用户名: 密码: 验证码:
A-B二元系纳米管填充和掺杂改性的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米管具有较大的比表面积,很多物理和化学过程比如表面扩散、吸附、氧化、催化、腐蚀等等的发生都与表面有关。通过在纳米管的内外表面上掺杂吸附来修饰改性,可以大大扩展纳米管的应用范围。本文采用第一性原理方法,重点研究了过渡金属填充、吸附和替代掺杂A-B二元系纳米管的几何结构、电、磁、光学性质,主要得到以下重要的结论:
     (1)对于BCC结构Fe纳米线填充扶手椅型(8,8)A-B二元系纳米管(用Fen@(8,8)AB表示),当内部纳米线与外部纳米管之间的相互作用以物理方式(库仑力)为主要作用机制时,无论是纳米线还是纳米管均保持与它们初始相似的形貌特征;当内部纳米线与外部纳米管之间的相互作用以化学方式(杂化成键)为主要作用机制时,整个纳米缆结构将会发生较严重的结构扭曲,因而限制了复合体系某些方面的优越性质。结合能计算结果表明,我们所讨论的Fen@(8,8)AB纳米缆结构的形成过程均是放热的,而且,在以库仑相互作用为主的纳米缆结构中,Fe。纳米线的稳定性有所增强。关注Fe5@(8,8)AB系统的导电能力时发现,GeC纳米管和BN纳米管包裹Fe5纳米线后,纳米缆结构的导电能力相比于Fe5自由纳米线不变或有所增强,而SiN纳米管包裹Fe5纳米线使得复合结构的导电能力有所下降。不仅如此,在Fe5@(8,8)AB纳米缆结构(尤其Fe5@(8,8)GeC和Fe5@(8,8)BN)中,电子在费米能级处还保持了相对较高的自旋极化。因而,复合系统不仅能够应用在纳米微电子电路连接方面,还可能会在电子自旋注入方面得到较好的应用,从而实现了材料的多功能化。
     (2)对于HCP结构Fe纳米线填充锯齿型BN纳米管和C纳米管(分别用Fen@(m,0)BN和Fe@(n,0)C表示)而言,形成能计算结果建议Fe@(m,0)BN(8≤m≤15)系统中只有Fe@(8,0)BN系统的形成过程是吸热过程,其他系统都是放热的。而Fe@(n,0)C(8≤n≤14系统中也是只有Fe@(8,0)C系统的形成过程是吸热过程。最稳定的Fe@(13,0)BN系统的形成能小于最稳定的Fe@(12,0)C系统的形成能,说明BN纳米管在包裹保护HCP结构铁磁金属纳米线方面可能比C纳米管的包裹更加稳定。考查系统电子自旋极化发现,所有Fe@(n,0)C系统的自旋极化都非常高,而Fe@(m,0)BN系统中除Fe@(8,0)BN系统之外其他系统也均保持了高的自旋极化。因此,这样的纳米缆结构可以被应用在自旋电子学的某些方面,如电子自旋注入和自旋输运等。磁性分析表明,相比于C纳米管,BN纳米管在屏蔽其内部金属纳米线的磁矩方面具有潜在的优势。更重要的是,低维Fe纳米线在化学性质稳定的C纳米管或BN纳米管保护下可以防止被氧化和退磁,进而能够在常规环境下稳定存在较长的时间。
     (3)对于3d过渡金属原子吸附BN纳米管而言,不同的吸附原子最稳定的吸附位置是不同的。结合能计算结果显示,3d轨道未满的金属V、Cr和Mn原子能够强有力地吸附在扶手椅型(8,0)BN纳米管上(Eb>4.OeV);Sc、Ti、Co和Ni原子能够以化学方式吸附(1.OeV     (4)对于过渡金属原子M(M=V,Cr,Mn和Fe)替代掺杂BN纳米管,B19VN20和B19MnN20系统表现出半金属性特征。与Cr原子吸附BN纳米管相似,B19CrN20系统同样呈现出半导体和磁性双重特性,并且对于低浓度Cr替代掺杂BN纳米管,这种双重特性可能不依赖于或很少依赖于BN纳米管的手征性。光学介电函数的分析结果表明,M原子掺杂BN纳米管后虚部ε"(ω)出现明显的红移现象,导致了光吸收范围有所扩大。尤其是,B19CrN20系统在约0.3eV(红外区域)处显示了一个新的主吸收峰,意味着BN纳米管在外来Cr原子的调制作用下对红外光的吸收大大增强,因而B19CrN20系统在红外技术相关领域(如红外探测器、红外微波发射器等)可能具有潜在的应用。
     (5)受曲率的影响,完整的、Cd替代掺杂的和O缺失的ZnO纳米管的禁带带宽小于相同情况下类石墨烯结构ZnO单层的禁带带宽。对于ZnO单层和ZnO纳米管两种结构,Cd替代掺杂情况下的禁带带宽小于理想情况下的禁带带宽,相反地,O空位情况下的禁带带宽大于理想情况下的禁带带宽。特别地,Zn空位的出现为ZnO单层和ZnO纳米管引入了磁性。ZnO单层卷曲成纳米管结构后,曲率诱导的导带向费米能级的漂移使得光学吸收边红移,引起了理想和缺陷情况下ZnO纳米管结构对可见光的吸收。同时,电子在r点从价带顶激发到邻近导带上所需的光子能量减小(波长增大),相应的吸收峰向可见光区移动。不同于Cd替代掺杂和Zn空位,O空位的存在使得r处的电子可能更容易从价带顶激发到附近的导带上。这便导致在O空位情况下ZnO纳米管对可见光的吸收变得更强。我们所获得的结果对于改进太阳能辐射吸收新型材料的设计来说是一个有益的启发,为其提供了一个新思路。
     (6)对于提议的LiF纳米管状结构,虽然计算的平均原子结合能稍微小于体相结构LiF的结合能,但是较大的结合能仍然意味着LiF纳米管状结构存在的可能性。能带结构分析表明,锯齿型和扶手椅型LiF纳米管都具有绝缘特性,因此宽带隙的锯齿型和扶手椅型LiF纳米管可能在纳米光学及材料存储等方面有潜在的应用。当过渡金属M (M=V, Cr, Mn和Fe)原子吸附掺杂(8,0)LiF纳米管时,无论M原子在哪个初始吸附位置,优化后过渡金属原子几乎都位于其最近的F原子的顶位。特别是V原子、Cr原子和Mn原子吸附掺杂(8,0)LiF纳米管后,优化后的吸附系统均表现出半金属特征,因而有望应用在准一维自旋相关输运电子器件方面。
Nanomaterials like nanotubes have the larger specific surface area, a lot of physical and chemical processes, such as surface diffusion, adsorption, oxidation, catalysis, corrosion and so on, are related to the surface. The modifications of doping on Inside and outside surface of the nanotubes can effectively expand their applications. In this study, Therefore, Using first-principles method, we pay special attention on the geometry structure, electronic, magnetic and optical properties of the transition metal filled, adsorbed and substitution doped A-B binary nanotubes. The important conclusions are shown as follows:
     (1) The structural, electronic and magnetic properties of single-wall (8,8) GeC, BN and SiN nanotubes filled with bcc Fen nanowires (n=5,9, and13)(denoted as Fen@(8,8)AB) have been investigated systematically using the first-principles PAW method. We find that the initial shapes of both wires and tubes are retained in the composite systems where the coulomb interaction is dominated between Fe nanowires and outer nanotubes, while those are badly distorted in the composite systems where the chemical bonding is dominated between Fe nanowires and outer nanotubes. The calculated binding energy of the Fen@(8,8)AB systems show that the forming progress of the considered composite is exothermic. Furthermore, the stability of the Fen nanowires is enhanced in the composite systems where the coulomb interaction is dominated between Fe nanowires and outer nanotubes. Concerning the conductivity of Fe5@(8,8)AB, compared with the corresponding free-standing Fe5nanowires, both Fe5@(8,8)GeC and Fes@(8,8)BN systems hold the same or higher conductivity, and Fe5@(8,8)SiN system holds lower conductivity. Additionally, the higher spin polarization at Fermi energy for the Fes@(8,8)AB composite systems is preserved, especially for the Fes@(8,8)GeC and Fes@(8,8)BN. Therefore, these composite systems can be used in the applications for the nanometer microelectronics circuit connection and spin injection, and thus the multi-functional materials occur.
