用户名: 密码: 验证码:
石墨烯无机纳米复合材料的制备、结构及性能调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是近年来发现的碳基新材料,除了拥有大比表面积、高化学稳定性、较好吸附能力等诸多性能外,还具有更为优异的电学性质和规整的平面二维结构,这使其可以作为一个理想的载体担载各类无机化合物,非常适合于开发大规模、高性能石墨烯基纳米复合材料,是石墨烯迈向实际应用的一个重要方向。本文以制备高性能、低成本的石墨烯纳米复合材料为主要目的,采用不同的制备方法制备了多种无机化合物与石墨烯的复合材料,研究了复合物的形成机理和工艺影响因素,探索了复合物微观结构与其性能之间的关系,为深入探索石墨烯功能材料的形成机理以及构筑性能新颖的石墨烯碳纳米材料奠定基础。具体内容如下:
     (1)以天然石墨为原料制备了氧化石墨,通过控制水合肼用量得到了不同还原程度的稳定的石墨烯水分散液,并通过石墨烯片层自组装制备出高度有序的石墨烯薄膜。通过UV-Vis跟踪检测实现了对氧化石墨烯还原过程的有效控制,揭示了石墨烯还原程度与石墨烯薄膜性质的关系。石墨烯薄膜经高温热处理后,随着还原程度提高,其导电性随着也从0.51S·cm-1提高至61.32S·cm-1.薄膜拉伸强度随着还原程度提高而提高,杨氏模量与还原程度无关,当N2H4:GO(质量比)=0.2时,拉伸强度达到最大,为176.1MPa,此时杨氏模量亦达到最大,为35.1GPa。UV-Vis可以简便有效的监测和控制氧化石墨烯的还原程度,使大规模制备性能可控的石墨烯薄膜材料成为可能。
     (2)采用均匀沉淀法制备纳米ZnO粉体,再用Bi2O3对其进行掺杂改性,然后将其负载在石墨烯上制成ZnO-Bi2O3/石墨烯复合材料。以亚甲基蓝为目标污染物,对纳米ZnC、ZnO-Bi2O3、ZnO-Bi2O3/石墨烯的光催化性能进行比较。结果表明ZnO-Bi2O3/石墨烯复合材料对亚甲基蓝的光催化活性明显高于ZnO-Bi2O3,2h对亚甲基蓝的降解率在95%以上,石墨烯作为电子受体,光激发后的电子转移到石墨烯上,从而降低了光生电子与空穴的复合率,提高了光催化活性,该复合材料对酸性蓝、酸性黄、活性红等工业染料也有很好的光催化活性,同时具有较好的稳定性。
     (3)采用共沉淀法制得了对H202有极好活化能力的磁性四氧化三铁石墨烯复合材料,复合材料在H202体系中对酸性红RS的催化降解性能研究表明,由于Fe3O4/石墨烯可催化H202分解成活性很高的·OH,即使在碱性条件下对酸性红RS的降解率仍达到80%以上,在模拟太阳光照射条件下对阳离子染料亚甲基蓝的降解率高达99%,并且催化剂性能稳定,循环使用十次对染料的降解率仍可达到95%以上;同时,Fe3O4/石墨烯复合材料在水合肼还原硝基化合物方面具有很高的催化活性,使用3.1wt%的Fe3O4/石墨烯催化剂,3.6倍量的水合肼,反应18min,苯胺的收率可达99.2%,且催化剂具有用量少、活性高、易回收和稳定性好等优点。
     (4)通过水热法制备了三种钴基石墨烯复合材料并对其电化学性能进行了研究。制得的粒状CO3O4/石墨烯复合材料比电容高达562F·g-1,在0.1A·g-1的电流密度下,循环1000次比电容量仅仅衰减了2.6%;在此基础上用Ni对复合材料进行了掺杂改性,制得的线状NiCo2O4/石墨烯复合材料表现出高的比电容量(1A·g-1时为737F·g-1)和优异的循环稳定性(4000圈后~83%);本文同时研究了石墨烯结构缺陷对复合材料性能的影响,通过将硝酸钴与超声制得的石墨烯分散液在水热条件下一步反应制得C0304/石墨烯基复合材料,在1A·g-1的电流密度下,复合材料的比电容高达384F·g-1,在充放电1000次后比电容仅损失2%。上述几种超级电容器材料均表现出较好的电化学电容性能和良好的循环稳定性。
     (5)通过湿法固相球磨硝酸银与石墨一步制得Ag/石墨烯复合材料,实现石墨烯剥离与银纳米粒子负载同步完成。石墨烯和银纳米颗粒的协同作用使其抗菌效果明显增强,其对E. coli和S. aureus的最小抑菌浓度分别为30μg·mL-1和60μg·mL-1,对细菌的杀灭率大于99.6%,多次循环使用后抗菌效果依旧很好;当Ag/石墨烯复合材料的浓度从10μg·mL-1上升到500μg·mL-1时,细胞存活率缓慢地下降,细胞呈现早期凋亡的轻微固缩的细胞核。实验结果显示制得的Ag/石墨烯复合材料具有良好的抑菌性能,优良的稳定性和浓度相关的生物相容性。
Graphene, a novel carbon-based material, has been emerging in recent years, which possesses many distinctive properties, such as an extremely large specific surface area, high chemical stability, good adsorption ability, excellent electrical properties and regular two-dimensional structure. Due to these propertites, graphene can be used as an ideal substrate to load various types of inorganic substance for the large-scale fabrication of high-performance graphene-based nanocomposites, leading to the practical application of graphene. This dissertation aimed mainly at the preparation of graphene-based nanocomposites with high-performance at a low cost. A variety of graphene-based inorganic nanocomposites were prepared using different methods. The formation mechanism of those composites and the influence of technical factors of the preparation procedure were studied. The relations between the microstructure and the performance of the composites were explored, providing theoretical basis for further study of the formation mechanism of graphene-based functional materials and the construction of graphene-based nanomaterials with novel performance. The contents are as follows:
     (1) Graphite oxide was synthesized from natural graphite powder, and stable graphene suspensions with different reduction level were obtained by controlling the dosage of hydrazine. Graphene paper with a well-ordered structure was then fabricated by the self-assembly of graphene sheets. The formation of stable graphene dispersions with different reduction levels enabled the monitoring of GO reduction by UV-Vis spectroscopy, though which the relevance of the chemical reduction level to the properties of graphene paper was revealed. As the reduction level increased after being heat-treated, the conductivity of the graphene paper samples exhibited an increasing trend from0.51S·cm-1to61.32S·cm-1. Whilst the tensile strength increased with the reduction level, the changing trend of the stiffness of graphene paper samples is independent to the reduction level. However, when the molar ratio of N2H4to GO was1, the graphene paper sample yielded the greatest mean tensile strength of176.1MPa as well as the greatest mean Young's modulus of35.1GPa. UV-Vis spectrometry was found to be a valid and facile method to monitor and control the reduction level of graphene oxide, which may pave the way for large scale fabrication of graphene-based nanomaterials.
