [95]Yuan-Shin Lee,Yen-Hung Chen,Shu-Cherng Fang. Optimal Cutter Selection and Machining Plane Determination for NC Machining of Complex Surfaces [J]. HE Annual Conference. Proceedings,2003,1-8
    [96]G Thimm, G A Britton, K Whybrew, S C Fok. Optimal process plans for manufacturing and tolerance charting[J]. Proceedings of the Institution of Mechanical Engineers, 2001,215(8):1099-1106
    [97]Dusan N. Sormaz, Behrokh Khoshnevis.Generation of alternative process plans in integrated manufacturing systems [J]. Journal of Intelligent Manufacturing,2003,14(6): 509
    [98]Jungyub Woo, Hyunbo Cho, Boonserm (Serm) Kulvatunyou. Evolution and Evaluation of Process Plans through Collaboration for Distributed Manufacturing [J].HE Annual Conference. Proceedings,2003,1
    [99]多功能组合机床时代[J].汽车工艺与材料,2004,1:43-44
    [100]Ed Miller.Integrating manufacturing process plans[J]. Computer-Aided Engineering, 2000,19(8):50
    [101]E.W. Endsley, E.E. Almeida, D.M. Tilbury. Modular finite state machines:Development and application to reconfigurable manufacturing cell controller generation. Control Engineering Practice,2006,14(10):1127-1142.
    [102]Masahiko Mori, Kazuo Yamazaki, Makoto Fujishima, et al. A Study on Development of an Open Servo System for Intelligent Control of a CNC Machine Tool. CIRP Annals-Manufacturing Technology,2001,50(1):247-250
    [103]Li Bin, Zhou Yun-fei, Tang Xiao-qi. A research on open CNC system based on architecture/component software reuse technology. Computers in Industry,2004,55(1): 73-85
    [104]D.Yu, YHu, X.W. Xu, et al. An Open CNC System Based on Component Technology. Automation Science and Engineering, IEEE Transactions on,2009,6(2):302-310
    [105]Xiong-bo MA, Zhen-yu HAN, Yong-zhang WANG, et al. Development of a PC-based Open Architecture Software-CNC System. Chinese Journal of Aeronautics,2007,20(3): 272-281
    [106]Yongzhang Wang, Xiongbo Ma, Liangji Chen, et al. Realization Methodology of a 5-axis Spline Interpolator in an Open CNC System. Chinese Journal of Aeronautics, 2007,20(4):362-369
    [107]M. Minhat, V. Vyatkin, X. Xu, et al. A novel open CNC architecture based on STEP-NC data model and IEC 61499 function blocks. Robotics and Computer-Integrated Manufacturing,2009,25(3):560-569
    [108]CHEN Yi, WU Chang-lin. Development of an automatic polishing system for aluminum wheel hub surface. Journal of Chongqing University-English Edition (JCQU-E)
    [109]王哲.面向并联机床的复杂曲面数控加工编程技术的研究[博士学位论文],哈尔滨:哈尔滨工业大学,2000
    [110]李世杰,川少华.数控铣削中刀具路径的拓扑分析[J].河北工业大学学报,1998,27(3):70-74
    [111]李世杰,孙立新,郭兰中.数控铣削中曲面加工的粗糙度预测[J].机械设计与制造工程,2000,29(4):35-37
    [112]林洁琼.自由曲面分片研抛与轨迹规划的研究[博士学位论文],长春:吉林大学,2005
    [113]张国斌.多自由度抛光系统柔性抛光头姿态控制策略研究:[硕士学位论文].杭州:浙江工业大学,2009
    [114]Christina R Bramlet.Edit The Tool Path Before Cutting[J]. Modern Machine Shop,2006,78(10):139-140
    [115]Christy R Bramlet.Creating Models And Tool Paths For CNC Machining[J]. Modern Machine Shop,2005,78(6):132-134
    [116]张克华,丁金福,虞付进.模具曲面抛光轨迹生成及仿真[J].制造技术与机床,2007,10:134-137
    [117]D Gao, S To, W B Lee. Tool path generation for machining of optical freeform surfaces by an ultra-precision multiaxis machine tool[J]. Proceedings of the Institution of Mechanical Engineers,2006,220(12):2021 -2017
    [118]Zezhong Chen, Dejun Song. A Practical Approach to Generating Accurate Iso-Cusped Tool Paths for Three-Axis CNC Milling of Sculptured Surface Parts[J]. Manufacturing Processes,2006,8(1):29-39
    [119]Tonshoff H.K., Friemuth T, Urban B. Automated Gringding of dies and Mlkds. Kisadasi Turkey. Proceedings of The 2nd International Conference on Design and Producing of Dies and Molds.2001:175-179
    [120]彭小强,戴一帆,李圣怡.磁流变抛光工艺参数的正交实验分析[J].光学技术.2006,32(6):886-892.
    [121]唐宇,戴一帆,彭小强.磁流变抛光工艺参数优化研究[J].中国机械工程.2006,17:324-327.
    [122]宋剑锋,姚英学,谢大纲,高波.气囊抛光工艺参数的正交实验分析[J].光学技术,2009,35(2):315-318.
    [123]李中会.磁流变抛光工艺优化及关键技术研究与应用[硕士学位论文].上海,东华大学,2010
    [124]宋剑锋.曲面光学零件气囊抛光工艺参数优化及其相关技术研究[博士学位论文].哈尔滨,哈尔滨工业大学,2009.
    [125]Ren Luquan.Test optimization technique[M].Beijing:Mechanic industry Press,1992.
    [126]Marchenko Tikhon, Tae Jo Ko, Seung Hyun Lee, et al. NURBS interpolator for constant material removal rate in open NC machine tools. International Journal of Machine Tools and Manufacture,2004,44(2-3):237-245

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700