     (2) The structural, electronic and magnetic properties of HCP Fe nanowire filled in (m,0) BN and (n,0) C nanotubes have been investigated using the first-principles PAW method. Among Fe@(m,0)BN (8≤m≤15) systems, only the Fe@(8,0)BN system is formed endothermically, the other larger systems are formed exothermically, while among Fe@(n,0)C (8≤n≤14) systems, only the Fe@(8,0)C system is also formed endothermically. Furthermore, the formation energy of the most stable Fe@(13,0)BN is smaller than that of the most stable Fe@(12,0)C, indicating BN nanotubes may be more appropriate to protect HCP ferromagnetic nanowires compared with C nanotubes. It is found that the all composite systems hold high spin polarization at Fermi energy with the exception of the Fe@(8,0)BN system. Hence, such nanocables have potential application in the spin inject and spin transport. The magnetic analysis shows that the BN nanotubes have potential advantage in shielding the magnetic moment of the inner metal nanowires. More important, the BN and C nanotubes can be protected Fe nanowires from oxidation and demagnetization, and thus these nanowires could be existed in the conventional environment for long time.
     (3) Adsorption configurations for ten kinds of3d transition metal M atoms adsorbed on the zigzag (8,0) BN nanotube at five different initial sites have been investigated using the first-principles PAW potential. The most stable adsorption sites are different for different M atoms. Partially filled3d metals V, Cr and Mn can bind strongly with zigzag (8,0) BN nanotube (Eb>4.0eV), and Sc, Ti, Co and Ni can be chemically adsorbed on the (8,0) BN nanotube (1.0eV     (4) The electronic structure, magnetic and optical properties of3d transition metal M (M=V, Cr, Mn and Fe) doped (5,5) boron nitride nanotube (B19MN20) are investigated by using the first-principles PAW potential. It is found that B19VN20and B19MnN20systems have half-metallic character. Similar to Cr-adsorbed (8,0) BN nanotube, the B19CrN20system also possess magnetic and semiconducting character that may be undependent or less dependent on the chirality of the BN nanotubes for low concentration Cr substitutional doped BN nanotubes. The analyses of optical dielectric functions show that in the ε"(ω) spectrum, the absorption edge of the pristine (5,5) BNNT is shifted towards the low energy after introducing M impurities, i.e., there is a significant redshifted phenomenon, and hence the light absorption range is increased. Remarkably, the ε"(ω) spectrum of B19CrN20system exhibits a new main peak at about0.3eV (infrared region), implying the absorption of infrared light is strongly enhanced, and thus may be utilized in the fields that are associated with the infrared technology, such as infrared detector, infrared maser and so on.
     (5) Attributing to the influence of curvature, the band gaps of the defect-free, Cd substitutional and O deficient ZnO nanotubes are decreased, as compared with the corresponding sheets. Moreover, for both ZnO sheets and ZnO nanotubes, the band gap of the substitutional Cd case is smaller than that of the defect-free case, by contraries, O vacancy case is larger. In particular, the Zn vacancy could introduce magnetism in both ZnO sheet and ZnO nanotubes. Curvature-induced drifting of the conduction bands towards the Femi level allows the red-shift of absorption edge, resulting in the absorption in visible region for both perfect and defective ZnO nanotubes. Meanwhile, the required energy is decreased when the electrons at valence-band maximum are excited to the adjacent conduction band at Γ-point, and the corresponding absorption peak shifts towards visible region. Different from the ZnO nanotubes with Cd impurity and Zn vacancy, at Γ-point the electronic excitation from valence-band maximum to adjacent conduction band may become easier in the case of O vacancy. This contributes strongly to the optical absorption in visible region. The results we obtain may be an inspiration for the design of new generation of materials with improved solar radiation absorption.
     (6) A systematic density functional theoretical study of the suggested single walled LiF nanotubes in armchair (n,n) and zigzag (n,0)(2
引文
[1]施利毅.纳米材料[M],上海:华东理工大学出版社,2007:1-3
    [2]R Harrington. EU hails ground-breaking nano definition [N/OL]. http://www.foodproductiondaily.com/Quality-Safety/EU-hails-ground-breaking-nano-definitio n?utm_source=copyright&utm_medium=OnSite&utm_campaign=copyright,2011-10-19.
    [3]马洪磊,薛成山.纳米半导体[M],北京:国防工业出版社,2009:3-8
    [4]张立德,牟季美.纳米材料和纳米结构[M],北京:科学出版社,2001:27-48.
    [5]郭子政,时东陆.纳米材料和器件导论[M],北京:清华大学出版社,2010:7-14.
    [6]S.Iijima. Helical Microtubules of graphitic carbon [J]. Nature (London),1991,354:56-58.
    [7]A. Rubio, J. L. Corkill, M. L. Cohen. Theory of graphitic boron nitride nanotubes [J]. Phys. Rev. B,1994,49(7):5081-5084.
    [8]X. Blase, A. Rubio, S. G. Louie, M. L.Cohen. Stability and band gap constancy of boron nitride nanotubes [J]. Euro. phys. Lett.,1994,28(5):335-340.
    [9]N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl. Boron Nitride Nanotubes [J]. Science,1995,269(5226):966-967.
    [10]A. Loiseau, F. Willaime, N. Demoncy, G. Hug, H. Pascard. Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge [J]. Phys. Rev. Lett.,1996,76(25): 4737-4740.