     (2) The ZnO nanopowder was synthesized by homogeneous precipitation method then doped with Bi2O3, which was loaded onto the graphene (GE) substrate afterwards to fabricate nanocomposite. Take MB as a target pollutant, the photocatalytic performance of ZnO nanopowder, ZnO-Bi2O3and ZnO-Bi2I3/GE were systematically compared. It was found that the photocatalytic activity of ZnO-Bi2O3/GE was higher than ZnO-Bi2O3regarding the photodegradation of MB. The photodegradation of MB over ZnO-Bi2O3/GE reached95%after irradiation with visible light for2h. Photogenerated electrons transfered easily to graphene, the electron acceptor, decreasing the recombination of photogenerated electrons and holes thereby improving the photocatalytic performance. ZnO-Bi2O3/GE also showed high photocatalytic activity and good photocatalytic stability for the degradation of acid blue, acid yellow, reactive red, acid red, reactive yellow and reactive blue under visible light irradiation.
     (3) Magnetically separable Fe3O4/GE nanocomposite was prepared by a facile co-precipitation method, which exhibited excellent activation ability to H2O2. In the presence of H2O2, the catalytic activity of the Fe3O4/GE nanocomposites on the degradation of Acid Scarlet RS was studied. The degradation rate of Acid Scarlet RS aqueous solution was up to80%even under alkaline conditions since H2O2would decompose to highly activated OH radical by the catalysis of Fe3O4/GE. Under simulated sunlight irradiation, the degradation rate of MB aqueous solution reached to99%with a degradation rate of95%maintained after being recycled for ten times. Furthermore, the Fe3O4/GE composite showed efficient catalytic activity for the reduction of nitroarenes by hydrazine hydrate. In the reduction of nitrobenzene, the yield of the reduced product, aniline, reached up to99.2%after18min with3.1wt%of Fe3O4/GE composite being used as catalyst and hydrazine hydrate in a3.6:1molar ratio to nireobenzene being used as reductant. The Fe3O4/GE composite offered significant advantages such as low dosage of catalyst, high catalytic activity, easy recycling and excellent stability.
     (4) Three cobalt-based graphene composites were prepared by hydrothermal process and their electrochemical properties were studied in detail. The specific capacitance (Cs) of granular Co3O4-reduced GO (Co3O4-RGO) nanocomposite was as high as562F·g-1. The Cs decreased2.6%at a current density of0.1A·g-1after1000cycles. Based on that, the NiCo2O4nanowire/RGO composite was obtained by hybridizing Ni into it, which showed high Cs of737F·g-1at a current density of1A·g-1and only17%loss of the initial specific capacitance after4000charge/discharge cycles. The effect of the structural defect of graphene on the performance of the composite was also investigated. Co3O4/GE nanocomposite was prepared using Co(NO3)2and the ultrasonically exfoliated graphene through a hydrothermal route. Galvanostatic charge/discharge experiments on Co3O4/GE showed high Cs of384F·g-1at a large current density of lA·g-1. Furthermore, the Cs decreased only2%of initial capacitance after1000cycles, indicating the enhanced stability of the Co3O4nanoparticles during the electrochemical process. The above mentioned graphene-based composites all exhibited excellent electrochemical capacitive performance and good cycling stability.
     (5) Ag/graphene antibacterial composite was prepared by one-pot wet ball-milling of AgNO3and graphite, in which the loading of Ag nanoparticles and the exfoliation of graphene were achieved simultaneously. The Ag/graphene composite provided enhanced antibacterial performance due to the synergistic effect between the silver nanoparticles and graphene. Ag/GNS showed good antibacterial activity against both E. coli and S. aureus. The minimum inhibitory concentration (MIC) was30μg·mL-1and60μg·mL-1, respectively, and more than99.6%of bacteria was killed. It was found that the Ag/GNS maintained a high antibacterial activity after being recycled. Cytotoxicity test showed that with the concentration of Ag/GNS increasing from10to500μg·mL-1, the cell viability declined slowly. The early apoptotic cells exhibited bright blue nuclei and weakly condensed chromatin. Experiment results indicated that the obtained Ag/GNS composite possessed enhanced antibacterial activity, outstanding stability and a concentration dependent cytotoxicity.
引文
[1]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric Field Effect in Atomically Thin Carbon Films. Science,2004,306: 666-669
    [2]Stoller M D, Park S, Zhu Y W, An J, Ruoff R S. Graphene-based ultracapacitors. Nano Letters,2008,8:3498-3502
    [3]Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Fine structure constant defines visual transparency of graphene. Science,2008, 320:1308
    [4]Lee C, Wei X D, Kysar J W, Hone J. Measurement of the elastic properties and Intrinsic strength of monolayer graphene. Science,2008,321:385-388
    [5]Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N. Superior thermal conductivity of single-layer graphene. Nano Letters,2008,8:902-907
    [6]Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J-H, Kim P, Choi J-Y, Hong B H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature,2009,457:706-710
    [7]Xiao N, Dong X D, Song L, Liu D Y, Tay Y, Wu S X, Li L-J, Zhao Y, Yu T, Zhang H, Huang W, Hng H H, Ajayan P M, Yan Q Y. Enhanced thermopower of graphene films with oxygen plasma treatment. ACS Nano,2011,5:2749-2755
    [8]Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z Y, De S, McGovern I T, Holland B, Byrne M, Gun'Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology,2008,3:563-568
    [9]Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology,2008,3:101-105
    [10]Valles C, Drummond C, Saadaoui H, Furtado C A, He M, Roubeau O, Ortolani L, Monthioux M, Penicaud A. Solutions of negatively charged graphene sheets and ribbons. Journal of the American Chemical Society,2008,130:15802-15804