    [11]M. Terrones, W. K. Hsu, H. Terrones, J. P. Zhang, S. Ramos, J. P. Hare, R. Castillo, K. Prassides, A. K. Cheetham, H. W. Kroto, D. R. M. Walton. Metal particle catalysed production of nanoscale BN structures [J]. Chem. Phys. Lett.,1996,259(5-6):568-573.
    [12]D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, H. Yusa. Nanotubes in Boron Nitride Laser Heated at High Pressure [J]. Appl. Phys.Lett.,1996,69(14):2045-2047.
    [13]D. P. Yu, X. S. Sun, C. S. Lee, I. Bello, S. T. Lee, H. D. Gul, K. M. Leung, G. W. Zhou, Z. F. Dong, Z. Zhang. Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature [J]. Appl. Phys. Lett.,1998,72 (16):1966-1968.
    [14]O. R. Lourie, C. R. Jones, B. M. Bartlett, P. C. Gibbons, R. S. Ruoff, W. E. Buhro. CVD growth of boron nitride nanotubes [J]. Chem. Mater.,2000,12(7):1808-1810.
    [15]L. Li, C. P. Li, Y. Chen. Synthesis of boron nitride nanotubes, bamboos and nanowires [J]. Physica E,2008,40(7):2513-2516.
    [16]H. J. Xiang, J. L. Yang, J. G Hou, Q. S. Zhu, First-principles study of small-radius single-walled BN nanotubes [J]. Phys. Rev. B,2003,68(3):035427-5.
    [17]J. F. Jia, H. S. Wu, H. J. Jiao. The structure and electronic property of BN nanotube [J]. Physica B,2006,381(1-2):90-95.
    [18]V. Verma, V. K. Jindal, K. Dharamvir. Elastic moduli of a boron nitride nanotube [J]. Nanotechnology,2007,18(43):435711-6.
    [19]武海顺,贾建峰.氮化硼纳米管的研究进展[J].化学进展,2004,16(1):6-14.
    [20]Y. Li, G. W. Meng, L. Phillipp. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties [J]. Appl. Phys. Lett.,2000,76(15):2011-2013.
    [21]X. H. Zhang, S. Y. Xie, Z. Y. Jiang, X. Zhang, Z. Q. Tian, Z. X. Xie, R. B. Huang, L. S. Zheng. Rational design and fabrication of ZnO nanotubes from nanowire templates in microwave plasma system [J]. J. Phys. Chem. B,2003,107(37):10114-10118.
    [22]B. I. Seo, U. A Shaislamov, M. H. Ha, S.-W. Kim, H.-K. Kim, B. Yang. ZnO nanotubes by template wetting process [J]. Physica E,2007,37(1-2):241-244.
    [23]L. E. Green, M. Law, P. Yang. Low-temperture wafer-scale production of ZnO nanowire arrays [J]. Angew. Chem. Int. Ed.,2003,42(26):3031-3034.
    [24]Y. Sun, D. J. Riley, M. N. R. Ashfold. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates [J]. J. Phys. Chem. B,2006,110(31):15186-15192.
    [25]宫丽红,叶彩,安茂忠.低温溶液法合成一维ZnO纳米管[J].合成化学,2010,18(4):503-506.
    [26]Z. L. Wang, X. Y. Kong, J. M. Zuo. Induced growth of asymmetric nanocantilever arrays on polar surfaces [J]. Phys. Rev. Lett.,2003,91(18):185502-4.
    [27]B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, H. Koinuma. Formation of highly aligned ZnO tubes on sapphire (0001) substrates [J]. Appl. Phys. Lett.,2004,84(20):4098-4100.
    [28]L. Li, S. S. Pan, X. C. Dou. Direct Electrodeposition of ZnO Nanotube Arrays in Anodic Alumina Membranes [J]. J. Phys. Chem. C,2007,111 (20):7288-7291.
    [29]Y. J. Xing, Z. H. Xi, Z. Q. Xue. X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, D. P. Yu. Optical properties of the ZnO nanotubes synthesized via vapor phase growth [J]. Appl. Phys. Lett.,2003,83(9):1689-1691.
    [30]Y. H. Tong, Y. C. Liu, C.L. Shao, Y. X. Liu, C. S. Xu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, X. W. Fan. Growth and optical properties of faceted hexagonal ZnO nanotubes [J]. J. Phys. Chem. B, 2006,110(30):14714-14718.
    [31]S. Erkoc, H. Kokten. Structural and electronic properties of single-wall ZnO nanotubes [J]. Physica E,2005,28(2):162-170.
    [32]X. Shen, P. B. Allen, J. T. Muckerman, J. W. Davenport, J. C. Zheng. Wire versus tube: Stability of small one-dimensional ZnO nanostructures [J]. Nano. Lett.,2007,7(8): 2267-2271.
    [33]H. Xu, R. Q. Zhang, X. H. Zhang, A. L. Rosa, Th. Frauenheim. Structural and electronic properties of ZnO nanotubes from density functional calculations [J]. Nanotechnology,2007, 18(48):485713-6.
    [34]B. L. Wang, S. Nagase, J. J. Zhao, G. H. Wang. The stability and electronic structure of single-walled ZnO nanotubes by density functional theory [J]. Nanotechnology,2007,18(34): 345706-6.
    [35]J. Hu, X. W. Liu, B. C. Pan. A study of the size-dependent elastic properties of ZnO nanowires and nanotubes [J]. Nanotechnology,2008,19(28):285710-6.
    [36]Z. C. Tu, X. Hu. Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes [J]. Phys. Rev. B,2006,74(3):035434-6.
    [37]G. Seifert, T. Kohler, Z. Hajnal, Thomas Frauenheim Tubular structures of germanium [J]. Solid State Commun.,2001,119(12):653-657.
    [38]T. Taguchi, N. Igawa, H. Yamamoto, S. Jitsukawa. Synthesis of Silicon Carbide Nanotubes [J]. J. Am. Ceram. Soc.,2005,88(2):459-461.
    [39]A. Mavrandonakis, G. E. Froudakis, M. Schnell, M. Muhlhauser. From pure carbon to silicon-carbon nanotubes:an ab-initio study [J]. Nano Lett.,2003,3(11):1481-1484.
    [40]M. Menon, E. Richter, A. Mavrandonakis, G. Froudakis, A. N. Andriotis. Structure and stability of SiC nanotubes [J]. Phys. Rev. B 2004,69(11):115322-4.
    [41]K. M. Alam, A. K. Ray. Hybrid density functional study of armchair SiC nanotubes [J]. Phys. Rev. B,2008,77(3):035436-10.
    [42]K.M. Alam, A.K. Ray. A hybrid density functional study of zigzag SiC nanotubes [J]. Nanotechnology,2007,18(49):495706-10.
    [43]S. J. Rathi, A. K. Ray. On the existence and stability of single walled SiGe nanotubes [J]. Chem. Phys. Lett.,2008,466(1-3):79-83.
    [44]A. Galano, E. Orgaz. Stability and electronic structure of Si, Ge, and Ti substituted single walled carbon nanotubes [J]. Phys. Rev. B,2008,77(4):045111-9.
    [45]S. J. Rathi, A. K. Ray, On the electronic and geometric structures of armchair GeC nanotubes: A hybrid density functional study [J]. Nanotechnology,2008,19(33):335706-11.
    [46]H. L. Chang, C. M. Hsu, C. T. Kuo. Forming silicon carbon nitride crystals and silicon carbon nitride nanotubes by microwave plasma-enhanced chemical vapor deposition [J]. Appl. Phys. Lett.,2002,80(24):4638-4640.
    [47]Y. Fan, Y. S. Wang, J. S. Lou, S. F. Xu, L. G. Zhang, L. An, H. Heinrich. Formation of silicon-doped boron nitride bamboo structures via pyrolysis of a polymeric precursor [J]. J. Am. Ceram. Soc.,2006,89(2):740-742.
    [48]M. S. Si, D. S. Xue. First-principles study of silicon-doped (5,5) BN nanotubes[J]. Europhys. Lett.,2006,76(4):664-669.
    [49]R. X. Wang, R. X. Zhu, D. J. Zhang. Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes [J]. Chem. Phys. Lett.,2008,467(1-3):131-135.
    [50]R. X. Wang, D. J. Zhang. Theoretical study of the adsorption of carbon monoxide on pristine and silicon-doped boron nitride nanotubes [J]. Aust. J Chem.,2009,61(12):941-945.
    [51]G. H. Gao, H. S. Kang. First-principles study of silicon nitride nanotubes [J]. Phys. Rev. B, 2008,78(16):165425-7.
    [52]D. Golberg, Y. Bando, K. Kurashima, T. Sato. Nanotubes of boron nitride filled with molybdenum clusters [J]. J. Nanosci. Nanotechnol.,2001,1(1):49-54.
    [53]D. Golberg, F. F. Xu, Y. Bando, Filling boron nitride nanotubes with metals [J]. Appl. Phys. A-Mater.,2003,76(4):479-485.
    [54]N. Koia, T. Okua, M. Nishijima. Fe nanowire encapsulated in boron nitride nanotubes [J]. Solid State Commun.,2005,136(6):342-345.
    [55]C. C. Tang, Y. Bando, D. Golberg, X. Ding, S. Qi. Boron nitride nanotubes filled with Ni and NiSi2 nanowires in Situ [J], J. Phys. Chem. B,2003,107(27):6539-6543.
    [56]K. P. Loh, M. Lin, M. Yeadon, C. Boothroyd, Z. Hu. Growth of boron nitride nanotubes and iron nanowires from the liquid flow of FeB nanoparticles [J]. Chem. Phys. Lett.,2004, 387(1-3):40-46.
    [57]Z. Zhou, J. J. Zhao, Z. F. Chen, X. P. Gao, J. P. Lu, P. R. Schleyer, C. K. Yang. True nanocable assemblies with insulating BN nanotube sheaths and conducting Cu nanowire cores [J]. J. Phys. Chem. B,2006,110(6):2529-2532.
    [58]H. J. Xiang, J. Yang, J. G. Hou, Q. Zhu. Half-metallic ferromagnetism in transition-metal encapsulated boron nitride nanotubes [J]. New J. Phys.,2005,7(1):39-8.
    [59]C. K. Yang, J. J. Zhao, J. P. Lu. Nanocables made of a transition metal wire and boron nitride sheath:Density functional calculations [J]. Phys. Rev. B,2006,74(23):235445-6.
    [60]X. M. Li, W. Q. Tian, X. R. Huang, C. C. Sun, L. Jiang. Adsorption of hydrogen on novel Pt-doped BN nanotube:A density functional theory study [J]. J. Mol. Struc-Theochem,2009, 901(1-3):103-109.
    [61]X. M. Li, W. Q. Tian, Q. Dong, X. R. Huang, C.-C. Sun, L. Jiang. Substitutional doping of BN nanotube by transition metal:A density functional theory simulation [J]. Computat. Theor. Chem.,2011,964(1-3):199-206.
    [62]K. L. Yao, Y. Min, Z. L. Liu, H. G. Cheng, S. C. Zhu, G. Y. Gao. First-principles study of transport of V doped boron nitride nanotube [J]. Phys. Lett. A,2008,372(34):5609-5613.
    [63]J. Zhang, K. P. Loh, J. W. Zheng, M. B. Sullivan, P. Wu. Adsorption of molecular oxygen on the walls of pristine and carbon-doped (5,5) boron nitride nanotubes:Spin-polarized density functional study [J]. Phys. Rev. B,2007,75(24):245301-6.
    [64]J. B. Wu, W. Y. Zhang. Magnetism in germanium-doped boron-nitride nanotubes [J]. Chem. Phys. Lett.,2008,457(1-3):169-173.
    [65]C. S. Guo, W. J. Fan, R. Q. Zhang. Spin polarization of the injected carriers in C-doped BN nanotubes [J]. Solid State Commun.,2006,137(5):246-248.
    [66]X. J. Wu, X. C. Zeng. Adsorption of transition-metal atoms on boron nitride nanotube:A density-functional study [J]. J. Chem. Phys.,2006,125(4):044711-7.
    [67]X. J. Wu, J. L. Yang, X. C. Zeng. Adsorption of hydrogen molecules on the platinum-doped boron nitride nanotubes [J]. J. Chem. Phys.2006,125(4):044704-6.
    [68]F. Z. Wang, B. Liu, Z. J. Zhang, S. C. Yuan. Synthesis and properties of Cd-doped ZnO nanotubes [J]. Physica E,2009,41(5):879-882.
    [69]N. Chantarat, Y. W. Chen, S. Y. Chen, C. C. Lin. Enhanced UV photoresponse in nitrogen plasma ZnO nanotubes [J]. Nanotechnology,2009,20(39):395201-5.
    [70]D. Q. Fang, A. L. Rosa, R. Q. Zhang, Th. Frauenheim. Theoretical exploration of the structural, electronic, and magnetic properties of ZnO nanotubes with vacancies, antisites, and nitrogen substitutional defects [J]. J. Phys. Chem. C,2010,114(13):5760-5766.
    [71]F. Gao, J. F. Hu, J. H. Wang, C. L. Yang, H. W. Qin. Ferromagnetism induced by intrinsic defects and carbon substitution in single-walled ZnO nanotube [J]. Chem. Phys. Lett.,2010, 488(1-3):57-61.
    [72]G. L. Chai, C. S. Lin, J. Y. Wang, M. Y. Zhang, J. Wei, W. D. Cheng. Density functional theory simulations of structures and properties for ag-doped ZnO nanotubes [J]. J. Phys. Chem. C, 2011,115(7):2907-2913.