    [11]Lotya M, Hernandez Y, King P J, Smith R J, Nicolosi V, Karlsson L S, Blighe F M, De S, Wang Z, McGovern I T, Duesberg G S, Coleman J N. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society,2009,131:3611-3620
    [12]Wu S X, Yin Z Y, He Q Y, Huang X, Zhou X Z, Zhang H. Electrochemical deposition of semiconductor oxides on reduced graphene oxide-based flexible, transparent, and conductive electrodes. The Journal of Physical Chemistry C,2010,114:11816-11821
    [13]Wang S, Bee M G, Kiran K M, Bao Q L, Yang P, Loh K P. Graphene as atomic template and structural scaffold in the synthesis of graphene organic hybrid wire with photovoltaic properties. ACS Nano,2010,4:6180-6186
    [14]Maryam J, Bao Q L, Yang J X, Loh K P. Structure-directing role of graphene in the synthesis of metal-Organic framework nanowire. Journal of American Chemical Society, 2010,132:14487-14495
    [15]Kim J E, Han T H, Lee S H, Kim J Y, Ahn C W, Yun J M, Kim S O. Graphene oxide liquid crystals. Angewandte Chemie International Edition,2011,50:3043-3047
    [16]Shen H, Zhang L M, Liu M, Zhang Z J. Biomedical applications of graphene. Theranostics,2012,2:283-294
    [17]Xia X H, Tu J P, Mai Y J, Chen R, Wang X L, Gu C D, Zhao X B. Graphene sheet/porous NiO hybrid film for supercapacitor applications. Chemistry-A European Journal,2011, 17:10898-10905
    [18]Liu H T, Ryu S M, Chen Z Y, Steigerwald M L, Nuckolls C, Brus L E. Photochemical reactivity of graphene. Journal of the American Chemical Society,2009,131: 17099-17101
    [19]Du X, Skachko I, Barker A, Andrei E Y. Approaching ballistic transport in suspended graphene. Nat Nano,2008,3:491-495
    [20]Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature,2005,438:197-200
    [21]Zhang Y B, Tan Y W, Stormer H L, Kim P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature,2005,438:201-204
    [22]Gusynin V P, Sharapov S G, Carbotte J P. Unusual microwave response of dirac quasiparticles in graphene. Physical Review Letters,2006,96:256802
    [23]Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A, Heinz T F. Measurement of the optical conductivity of graphene. Physical Review Letters,2008,101:196405-196409
    [24]Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F, Spencer M G. Measurement of ultrafast carrier dynamics in epitaxial graphene. Applied Physics Letters,2008,92: 042113-042116
    [25]Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L. Two-dimensional phonon transport in supported graphene. Science,2010,328:213-216
    [26]Gao Y W, Hao P. Mechanical properties of monolayer graphene under tensile and compressive loading. Physica E:Low-dimensional Systems and Nanostructures,2009, 41:1561-1566
    [27]Frank O, Tsoukleri Q Parthenios J, Papagelis K, Riaz I, Jalil R, Novoselov K S, Galiotis C. Compression behavior of single-layer graphenes. ACS Nano,2010,4:3131-3138
    [28]Alexander M, Roumen V, Koen S, Alexander V, Zhang L, Gustaaf Van T, Annick V, Chris Van H. Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology,2008,19:305604-305609
    [29]Dervishi E, Li Z R, Watanabe F, Biswas A, Xu Y, Biris A R, Saini V, Biris A S. Large-scale graphene production by RF-cCVD method. Chemical Communications, 2009,27:4061-4063
    [30]Li X S, Cai W W, An J, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science,2009,324:1312-1314
    [31]Reina A, Jia X T, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters,2008,9:30-35
    [32]Sutter P W, Flege J-I, Sutter E A. Epitaxial graphene on ruthenium. Nature Materials, 2008,7:406-411
    [33]Wei D C, Liu Y Q, Zhang H L, Huang L P, Wu B, Chen J Y, Yu G. Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches. Journal of the American Chemical Society,2009,131:11147-11154
    [34]Di C A, Wei D C, Yu G, Liu Y Q, Guo Y L, Zhu D B. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Advanced Materials,2008, 20:3289-3293
    [35]Li X S, Zhu Y W, Cai W W, Borysiak M, Han B X, Chen D, Piner R D, Colombo L, Ruoff R S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Letters,2009,9:4359-4363
    [36]Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song Y, Kim Y-J, Kim K S, Ozyilmaz B, Ahn J-H, Hong B H, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology,2010,5: 574-578
    [37]Levendorf M P, Ruiz-Vargas C S, Garg S, Park J. Transfer-free batch fabrication of single layer graphene transistors. Nano Letters,2009,9:4479-4483
    [38]Shivaraman S, Barton R A, Yu X, Alden J, Herman L, Chandrashekhar M V S, Park J, McEuen P L, Parpia J M, Craighead H G, Spencer M G Free-standing epitaxial graphene. Nano Letters,2009,9:3100-3105
    [39]Aristov V Y, Urbanik G, Kummer K, Vyalikh D V, Molodtsova O V, Preobrajenski A B, Zakharov A A, Hess C, Hanke T, Buchner B, Vobornik I, Fujii J, Panaccione G, Ossipyan Y A, Knupfer M. Graphene synthesis on cubic SiC/Si wafers, perspectives for mass production of graphene-based electronic devices. Nano Letters,2010,10:992-995
    [40]Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Rohrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B, Seyller T. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials,2009,8:203-207
    [41]Deng D H, Pan X L, Zhang H, Fu Q, Tan D L, Bao X H. Free standing graphene by thermal splitting of silicon carbide granules. Advanced Materials,2010,22:2168-2171
    [42]Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A. Electronic confinement and coherence in patterned epitaxial graphene. Science,2006,312:1191-1196
    [43]Wu Z S, Ren W C, Gao L B, Zhao J P, Chen Z P, Liu B L, Tang D M, Yu B, Jiang C B, Cheng H M. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano,2009,3:411-417
    [44]Subrahmanyam K S, Panchakarla L S, Govindaraj A, Rao C N R. Simple method of preparing graphene flakes by an arc-discharge method. The Journal of Physical Chemistry C,2009,113:4257-4259
    [45]Wang Z Y, Li N, Shi Z J, Gu Z N. Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air. Nanotechnology,2010,21:175602
    [46]Dato A, Radmilovic V, Lee Z, Phillips J, Frenklach M. Substrate-free gas-phase synthesis of graphene sheets. Nano Letters,2008,8:2012-2016
    [47]Dato A, Lee Z, Jeon K-J, Erni R, Radmilovic V, Richardson T J, Frenklach M. Clean and highly ordered graphene synthesized in the gas phase. Chemical Communications,2009: 6095-6097
    [48]Brodie B C. Sur le poids atomique du graphite. Annales De Chimie Et De Physique, 1860,59:466-472
    [49]Staudenmaier L. Verfahren zur darstellung der graphitsaure. Berichte der Deutschen Chemischen Gesellschaft,1898,31:1481-1487
    [50]Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society,1958,80:1339-1339
    [51]Dong X C, Su C Y, Zhang W J, Zhao J W, Ling Q D, Huang W, Chen P, Li L-J. Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties. Physical Chemistry Chemical Physics,2010,12:2164-2169
    [52]Patil A J, Vickery J L, Scott T B, Mann S. Aqueous stabilization and self-Assembly of graphene sheets into layered bio-nanocomposites using DNA. Advanced Materials,2009, 21:3159-3164
    [53]Qi X, Pu K-Y, Zhou X, Li H, Liu B, Boey F, Huang W, Zhang H. Conjugated-poly-electrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents. Small,2010,6:663-669
    [54]Xu Y X, Bai H, Lu G W, Li C, Shi G Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society,2008,130:5856-5857
    [55]Yang Q, Pan X J, Huang F, Li K C. Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives. The Journal of Physical Chemistry C,2010,114:3811-3816
    [56]Geng J X, Jung H T. Porphyrin functionalized graphene sheets in aqueous suspensions: from the preparation of graphene sheets to highly conductive graphene films. The Journal of Physical Chemistry C,2010,114:8227-8234
    [57]Zhou X S, Wu T B, Ding K L, Hu B J, Hou M Q, Han B X. Dispersion of graphene sheets in ionic liquid [bmim][PF6] stabilized by an ionic liquid polymer. Chemical Communications,2010,46:386-388
    [58]Zhou X F, Liu Z P. A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets. Chemical Communications,2010,46:2611-2613
    [59]Ghosh A, Rao K V, George S J, Rao C N. Noncovalent functionalization, exfoliation, and solubilization of graphene in water by employing a fluorescent coronene carboxylate. Chemistry-A European Journal,2010,16:2700-2704
    [60]Guo Y J, Guo S J, Ren J T, Zhai Y M, Dong S J, Wang E K. Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability:synthesis and host-guest Inclusion for enhanced electrochemical performance. ACS Nano,2010,4: 4001-4010
    [61]Zhang J L, Yang H J, Shen G X, Cheng P, Zhang J Y, Guo S W. Reduction of graphene oxide vial-ascorbic acid. Chemical Communications,2010,46:1112-1114
    [62]Dimitrakakis G K, Tylianakis E, Froudakis G E. Pillared graphene:a new 3-D network nanostructure for enhanced hydrogen storage. Nano Letters,2008,8:3166-3170
    [63]Ataca C, Akturk E, Ciraci S, Ustunel H. High-capacity hydrogen storage by metallized graphene. Applied Physics Letters,2008,93:043120-043123
    [64]Watcharotone S, Dikin D A, Stankovich S, Piner R, Jung I, Dommett G H B, Evmenenko G, Wu S E, Chen S F, Liu C P, Nguyen S T, Ruoff R S. Graphene-silica composite thin films as transparent conductors. Nano Letters,2007,7:1888-1892
    [65]Yan J, Wei T, Shao B, Fan Z J, Qian W Z, Zhang M L, Wei F. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon,2010,48: 487-493
    [66]Fu Y S, Wang X. Magnetically separable ZnFe2O4-graphene catalyst and its high photo-catalytic performance under visible light irradiation. Industrial & Engineering Chemistry Research,2011,50:7210-7218
    [67]Li F H, Yang H J, Shan C S, Zhang Q X, Han D X, Ivaska A, Niu L. The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction. Journal of Materials Chemistry,2009,19:4022-4025
    [68]Liu J B, Fu S H, Yuan B, Li Y L, Deng Z X. Toward a universal "adhesive nanosheet" for the assembly of multiple nanoparticles based on a protein-induced reduction/ decoration of graphene oxide. Journal of the American Chemical Society,2010,132: 7279-7281
    [69]Scheuermann G M, Rumi L, Steurer P, Bannwarth W, Mulhaupt R. Palladium nano-particles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. Journal of American Chemical Society,2010,131:8262-8270
    [70]Si Y C, Samulski E T. Exfoliated graphene separated by platinum nanoparticles. Chemistry of Materials,2008,20:6792-6797
    [71]Wang H L, Robinson J T, Diankov G, Dai H J. Nanocrystal growth on graphene with various degrees of oxidation. Journal of the American Chemical Society,2010,132: 3270-3271
    [72]Marquardt D, Vollmer C, Thomann R, Steurer P, Mulhaupt R, Redel E, Janiak C. The use of microwave irradiation for the easy synthesis of graphene-supported transition metal nanoparticles in ionic liquids. Carbon,2011,49:1326-1332
    [73]Yang N L, Zhai J, Wang D, Chen Y S, Jiang L. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano,2010,4: 887-894
    [74]Williams G, Kamat P V. Graphene-semiconductor nanocomposites:excited-state inter-actions between ZnO nanoparticles and graphene oxide. Langmuir,2009,25: 13869-13873
    [75]Jasuja K, Linn J, Melton S, Berry V. Microwave-reduced uncapped metal nanoparticles on graphene:tuning catalytic, electrical, and raman properties. The Journal of Physical Chemistry Letters,2010,1:1853-1860
    [76]Gao J, Liu F, Liu Y L, Ma N, Wang Z Q, Zhang X. Environment-friendly method to produce graphene that employs Vitamin C and amino acid. Chemistry of Materials,2010, 22:2213-2218
    [77]Sun S R, Gao L, Liu Y Q. Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation. Applied Physics Letters,2010,96: 083113
    [78]Feng M, Sun R Q, Zhan H B, Chen Y. Lossless synthesis of graphene nanosheets decorated with tiny cadmium sulfide quantum dots with excellent nonlinear optical properties. Nanotechnology,2010,21:075601
    [79]Huang X, Zhou X Z, Wu S X, Wei Y Y, Qi X Y, Zhang J, Boey F, Zhang H. Reduced graphene oxide-templated photochemical synthesis and in situ assembly of Au nanodots to orderly patterned Au nanodot chains. Small,2010,6:513-516
    [80]Guo S J, Dong S J, Wang E K. Three-dimensional Pt-on-Pd bimetallic Nanodendrites supported on graphene nanosheet:facile synthesis and used as an advanced nanoelectro-catalyst for methanol oxidation. ACS Nano,2009,4:547-555