    [73]A. L. He, X. Q. Wang, R. Q. Wu, Y. H. Lu, Y. P. Feng. Adsorption of an Mn atom on a ZnO sheet and nanotube:a density functional theory study [J]. J. Phys.:Condens. Matter,2010, 22(17):175501-7.
    [74]A. L. He, X. Q. Wang, Y. Q. Fan, Y. P. Feng. Electronic structure and magnetic properties of Mn-doped ZnO nanotubes:An ab initio study [J]. J. Appl. Phys.,2010,108(8):084308-5.
    [75]张富春,张志勇,张威虎,闫军峰,贠江妮.First-principles study on magnetic properties of V-doped ZnO nanotubes [J] Chin. Phys. Lett.,2009,26(1):016105-4.
    [76]J. M. Zhang, D. Gao, K. W. Xu. The structural, electronic and magnetic properties of the 3d TM (V, Cr, Mn, Fe, Co, Ni and Cu) doped ZnO nanotubes:A first-principles study [J]. Sci. China Phys. Mech.,2012,55(3):428-435.
    [77]Y. Xie, J. M. Zhang. First-principles study on structural, electronic and magnetic properties of ZnO nanotube filled with Fe, Co and Ni nanowires [J]. Physica E,2011,44(2):405-410.
    [78]W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation rffects [J]. Phys. Rev.,1965,140(4A):A1133-A1138.
    [79]G Kresse, J. Hafner. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev. B,1993, 47(1):558-561.
    [80]G Kresse, J. Hafher. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium [J]. Phys. Rev. B,1994, 49(20):14251-14269.
    [81]G Kresse, J. Furthmuller. Efficiency of ab-initio totalenergy calculations for metals and semiconductors using a plane-wavebasis set [J]. Comput. Mater. Sci.,1996,6(1):15-50.
    [82]G Kresse, J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B,1996,54(16):11169-11186.
    [83]廖沐真,吴国是,刘洪霖.量子化学从头计算方法[M],北京:清华大学出版社,1984.
    [84]M. Born, K. Huang. Dynamical Theory of Crystal Lattices [M], London:Oxford Universtiy Press,1954.
    [85]M. Born, J. R. Oppenheimer. Zur Quantentheorie der Molekeln [J]. Ann. Phys.,1927,389(20): 457-484.
    [86]P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas [J]. Phys. Rev.,1964,136(3B): 864-871.
    [87]L. H. Thomas. The calculation of atomic field [J]. Proc. Camb. Phil. Soc.,1927,23(2): 542-548.
    [88]E. Fermi. A statistical method for the determination of some atomic properties and the application of this method to the theory of the periodic system of elements [J]. Z. Phys.,1928, 48:73-79.
    [89]J. C. Slater. A Simplification of the Hartree-Fock Method [J]. Phys. Rev.,1951,81(3): 385-390.
    [90]D. M. Ceplerley, B. J. Alder. Ground State of the Electron Gas by a Stochastic Method [J]. Phys. Rev. Lett.1980,45(7):566-569.
    [91]J. P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems [J]. Phys. Rev. B,1981,23(10):5048-5079.
    [92]R. O. Jones, O. Gunnarsson. The density functional formalism, its applications and prpspects [J]. Rev. Mod. Phys.,1989,61:689-746.
    [93]J. P. Perdew, Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B,1992,45(23):13244-13249.
    [94]J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple [J]. Phys. Rev. Lett.,1996,77(18):3865-3868.
    [95]C. Lee, W. Yang, R. C. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B,1988,37(2):785-789.
    [96]A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A,1988,38(6):3098-3100.
    [97]K. M. Ho, C. Elsasser, C. T. Chan, M. Fahnle. First-principles pseudopotential calculations for hydrogen in 4d transition metals. I. Mixed-basis method for total energies and forces [J]. J. Phys.:Condens. Matter.,1992,4(22):5189-5206.
    [98]E. H. Lieb, S. Oxford. Improved lower bound on the indirect Coulomb energy [J]. Int. J. Quant. Chem.,1981,19(3):427-439.
    [99]G. Kresse, J. Furthmuller. VASP the GUIDE [EB/OL], http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html,2013-01-01.
    [100]G. Kresse, J. Hafner. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements [J]. J. Phys.:Condens. Matter.,1994,6(40):8245-8257.
    [101]P. E. Blochl. Projector augmented-wave method [J]. Phys. Rev. B,1994,50(24):17953-17979.
    [102]W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery. Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing [M]. England:Cambridge University Press,1996.
    [103]E. Polak. Computational Methods in Optimization [M]. New York:Academic,1971.
    [104]E. R. Davidson. Methods in Computational Molecular Physics, NATO Advanced Studies Institute, Series C:Mathematical and Physical Science's [M]. Edited by G. H. F. Diercksen, S. Wilson. (Plenum, New York) 1983,113:95.
    [105]P. Pulay. Covergence acceleration of iterative sequences. the case of scf iteration [J]. Chem. Phys. Lett.,1980,73(2):393-398.
    [106]H. J. Monkhorst, J. D. Pack. Special points for Brillouin-zone integrations [J]. Phys. Rev. B, 1976,13(12):5188-5192.
    [107]O. Jepsen, O. K. Andersen. The electronic structure of h.c.p. Ytterbium [J]. Solid State Commun.1971,9(20):1763-1767.
    [108]P. E. Blochl, O. Jepsen, O. K. Andersen. Improved tetrahedron method for Brillouin-zone integrations [J]. Phys. Rev. B,1994,49(23):16223-16233.
    [109]C. L. Fu, K. M. Ho. First-principles calculation of the equilibrium ground-state properties of transition metals:Applications to Nb and Mo [J]. Phys. Rev. B,1983,28(10):5480-5486.
    [110]M. Methfessel, A. T. Paxton. High-precision sampling for Brillouin-zone integration in metals [J]. Phys. Rev. B,1989,40(6):3616-3621.
    [111]M. S. Dresselhaus, G. Dresselhaus, P. Avouris. Carbon nanotubes:synthesis, structure, properties, and applications [M]. Berlin:Springer,2001.
    [112]V. V. Ivanovskaya, C. Kohler, G. Seifert. Resonant light scattering by near-fleld-induced phonon polaritons [J]. Phys. Rev. B,2007,71(7):075410-7.
    [113]S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. vonMolnar, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger. Spintronics:a spin-based electronics vision for the future [J]. Science,2001,294(5546):1488-1495.
    [114]L. Vovchenko, L. Matzui, V. Oliynyk, V. Launetz, F. LeNorman. Anomalous microwave absorption in multi-walled carbon nanotubes filled with iron [J]. Physica E,2012,44(6): 928-931.
    [115]A. Fathalian, J. Jalilian, S. Shahidi. First principle study of the electronic and magnetic properties of a single iron atomic chain encapsulated in boron nitrite nanotubes [J]. Solid State Commun.,2011,151(21):1635-1639.