    [81]Muszynski R, Seger B, Kamat P V. Decorating graphene sheets with gold nanoparticles. The Journal of Physical Chemistry C,2008,112:5263-5266
    [82]Hassan H M A, Abdelsayed V, Khder A E R S, AbouZeid K M, Terner J, El-Shall M S, Al-Resayes S I, El-Azhary A A. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. Journal of Materials Chemistry,2009, 19:3832-3837
    [83]Yan J, Fan Z J, Wei T, Qian W Z, Zhang M L, Wei F. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon,2010,48: 3825-3833
    [84]Tang Y B, Lee C S, Xu J, Liu Z T, Chen Z H, He Z B, Cao Y L, Yuan G D, Song H S, Chen L M, Luo L B, Cheng H M, Zhang W J, Bello I, Lee S-T. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano,2010,4:3482-3488
    [85]Wang D H, Rong Kou, Daiwon Choi, Yang Z G, Nie Z M, Li J, Laxmikant V. Saraf, Hu D H, Zhang J G, Gordon L G, Liu J, Michael A P, Aksay I A. Ternary self-assembly of ordered meta oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano,2010,4:1587-1595
    [86]Cao A N, Liu Z, Chu S S, Wu M H, Ye Z M, Cai Z W, Chang Y L, Wang S F, Gong Q H, Liu Y F. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Advanced Materials,2010,22: 103-106
    [87]Yin Z Y, Wu S X, Zhou X Z, Huang X, Zhang Q C, Boey F, Zhang H. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small,2010,6:307-312
    [88]Kim Y T, Han J H, Hong B H, Kwon Y U. Electrochemical synthesis of CdSe quantum-dot arrays on a graphene basal plane using mesoporous silica thin-film templates. Advanced Materials,2010,22:515-518
    [89]Zhou H Q, Qiu C Y, Liu Z, Yang H C, Hu L J, Liu J, Yang H F, Gu C Z, Sun L F. Thickness-dependent morphologies of gold on N-layer graphenes. Journal of the American Chemical Society,2009,132:944-946
    [90]Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Graphene-based composite materials. Nature,2006,442: 282-286
    [91]Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T, Ruoff R S. Preparation and characterization of graphene oxide paper. Nature,2007,448:457-460
    [92]Li D, Kaner R B. Graphene-Based Materials. Science,2008,320:1170-1171
    [93]Park S, Lee K-S, Bozoklu G, Cai W, Nguyen S T, Ruoff R S. Graphene Oxide Papers Modified by Divalent Ions-Enhancing Mechanical Properties via Chemical Cross-Linking. ACS Nano,2008,2:572-578
    [94]Niyogi S, Bekyarova E, Itkis M E, Mc Williams J L, Hamon M A, Haddon R C. Solution Properties of Graphite and Graphene. Journal of the American Chemical Society,2006, 128:7720-7721
    [95]Ryu S, Han M Y, Maultzsch J, Heinz T F, Kim P, Steigerwald M L, Brus L E. Reversible Basal Plane Hydrogenation of Graphene. Nano Letters,2008,8:4597-4602
    [96]Sundaram R S, Gomez-Navarro C, Balasubramanian K, Burghard M, Kern K. Electrochemical Modification of Graphene. Advanced Materials,2008,20:3050-3053
    [97]Park S, Ruoff R S. Chemical methods for the production of graphenes. Nat Nano,2009,4: 217-224
    [98]Stoller M D, Park S, Zhu Y, An J, Ruoff R S. Graphene-Based Ultracapacitors. Nano Letters,2008,8:3498-3502
    [99]Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon,2010,48:2127-2150
    [100]Watcharotone S, Dikin D A, Stankovich S, Piner R, Jung I, Dommett G H B, Evmenenko G, Wu S-E, Chen S-F, Liu C-P, Nguyen S T, Ruoff R S. Graphene-Silica Composite Thin Films as Transparent Conductors. Nano Letters,2007,7:1888-1892
    [101]Wang X, Zhi L, Mullen K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Letters,2007,8:323-327
    [102]Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, Chen Y. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano,2008,2:463-470
    [103]Wang X, Zhi L, Tsao N, Tomovic Z, Li J, Mullen K. Transparent Carbon Films as Electrodes in Organic Solar Cells. Angewandte Chemie,2008,120:3032-3034
    [104]Li D, Muller M B, Gilje S, Kaner R B, Wallace G G Processable aqueous dispersions of graphene nanosheets. Nat Nano,2008,3:101-105
    [105]Chen H, Muller M B, Gilmore K J, Wallace G G, Li D. Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper. Advanced Materials,2008, 20:3557-3561
    [106]Lee C, Wei X, Kysar J W, Hone J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science,2008,321:385-388
    [107]Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45:1558-1565
    [108]Zhang L, Li X, Huang Y, Ma Y, Wan X, Chen Y. Controlled synthesis of few-layered graphene sheets on a large scale using chemical exfoliation. Carbon,2010,48: 2367-2371
    [109]Szabo T, Berkesi O, Dekany I. DRIFT study of deuterium-exchanged graphite oxide. Carbon,2005,43:3186-3189
    [110]Titelman G I, Gelman V, Bron S, Khalfin R L, Cohen Y, Bianco-Peled H. Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide. Carbon,2005,43:641-649
    [111]Fuente E, Menendez J A, Diez M A, Suarez D, Montes-Moran M A. Infrared Spectroscopy of Carbon Materials:A Quantum Chemical Study of Model Compounds. The Journal of Physical Chemistry B,2003,107:6350-6359
    [112]Bourlinos A B, Gournis D, Petridis D, Szabo T, Szeri A, Dekany I. Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids. Langmuir,2003,19:6050-6055
    [113]Lerf A, He H, Forster M, Klinowski J. Structure of Graphite Oxide Revisited. The Journal of Physical Chemistry B,1998,102:4477-4482
    [114]Viculis L M, Mack J J, Mayer O M, Hahn H T, Kaner R B. Intercalation and exfoliation routes to graphite nanoplatelets. Journal of Materials Chemistry,2005,15:974-978
    [115]Wang G, Yang Z, Li X, Li C. Synthesis of poly(aniline-co-o-anisidine)-intercalated graphite oxide composite by delamination/reassembling method. Carbon,2005,43: 2564-2570
    [116]McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prud'homme R K, Aksay I A. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chemistry of Materials,2007,19:4396-4404
    [117]Dowell M B, Howard R A. Tensile and compressive properties of flexible graphite foils. Carbon,1986,24:311-323
    [118]Leng Y, Gu J, Cao W, Zhang T Y. Influences of density and flake size on the mechanical properties of flexible graphite. Carbon,1998,36:875-881
    [119]Correa-Duarte M A, Wagner N, Rojas-Chapana J, Morsczeck C, Thie M, Giersig M. Fabrication and Biocompatibility of Carbon Nanotube-Based 3D Networks as Scaffolds for Cell Seeding and Growth. Nano Letters,2004,4:2233-2236
    [120]Yokoyama A, Sato Y, Nodasaka Y, Yamamoto S, Kawasaki T, Shindoh M, Kohgo T, Akasaka T, Uo M, Watari F, Tohji K. Biological Behavior of Hat-Stacked Carbon Nanofibers in the Subcutaneous Tissue in Rats. Nano Letters,2004,5:157-161
    [121]Harrison B S, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials,2007,28:344-353
    [122]Jan E, Kotov N A. Successful Differentiation of Mouse Neural Stem Cells on Layer-by-Layer Assembled Single-Walled Carbon Nanotube Composite. Nano Letters, 2007,7:1123-1128
    [123]Wenrong Y, Pall T, Gooding J J, Simon P R, Filip B. Carbon nanotubes for biological and biomedical applications. Nanotechnology,2007,18:412001
    [124]Whitten P G, Gestos A A, Spinks G M, Gilmore K J, Wallace G G Free standing carbon nanotube composite bio-electrodes. Journal of Biomedical Materials Research Part B: Applied Biomaterials,2007,82B:37-43
    [125]Ahmad M, Sun H, Zhu J. Enhanced Photoluminescence and Field-Emission Behavior of Vertically Well Aligned Arrays of In-Doped ZnO Nanowires. ACS Applied Materials & Interfaces,2011,3:1299-1305
    [126]Li Y, Zhao X, Fan W. Structural, Electronic, and Optical Properties of Ag-Doped ZnO Nanowires:First Principles Study. The Journal of Physical Chemistry C,2011,115: 3552-3557
    [127]Wang X, Zhang Q, Wan Q, Dai G, Zhou C, Zou B. Controllable ZnO Architectures by Ethanolamine-Assisted Hydrothermal Reaction for Enhanced Photocatalytic Activity. The Journal of Physical Chemistry C,2011,115:2769-2775
    [128]Yang Y, Ren L, Zhang C, Huang S, Liu T. Facile Fabrication of Functionalized Graphene Sheets (FGS)/ZnO Nanocomposites with Photocatalytic Property. ACS Applied Materials & Interfaces,2011,3:2119-2785
    [129]Zhao H, Fu W, Yang H, Xu Y, Zhao W, Zhang Y, Chen H, Jing Q, Qi X, Cao J, Zhou X, Li Y. Synthesis and characterization of TiO2/Fe2O3 core-shell nanocomposition film and their photoelectrochemical property. Applied Surface Science,2011,257:8778-8783
    [130]Tacconi NR de, Chenthamarakshan C R, Wouters K L, MacDonnell F M, Rajeshwar K. Composite WO3-TiO2 films prepared by pulsed electrodeposition:morphological aspects and electrochromic behavior. Journal of Electroanalytical Chemistry,2004,566:249-256
    [131]Bayati M R, Golestani-Fard F, Moshfegh A Z, Molaei R. A photocatalytic approach in micro arc oxidation of WO3-TiO2 nano porous semiconductors under pulse current. Materials Chemistry and Physics,2011,128:427-432
    [132]Zhang L, Wang W, Yang J, Chen Z, Zhang W, Zhou L, Liu S. Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst. Applied Catalysis A: General,2006,308:105-110
    [133]Wu Z S, Ren W, Gao L, Liu B, Jiang C, Cheng H M. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon,2009,47:493-499
    [134]Barnard A S, Snook I K. Transformation of graphene into graphane in the absence of hydrogen. Carbon,2010,48:981-986
    [135]Dhakate S R, Chauhan N, Sharma S, Tawale J, Singh S, Sahare P D, Mathur R B. An approach to produce single and double layer graphene from re-exfoliation of expanded graphite. Carbon,2011,49:1946-1954
    [136]He G, Chen H, Zhu J, Bei F, Sun X, Wang X. Synthesis and characterization of graphene paper with controllable properties via chemical reduction. Journal of Materials Chemistry,2011,21:14631-14638
    [137]Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S. Flexible conductive graphene/ poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon,2011,49:198-205
    [138]Arias K S, Al-Resayes S I, Climent M J, Corma A, Iborra S. From Biomass to Chemicals:Synthesis of Precursors of Biodegradable Surfactants from 5-Hydroxymethylfurfural. ChemSusChem,2013,6:123-131
    [139]Wang H, Wang L, Qu C, Su Y, Yu S, Zheng W, Liu Y. Photovoltaic properties of graphene oxide sheets beaded with ZnO nanoparticles. Journal of Solid State Chemistry, 2011,184:881-887
    [140]Cai D, Song M. Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. Journal of Materials Chemistry,2007,17:3678-3680
    [141]Xu C, Wang X, Zhu J. Graphene-Metal Particle Nanocomposites. The Journal of Physical Chemistry C,2008,112:19841-19845
    [142]Yang N, Zhu S M, Zhang D, Xu S. Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Materials Letters,2008,62: 645-647
    [143]Yao Y J, Miao S D, Liu S Z, Ma L P, Sun H Q, Wang S B. Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chemical Engineering Journal,2012,184:326-332
    [144]Geim A K, Novoselov S K. The rise of graphene. Nature Materials,2007,6:183-191
    [145]Kane C L. Materials science erasing electron mass. Nature,2005,438:168-170
    [146]Wang N, Zhu L H, Wang D L, Wang M Q, Lin Z F, Tang H Q. Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrasonics Sonochemistry,2010,17:526-533
    [147]Thomas T E, M L P. Selective separation of cells using magnetic colloids. Progress in Clinical Biological Research,1994,389:65-67
    [148]Yang X Y, Zhang X Y, Ma Y F, Huang Y, Wang Y S, Chen Y S. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. Journal of Materials Chemistry,2009,19:2710-2714
    [149]Zhang H, Lv X J, Li Y M, Wang Y, Li J H. P25-graphene composite as a high performance photocatalyst. ACS Nano,2010,4:380-386
    [150]Zhang Y H, Tang Z R, Fu X Z, Xu Y J. TiO2-Graphene nanocomposites for gas-phase photocatalytic degradation of volatle aromatic pollutantis TiO2-graphene truly different from other TiO2-carbon composite materials. ACS Nano,2010,4:7303-7314
    [151]Lin S S, Gurol M D. Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications. Environental Science&Technology,1998,32: 1417-1423
    [152]Wei H, Wang E K. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Analytical Chemistry,2008,80:2250-2254
    [153]Kim S, Kim E, Kim B M. Fe3O4 nanoparticles:a conveniently reusable catalyst for the reduction of nitroarenes using hydrazine hydrate. Chemistry-An Asian Journal,2011,6: 1921-1925