    [116]Y. J. Kang, J. Choi, C. Y. Moon, K. J. Chang. Electronic and magnetic properties of single-wall carbon nanotubes filled with iron atoms [J]. Phys. Rev. B,2005,71(11):115441-7.
    [117]J. M. Zhang, X. C. Wang, Y. Zhang, K. W. Xu. Comparison of electronic and magnetic properties of Fe, Co and Ni nanowires encapsulated in beryllium oxygen nanotubes [J]. Comput. Theor. Chem.,2011,963(2-3):273-278.
    [118]J. M. Zhang, L. Y. Chen, S. F. Wang, K. W. Xu. Comparison of the structural, electronic and magnetic properties of Fe, Co and Ni nanowires encapsulated into silicon carbide nanotube [J]. Eur. Phys. J. B,2010,73(4):555-561.
    [119]E. Borowiak-Palen, E. Mendoza, A. Bachmatiuk, M. H. Rummeli, T. Gemming, J. Nogues, V. Skumryev, R. J. Kalenczuk, T. Pichler, S. R. P. Silva. Iron filled single-wall carbon nanotubes-A novel ferromagnetic medium [J]. Chem. Phys. Lett.,2006,421(1-3):129-133.
    [120]D. L. Penga, X. Zhaob, S. Inoueb, Y. Andob, K. Sumiyama. Magnetic properties of Fe clusters adhering to single-wall carbon nanotubes [J]. J. Magn. Magn. Mater.,2005,292:143-149.
    [121]R. Z. Ma, Y. Bando, T. Sato. Coaxial nanocables:Fe nanowires encapsulated in BN nanotubes with intermediate C layers [J]. Chem. Phys. Lett.,2001,350(1-2):1-5.
    [122]M. Monthioux. Filling single-wall carbon nanotubes [J].Carbon,2002,40(10):1809-1823.
    [123]C. Guerret-Piecourt, Y. Le Bouar, A. Loiseau, H. Pascard. Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes. [J]. Nature,1994, 372:761-764.
    [124]N. Grobert, W. K. Hsu, Y. Q. Zhu, J. P. Hare, H. W. Kroto, D. R. M. Walton, M. Terrones, H. Terrones, P. Redlich, M. Ruhle, R. Escudero, F. Morales. Enhanced magnetic coercivities in Fe nanowires [J]. Appl. Phys. Lett.,1999,75(21):3363-3.
    [125]P. C. P. Watts, W. K. Hsu. Verification of electromagnetic induction from Fe-filled carbon nanotubes [J]. Appl. Phys. A,2004,78(1):79-83.
    [126]B. Ha, T. H. Yeom, S. H. Lee, Ferromagnetic properties of single-walled carbon nanotubes synthesized by Fe catalyst arc discharge [J]. Physica B,2009,404(8-11):1617-1620.
    [127]M. David, T. Kishi, M. Kisaku, W. A. Dino, H. Nakanishi, H. Kasai. First principles investigation on Fe-filled single-walled carbon nanotubes on Ni (111) and Cu (111) [J]. J. Magn. Magn. Mater.,2007,310(2):e748-e750.
    [128]V. M. Garcia-Suaez, J. Ferrer, C. J. Lambert. Tuning the electrical conductivity of nanotube-encapsulated metallocene wires [J]. Phys. Rev. Lett.,2006,96(10):106804-4.
    [129]E. Durgun, S. Dag, V. Bagci, O. Gulseren, T. Yildirim, S. Ciraci. Systematic study of adsorption of single atoms on a carbon nanotube [J]. Phys. Rev. B,2003 67(20),201401(R)-4.
    [130]S. B. Fagan, R. Mota, A. J. R. da Silva, A. Fazzio. Electronic and magnetic properties of iron chains on carbon nanotubes [J]. Microelectron. J.,2003,34(5-8):481-484.
    [131]C. K. Yang, J. Zhao, J. P. Lu. Magnetism of transition-metal/carbon-nanotube hybrid structures [J]. Phys. Rev. Lett.,2003,90(25):257203-4.
    [132]Y. Yagi, T. M. Briere, M. H. F. Sluiter, V. Kumar, A. A. Farajian, Y. Kawazoe. Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3d transition metals:A first-principles study [J]. Phys. Rev. B 2004,69(7):075414-9.
    [133]S. B. Fagan, R. Mota, A. J. R. da Silva, A. Fazzio. Ab initio study of an iron atom interacting with single-wall carbon nanotubes [J]. Phys. Rev. B,2003,67(20):205414-5.
    [134]Y. J. Kang, K. J. Chang. The electronic and magnetic properties of carbon nanotubes interacting with iron atoms [J]. Physica B,2006,376-377:311-315.
    [135]J. E. Huheey, E. A. Keiter, R. L. Keiter. Inorganic chemistry:principles of structure and reactivity [M]. New York:Harper Collins,1993.
    [136]G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev. B 1999,59(3):1758-1775.
    [137]B. Baumeier, P. Kruger, J. Pollmann. Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes [J]. Phys. Rev. B 2007,76(10):085407-8.
    [138]Y. Zhang, V. Ji. Orbital-decomposed electronic and magnetic properties of the double perovskite Sr2FeReO6 [J]. Physica B,2012,407(5):912-917.
    [139]N. Agrait, A. L. Yeyati, J. M. van Ruitenbeek. Quantum properties of atomic-sized conductors[J]. Phys. Rep.,2003,377(2-3):81-279.
    [140]J. J. Zhao, C. Buia, J. Han, J. P. Lu. Quantum transport properties of ultrathin silver nanowires [J]. Nanotechnoly,2003,14(5):501-504.
    [141]D. R. Bowler. Atomic-scale nanowires:physical and electronic structure [J]. J. Phys.:Condens. Matter,2004,16(24):R721-R754.
    [142]S. Ohnishi, A. J. Freeman, M. Weinert. Surface magnetism of Fe(001) [J]. Phys. Rev. B,1983, 28(12):6741-6748.
    [143]P. Soderlind, J. A. Moriarty, J. M. Wills. First-principles theory of iron up to earth-core pressures:Structural, vibrational, and elastic properties [J]. Phys. Rev. B,1996,53(21): 14063-14072.
    [144]L. Stixrude, R. E. Cohen, D. J. Singh. Iron at high pressure:Linearized-augmented-plane-wave computations in the generalized-gradient approximation [J]. Phys. Rev. B,1996,50(9): 6442-6445.
    [145]H. Ma, S. L. Qiu, P. M. Marcus. Pressure instability of bcc iron [J]. Phys. Rev. B,2002,66(2): 024113-6.
    [146]K. J. Caspersen, A. Lew, M. Ortiz, E. A. Carter. Importance of shear in the bcc-to-hcp transformation in iron [J]. Phys. Rev. Lett.,2004,93(11):115501-4.
    [147]R. Saito, G. Dreselhaus, M. S. Dreselhaus. Physical properties of carbon nanotubes [M]. London:Imperial College,1998.
    [148]J. M. Zhang, S. F. Wang, K. W. Xu, V. Ji. Structural, electronic and magnetic properties of BN nanotubes filled with iron nanowires [J]. J. Nanosci. Nanotechnol.,2010,10(2):840-846.
    [149]A. K. singh, T. M. briere, V. kumar, Y. kawazoe. Magnetism in transition-metal-doped silicon nanotubes [J]. Phys. Rev. Lett.,2003,91(14):146802-4.
    [150]A. I. Yanson, G. R. Bollinger, H. E. van den Brom, N. Agrait, J. M. van Ruitenbeek. Formation and manipulation of a metallic wire of single gold atoms [J]. Nature,1998,395:783-785.
    [151]E. Bengu, L. D. Marks. Single-Walled BN nanostructures [J]. Phys. Rev. Lett.,2001,86(11): 2385-2387.
    [152]R. S. Lee, J. Gavillet, M. Lamy de la Chapelle, A. Loiseau, J.-L. Cochon, D. Pigache, J. Thibault, F. Willaime. Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zigzag configuration [J]. Phys. Rev. B 2001,64(12):121405(R)-4.
    [153]S. Satio. Carbon nanotubes for next-generation electronics devices [J]. Science,1997, 278(5335):77-78.
    [154]R. H. Bauguman, A. A. Zakhidov, W. A. de Heer. Carbon Nanotubes-the Route Toward Applications [J]. Science,2002,297(5582):787-792.
    [155]T. Yildirim, S. Ciraci. Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium [J]. Phys. Rev. Lett.2005,94(17):175501-4.
    [156]E. Durgun, S. Dag, S. Ciraci, O. Gulseren. Energetics and electronic structures of individual atoms adsorbed on carbon nanotubes [J]. J. Phys. Chem. B 2004,108(2):575-582.
    [157]A. Ricardo, M. S. Guirado-Lopez, M. E. Rincon. Interaction of acetone molecules with carbon-nanotube-supported TiO2 nanoparticles:possible applications as room temperature molecular sensitive coatings [J]. J. Phys. Chem. C,2007,111(1):57-65.
    [158]S. Dag, Y. Ozturk, S. Ciraci, T. Yildirim. Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes [J]. Phys. Rev. B,2005,72(15):155404-8.
    [159]A. Star, V. Joshi, S. Skarupo, D. Thomas, P. G. Jean-Christophe. Gas sensor array based on metal-decorated carbon nanotubes [J]. J. Phys. Chem. B,2006,110(42):21014-21020.
    [160]P. G. Collins, K. Bradley, M. Ishigami, A. Zettl. Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J]. Science,2000,287(5459):1801-1804.
    [161]S Samouhos, G McKinley. Carbon nanotube-magnetite composites, with applications to developing unique magnetorheological fluids [J]. J. Fluids Eng.-Trans. ASME,2007,129(4): 429-437.
    [162]X. J. Wu, J. L. Yang, J. G. Hou, Q. S. Zhu. Deformation-induced site selectivity for hydrogen adsorption on boron nitride nanotubes [J]. Phys. Rev. B,2004,69(15):153411-4.
    [163]K. H. He, G. Zheng, G. Chen, M. Wan, G. F. Ji. The electronic structure and ferromagnetism of TM (TM=V, Cr, and Mn)-doped BN (5,5) nanotube:A first-principles study [J]. Physica B, 2008,403(23-24):4213-4216.
    [164]S. A. Shevlin, Z. X. Guo. Hydrogen sorption in defective hexagonal BN sheets and BN nanotubes [J]. Phys. Rev. B,2007,76(2):024104-11.
    [165]O. Ponomarenko, M. W. Radny, P. V. Smith. Small-radius clean and metal-doped boron carbide nanotubes:A density functional study [J]. Phys. Rev. B,2006,74(12):125421-10.
    [166]R. Z. Ma, Y. Bando, H. W. Zhu, T. Sato, C. Xu, D. H. Wu. Hydrogen uptake in boron nitride nanotubes at room temperature [J]. J. Am. Chem. Soc.,2002,124(26):7672-7673.
    [167]C. C. Tang, Y. Bando, X. X. Ding, S. R. Qi, D. Golberg. Catalyzed collapse and enhanced hydrogen storage of BN nanotubes [J]. J. Am. Chem. Soc.,2002,124(49):14550-14551.
    [168]R. Q. Wu, L. Liu, G W. Peng, Y. P. Feng. Magnetism in BN nanotubes induced by carbon doping [J]. Appl. Phys. Lett.,2005,86(12):122510-3.
    [169]M.-F. Ng, R. Q. Zhang. Optical spectra of single-walled boron nitride nanotubes [J]. Phys. Rev. B,2004,69(11):115417-6.
    [170]Y. L. Mao, X. H. Yan, Y. Xiao. First-principles study of transition-metal-doped single-walled carbon nanotubes [J]. Nanotechnology,2005,16(12):3092-3096.
    [171]C. Y. Zhi, Y. Bando, C. C. Tang, D. Golberg, R. G. Xie, T. Sekigushi. Phonon characteristics and cathodolumininescence of boron nitride nanotubes [J]. Appl. Phys. Lett.2005,86(21): 213110-3.
    [172]R. Arenal, O. Stephan, M. Kociak, D. Taverna, A. Loiseau, C. Colliex. Electron energy loss spectroscopy measurement of the optical gaps on individual boron nitride single-walled and multiwalled nanotubes [J]. Phys. Rev. Lett.2005,95(12):127601-4.
    [173]L. Wirtz, A. Marini, A. Rubio. Excitons in boron nitride nanotubes:dimensionality effects [J]. Phys. Rev. Lett.,2006,96(12):126104-4.
    [174]T. Okua, N. Koib, K. Suganuma. Electronic and optical properties of boron nitride nanotubes [J]. J Phys. Chem. Solids,2008,69(5-6):1228-1231.
    [175]L. H. Li, Y. Chen, M. Y. Lin, A. M. Glushenkov, B. M. Cheng, J. Yu. Single deep ultraviolet light emission from boron nitride nanotube film [J]. Appl. Phys. Lett.,2010,97(14):141104-3.
    [176]F. Li, Y. Y. Xia, M. W. Zhao, X. D. Liu, B. D. Huang, Y. J. Ji, C. Song. Theoretical study of hydrogen atom adsorbed on carbon-doped BN nanotubes [J] Phys. Lett. A,2006,357(4-5): 369-373.
    [177]A. Seif. The X (X=C, Si and Ge) doped BN nanotube:A computational study [J]. Superlattices Microstruct.,2011,50(1):14-20.