    [154]Pramod S K, Jaime S V, Figueras F. Reduction of aromatic nitro compounds with hydrazine hydrate in the presence of the lron(Ⅱl) Oxide-MgO catalyst prepared from a Mg-Fe Hydrotaleite precursor. Tetrahedron Letters,1998,39:2573-2574
    [155]Shi Q X, Lu R W, Lu L H, Fu X M, Zhao D F. Efficient reduction of nitroarenes over Nickel-Iron mixed oxide catalyst prepared from a Nickel-Iron hydrotalcite precursor. Advanced Synthesis & Catalysis,2007,349:1877-1881
    [156]Corey E J, Pasto D J, Mock W L. Chemistry of dimide.II. stereochemistry of hydrogen transfer to carbon-carbon multiple bonds. Journal of American Chemical Society,1961, 83:2957-2958
    [157]Gao Y, Ma D, Wang C, Guan J, Bao X H. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chemical Communications,2011, 47:2432-2434
    [158]Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes. Chemical Society reviews,2009,38:2520-2531
    [159]Jiang H, Yang L, Li C, Yan C, Lee P S, Ma J. High-rate electrochemical capacitors from highly graphitic carbon-tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy & Environmental Science,2011,4:1813-1819
    [160]Zhu Y, Murali S, Stoller M D, Ganesh K J, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A, Ruoff R S. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science,2011,332:1537-1541
    [161]Brownson D A C, Kampouris D K, Banks C E. An overview of graphene in energy production and storage applications. Journal of Power Sources,2011,196:4873-4885
    [162]Huang Y, Liang J, Chen Y. An Overview of the Applications of Graphene-Based Materials in Supercapacitors. Small,2012,8:1805-1834
    [163]Gao Y, Chen S, Cao D, Wang G, Yin J. Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. Journal of Power Sources,2010,195:1757-1760
    [164]Wei T Y, Chen C H, Chang K H, Lu S Y, Hu C C. Cobalt Oxide Aerogels of Ideal Supercapacitive Properties Prepared with an Epoxide Synthetic Route. Chemistry of Materials,2009,21:3228-3233
    [165]Cui L, Li J, Zhang X G. Preparation and properties of Co3O4 nanorods as supercapacitor material. J Appl Electrochem,2009,39:1871-1876
    [166]Wang G, Shen X, Horvat J, Wang B, Liu H, Wexler D, Yao J. Hydrothermal Synthesis and Optical, Magnetic, and Supercapacitance Properties of Nanoporous Cobalt Oxide Nanorods. The Journal of Physical Chemistry C,2009,113:4357-4361
    [167]Zheng M B, Cao J, Liao S T, Liu J S, Chen H Q, Zhao Y, Dai W J, Ji G B, Cao J M, Tao J. Preparation of Mesoporous Co3O4 Nanoparticles via Solid-Liquid Route and Effects of Calcination Temperature and Textural Parameters on Their Electrochemical Capacitive Behaviors. The Journal of Physical Chemistry C,2009,113:3887-3894
    [168]Wu Z S, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H M. Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano,2010,4:3187-3194
    [169]Verma S, Joshi H M, Jagadale T, Chawla A, Chandra R, Ogale S. Nearly Mono-dispersed Multifunctional NiCo2O4 Spinel Nanoparticles:Magnetism, Infrared Transparency, and Radiofrequency Absorption. The Journal of Physical Chemistry C,2008,112:15106-15112
    [170]Wei T Y, Chen C H, Chien H C, Lu S Y, Hu C C. A Cost-Effective Supercapacitor Material of Ultrahigh Specific Capacitances:Spinel Nickel Cobaltite Aerogels from an Epoxide-Driven Sol-Gel Process. Advanced Materials,2010,22:347-351
    [171]Yuan C, Li J, Hou L, Zhang X, Shen L, Lou X W. Ultrathin Mesoporous NiCo2O4 Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors. Advanced Functional Materials,2012,22:4592-4597
    [172]Salunkhe R R, Jang K, Yu H, Yu S, Ganesh T, Han S-H, Ahn H. Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications. Journal of Alloys and Compounds,2011,509:6677-6682
    [173]Wu J, Pisula W, Mullen K. Graphenes as Potential Material for Electronics. Chemical Reviews,2007,107:718-747
    [174]Liang M, Zhi L. Graphene-based electrode materials for rechargeable lithium batteries. Journal of Materials Chemistry,2009,19:5871-5878
    [175]Liang J, Wei W, Zhong D, Yang Q, Li L, Guo L. One-Step In situ Synthesis of SnO2/Graphene Nanocomposites and Its Application As an Anode Material for Li-Ion Batteries. ACS Applied Materials & Interfaces,2011,4:454-459
    [176]Luo J M, Gao B, Zhang X G High capacitive performance of nanostructured Mn-Ni-Co oxide composites for supercapacitor. Materials Research Bulletin,2008,43:1119-1125
    [177]Wang X, Sumboja A, Khoo E, Yan C, Lee P S. Cryogel Synthesis of Hierarchical Interconnected Macro-/Mesoporous Co3O4 with Superb Electrochemical Energy Storage. The Journal of Physical Chemistry C,2012,116:4930-4935
    [178]Mokkelbost T, Kaus I, Grande T, Einarsrud M A. Combustion Synthesis and Characterization of Nanocrystalline CeO2-Based Powders. Chemistry of Materials,2004, 16:5489-5494
    [179]Windisch Jr C F, Ferris K F, Exarhos G J, Sharma S K. Conducting spinel oxide films with infrared transparency. Thin Solid Films,2002,420-421:89-99
    [180]Wu Y Q, Chen X Y, Ji P T, Zhou Q Q. Sol-gel approach for controllable synthesis and electrochemical properties of MCo2O4 crystals as electrode materials for application in supercapacitors. Electrochimica Acta,2011,56:7517-7522
    [181]Liang H, Raitano J M, Zhang L, Chan S W. Controlled synthesis of Co3O4 nanopoly-hedrons and nanosheets at low temperature. Chemical Communications,2009,0: 7569-7571
    [182]Li Y, Tan B, Wu Y. Freestanding Mesoporous Quasi-Single-Crystalline Co3O4 Nanowire Arrays. Journal of the American Chemical Society,2006,128:14258-14259
    [183]Ma C, Wang D, Xue W, Dou B, Wang H, Hao Z. Investigation of Formaldehyde Oxidation over Co3O4-CeO2 and Au/Co3O4-CeO2 Catalysts at Room Temperature: Effective Removal and Determination of Reaction Mechanism. Environmental Science & Technology,2011,45:3628-3634
    [184]Wang H, Gao Q, Jiang L. Facile Approach to Prepare Nickel Cobaltite Nanowire Materials for Supercapacitors. Small,2011,7:2454-2459
    [185]Xia X H, Tu J P, Zhang Y Q, Mai Y J, Wang X L, Gu C D, Zhao X B. Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Advances,2012,2: 1835-1841
    [186]Wang H, Holt C B, Li Z, Tan X, Amirkhiz B, Xu Z, Olsen B, Stephenson T, Mitlin D. Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Research,2012,5:605-617
    [187]Xiao J, Yang S. Bio-inspired synthesis of NaCl-type CoxNi1-xO (0≤x<1) nanorods on reduced graphene oxide sheets and screening for asymmetric electrochemical capacitors. Journal of Materials Chemistry,2012,22:12253-12262
    [188]Hu C C, Chang K H, Hsu T Y. The synergistic influences of OH-concentration and electrolyte conductivity on the redox behavior of Ni(OH)2/NiOOH. Journal of the Electrochemical Society,2008,155:F196-F200
    [189]Wang H, Hu Z, Chang Y, Chen Y, Wu H, Zhang Z, Yang Y. Design and synthesis of NiCo2O4-reduced graphene oxide composites for high performance supercapacitors. Journal of Materials Chemistry,2011,21:10504-10511
    [190]Lin C, Ritter J A, Popov B N. Characterization of Sol-Gel-Derived Cobalt Oxide Xerogels as Electrochemical Capacitors. Journal of The Electrochemical Society,1998, 145:4097-4103
    [191]Mirsattari S M, Hammond R R, Sharpe M D, Leung F Y, Young G B. Myoclonic status epilepticus following repeated oral ingestion of colloidal silver. Neurology,2004,62: 1408-1410
    [192]Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent:a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science,2004, 275:177-182
    [193]Liz-Marzan L M, Lado-Tourino I. Reduction and Stabilization of Silver Nanoparticles in Ethanol by Nonionic Surfactants. Langmuir,1996,12:3585-3589
    [194]Sun X Q, Dong S J, Wang E. One-Step Preparation and Characterization of Poly(propyleneimine) Dendrimer-Protected Silver Nanoclusters. Macromolecules,2004, 37:7105-7108
    [195]Kwakye-Awuah B, Williams C, Kenward M A, Radecka I. Antimicrobial action and efficiency of silver-loaded zeolite X. Journal of applied microbiology,2008,104: 1516-1524
    [196]Li Z, Fan L, Zhang T, Li K. Facile synthesis of Ag nanoparticles supported on MWCNTs with favorable stability and their bactericidal properties. Journal of hazardous materials,2011,187:466-472
    [197]Xu W P, Zhang L C, Li J P, Lu Y, Li H H, Ma Y N, Wang W D, Yu S H. Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. Journal of Materials Chemistry,2011,21:4593-4597
    [198]Chen S, Zhu J, Wang X. From Graphene to Metal Oxide Nanolamellas:A Phenomenon of Morphology Transmission. ACS Nano,2010,4:6212-6218
    [199]Ai L, Zhang C, Chen Z. Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. Journal of Hazardous Materials,2011,192:1515-1524
    [200]Lu W, Ning R, Qin X, Zhang Y, Chang G, Liu S, Luo Y, Sun X. Synthesis of Au nanoparticles decorated graphene oxide nanosheets:noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol. Journal of hazardous materials,2011,197:320-326
    [201]Park S, Mohanty N, Suk J W, Nagaraja A, An J, Piner R D, Cai W, Dreyer D R, Berry V, Ruoff R S. Biocompatible, Robust Free-Standing Paper Composed of a TWEEN/ Graphene Composite. Advanced Materials,2010,22:1736-1740
    [202]Kim K S, Kim I J, Park S J. Influence of Ag doped graphene on electrochemical behaviors and specific capacitance of polypyrrole-based nanocomposites. Synthetic Metals,2010,160:2355-2360
    [203]Niu A, Han Y, Wu J, Yu N, Xu Q. Synthesis of One-Dimensional Carbon Nanomaterials Wrapped by Silver Nanoparticles and Their Antibacterial Behavior. The Journal of Physical Chemistry C,2010,114:12728-12735
    [204]Ma J, Zhang J, Xiong Z, Yong Y, Zhao X S. Preparation, Characterization and Antibacterial Properties of Silver-modified Graphene Oxide. Journal of Materials Chemistry,2011,21:3350-3352
    [205]Zhang H, Fan X, Quan X, Chen S, Yu H. Graphene Sheets Grafted Ag@AgCl Hybrid with Enhanced Plasmonic Photocatalytic Activity under Visible Light. Environmental science & technology,2011,45:5731-5736
    [206]Shen J, Shi M, Li N, Yan B, Ma H, Hu Y, Ye M. Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Research,2010,3:339-349
    [207]Zhang Z, Xu F, Yang W, Guo M, Wang X, Zhang B, Tang J. A facile one-pot method to high-quality Ag-graphene composite nanosheets for efficient surface-enhanced Raman scattering. Chemical Communications,2011,47:6440-6442
    [208]Das M R, Sarma R K, Saikia R, Kale V S, Shelke M V, Sengupta P. Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids and Surfaces B:Biointerfaces,2011,83:16-22
    [209]Zhao W, Fang M, Wu F, Wu H, Wang L, Chen G. Preparation of graphene by exfoliation of graphite using wet ball milling. Journal of Materials Chemistry,2010,20:5817-5819
    [210]Chen S, Zhu J, Wang X. An in situ oxidation route to fabricate graphene nanoplate-metal oxide composites. Journal of Solid State Chemistry,2011,184: 1393-1399
    [211]Warner J H, Rummeli M H, Gemming T, Buchner B, Briggs G A D. Direct Imaging of Rotational Stacking Faults in Few Layer Graphene. Nano Letters,2008,9:102-106
    [212]Ferrari A C. Raman spectroscopy of graphene and graphite:Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications,2007,143: 47-57
    [213]Krishnamurthy S, Lightcap I V, Kamat P V. Electron transfer between methyl viologen radicals and graphene oxide:Reduction, electron storage and discharge. Journal of Photochemistry and Photobiology A:Chemistry,2011,221:214-219
    [214]Boukhvalov D W, Katsnelson M I. Modeling of Graphite Oxide. Journal of the American Chemical Society,2008,130:10697-10701
    [215]Lightcap I V, Kosel T H, Kamat P V. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide. Nano Letters,2010,10:577-583
    [216]Martinez-Castanon G A, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza J R, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research,2008,10:1343-1348
    [217]Liu L, Liu J, Wang Y, Yan X, Sun D D. Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New Journal of Chemistry,2011,35:1418-1423
    [218]Yamanaka M, Hara K, Kudo J. Bactericidal Actions of a Silver Ion Solution on Escherichia coli, Studied by Energy-Filtering Transmission Electron Microscopy and Proteomic Analysis. Applied and environmental microbiology,2005,71:7589-7593
    [219]Nel A, Xia T, Madler L, Li N. Toxic Potential of Materials at the Nanolevel. Science, 2006,311:622-627

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700