    [178]Y. J. Cho, C. H. Kim, H. S. Kim, J. Park, H. C. Choi, H. J. Shin, G. H. Gao, H. S. Kang. Electronic structure of Si-doped BN nanotubes using X-ray photoelectron spectroscopy and first-principles calculation [J]. Chem. Mater.,2009,21(1):136-143.
    [179]A. Seif, A. Boshra, M. Seif. Lithium-doped (4,4) Boron nitride nanotube:Density functional theory study of N and B nuclear magnetic shielding and electric field gradient tensors [J]. J. Mol. Struct.,2009,895(1-3):82-85.
    [180]X. Wei, M.-S. Wang, Y. Bando, D. Golberg. Electron-Beam-Induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes [J]. ACS Nano,2011.5(4): 2916-2922.
    [181]Z.-G. Chen, J. Zou, Q. Liu, C. Sun, G. Liu, X. Yao, F. Li, B. Wu, X.-L. Yuan, T. Sekiguchi, H.-M. Cheng, G. Q. Lu. Self-Assembly and cathodoluminescence of microbelts from Cu-doped boron nitride nanotubes [J]. ACS Nano,2008,2(8):1523-1532.
    [182]H. Chen, Y. Chen, C. P. Li, H. Zhang, J. S. Williams, Y. Liu, Z. Liu, S. P. Ringer. Eu-doped boron nitride nanotubes as a nanometer-sized visible-light source [J]. Adv. Mater.,2007, 19(14):1845-1848.
    [183]J.-X. Zhao, Y.-H. Ding. Silicon carbide nanotubes functionalized by transition metal atoms:a density-functional study [J]. J. Phys. Chem. C,2008,112(7):2558-2564.
    [184]D. Michael, P. Mingos. A historical perspective on Dewar's landmark contribution to organometallic chemistry [J]. J. Organomet. Chem.,2001,635(1-2):1-8.
    [185]B. Adolph, J. Furthmuller, F. Bechstedt. Optical properties of semiconductors using projector-augmented waves [J]. Phys. Rev. B,2001,63(12):125108-8.
    [186]K. Sanchez, I. Aguilera, P. Palacios, P. Wahnon. Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon: Interstitial versus substitutional origin [J]. Phys. Rev. B,2009,79(16):165203-7.
    [187]K. Seino, F. Bechstedt, P. Kroll. Influence of SiO2 matrix on electronic and optical properties of Si nanocrystals [J]. Nanotechnology,2009,20(13):135702-8.
    [188]J. M. Zhang, H. H. Li, Y. Zhang, K. W. Xu. Structural, electronic and magnetic properties of the 3d transition-metal-doped AlN nanotubes [J]. Physica E,2011,43(6):1249-1254.
    [189]Q. Wan, Q. H. Li, Y. J. Chen, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, C. L. Lin. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors [J]. Appl. Phys. Lett.,2004, 84(18):3654-3.
    [190]X. D. Wang, C. J. Summers, Z. L. Wang. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays [J]. Nano Lett.,2004,4(3): 423-426.
    [191]Z. W. Pan, Z. R. Dai, Z. L. Wang. Nanobelts of semiconducting oxides [J]. Science,2001, 291(5510):1947-1949.
    [192]C. X. Xu, X. W. Sun, Z. L. Dong, M. B. Yu. Zinc oxide nanodisk [J]. Appl. Phys. Lett.,2004, 85(17):3878-3.
    [193]C. X. Xu, X. W. Sun. Field emission from zinc oxide nanopins [J]. Appl. Phys. Lett.,2003, 83(18):3806-3.
    [194]S. L. Mintmire, J. W. Elizondo. First-principles study of the optical properties of zno single-wall nanotubes [J]. J. Phys. Chem. C,2007,111(48):17821-17826.
    [195]I. A. Buyanova, A. Murayama, T. Furuta, Y. Oka, D. P. Norton, S. J. Pearton, A. Osinsky, J. W. Dong, C. W. Tu, W. M. Chen. Spin dynamics in ZnO-based materials [J]. J. Supercond. Nov. Magn.,2010,23(1):161-165.
    [196]B. J. Zheng, J. S. Lian, Q. Jiang. Highly transparent and conductive zn0.86cd0.11in0.03o thin film prepared by pulsed laser deposition [J]. J. Supercond. Nov. Magn.,2011,24(5): 1627-1632.
    [197]R. M. Sheetz, I. Ponomareva, E. Richter, A. N. Andriotis, M. Menon. Microscope of glassy relaxation in femtogram samples:Charge offset drift in the single electron transistor [J]. Phys. Rev. B,2009,80(19):195314-4.
    [198]X. L. Wu, G. G. Siu, C. L. Fu, H. C. Ong. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films [J]. Appl. Phys. Lett.,2001,78(16):2285-3.
    [199]J. Robertson. Realistic applications of CNTs [J]. Mater. Today 2004,7(10):46-52.
    [200]A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker. Logic circuits with carbon nanotube transistors [J]. Science,2001,294(5545):1317-1320.
    [201]R. J. Chen, S. Bangsaruntip, K. A. Drouvalakisdagger, N. W. S. Kam, M. Shim, Y. Li, W. Kim, P. J. Utzdagger, H. Dai. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors [J]. Proc. Natl. Acad. Sci.,2003,100(9):4984-4989.
    [202]G. D. Zhan, J. D. Kuntz, J. Wan, A. K. Mukherjee. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites [J]. Nature Mater.,2003,2:38-42.
    [203]P. B. Sorokin, A. S. Fedorov, L. A. Chernozatonskil. Structure and properties of BeO nanotubes [J]. Phys. Solid State,2006,48(2):398-401.
    [204]A. N. Enyashin, I. R. Shein, A. L. Ivanovskii. Bending of MgO tubes:Mechanically induced hexagonal phase of magnesium oxide [J]. Phys. Rev. B 2007,75(19):193408-4.
    [205]R. W. G. Wyckhoff. Crystal structures [M]. New York:Interscience Publishers,1965.
    [206]J. Vogt, H. Weiss. The structure of KBr(100) and LiF(100) single crystal surfaces:A tensor low energy electron diffraction analysis [J]. Surf. Sci.,2002,501(3):203-213.
    [207]http://www.brightcrystals.com/readnew.asp?NewsID=4945
    [208]A. S. Barnard, S. P. Russo. Structure and energetics of single-walled armchair and zigzag silicon nanotubes [J]. J. Phys. Chem. B 2003,107(31):7577-7581.
    [209]M. S. Dresselhaus, G. Dresselhaus, R. Saito. Carbon fibers based on C60 and their symmetry [J] Phys. Rev. B,1992,45(11):6234-6242.
    [210]M. A. Gorbunova, I. R. Shein, Yu. N. Makurin, V. V. Ivanovskaya, V. S. Kijko, A. L. Ivanovskii. Electronic structure and magnetism in BeO nanotubes induced by boron, carbon and nitrogen doping, and beryllium and oxygen vacancies inside tube walls [J]. Physica E 2008,41(1):164-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700