用户名: 密码: 验证码:
CuAl_5Se_8、I_2-II-IV-VI_4以及AlGaN合金的结构和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电材料由于具有光子材料的先进性和电子材料的稳定性等特点,在微电子、光电子以及通信等高科技领域有着广泛的应用前景。因此,研究光电材料的电光性能在光电器件的设计和制造中就显得尤为必要。光电材料的电学性能和光学性能通常由能带结构、态密度以及各种光学常数来表征。目前光电材料的发展,正向着多元化和合金化的方向发展。但是由于化学成分的增加,使得在实验中不易获得满足化学计量比的晶体样本,而且不断增加的自由度也使材料的性质变得异常复杂,因此难以准确地测得材料的性质。利用基于密度泛函理论的第一性原理计算方法对材料进行模拟,不但能够准确分析现有材料的结构以及各种性能,甚至还能对尚未发现的新材料的光电性能进行预测。
     本论文主要研究了目前广泛流行的新型多元光电材料,包括三元半导体CuAlSe_2和CuAl_5Se_8、四元半导体I_2-II-IV-VI_4以及三元合金半导体AlxGa1-xN。在论文中首先简要介绍了这些新型光电材料在光电子器件领域的发展,同时介绍了本论文涉及的计算方法,在此基础上介绍了本论文的主要研究内容,具体内容和结论如下:
     首先在缺陷稳定性分析的基础上,利用第一性原理缺陷研究方法研究了包含一个(2V_(Cu)~-+Al_(Cu)~(+2))缺陷对的CuAl_5Se_8半导体材料的缺陷形成能,证明了该缺陷对存在的可能性。然后对缺陷半导体CuAl_5Se_8的六个弹性常数进行了研究,结果表明该晶体满足四角晶系的Born稳定性标准。通过能带结构以及态密度的分析表明, CuAlSe_2和CuAl_5Se_8都是直接带隙的半导体材料,而且缺陷晶体的带隙大于完整晶体。此外,通过介电函数、吸收光谱和反射率光谱的分析,研究了CuAlSe_2和CuAl_5Se_8的光学性能。提出了在0~4.5eV的能量范围内,CuAl_5Se_8的光学跃迁幅度总是比CuAlSe_2的小。同时相对于完整结构,CuAl_5Se_8的吸收系数和反射率光谱均发生了蓝移,光谱的幅值也因价带顶附近Cu的3d态的减少而发生了下降。以上分析表明,无论是在电子结构还是光学性能上,缺陷对对材料都产生了较大的影响。
     然后利用第一性原理方法对三种不同结构的四元化合物半导体I_2-II-IV-VI_4的几何结构、电子性能和光学性能进行了研究,具体如下:(1)通过对含有V_(Cu)和Cu_(Zn)缺陷的锌黄锡矿结构的Cu_2ZnSnS4的缺陷稳定性进行分析,发现这两种点缺陷之间的形成能差别很小,从理论上证明了两种缺陷在晶体中是共存的。同时研究了Cu_2ZnSnS_4以及包含缺陷结构的晶体的电子结构,发现低浓度的缺陷并不能完全改变材料的性能。(2)还预测了黄锡矿结构的Cu_2CdGeSe_4和纤维锌矿-黄锡矿结构的Ag_2HgSnSe_4的电子结构和光学性能。(3)综合三种不同结构的四元材料的特性,可以得出如下结论: I_2-II-IV-VI_4族材料都是直接带隙的半导体,价带顶和导带底都位于布里渊区的Γ点。价带顶均由I族原子的d态和VI族原子的p态决定,导带底则由IV族原子的s态和VI族原子的p态所决定。
     最后本文讨论了Al的浓度和压力对闪锌矿结构的Al_xGa_(1-x)N合金材料性能的影响。电子结构分析的结果表明,随着Al浓度的增加合金的带隙从直接带隙转变为间接带隙(x=0.62)。同时为了进一步了解分子中原子的成键情况,还对闪锌矿结构的AlGaN合金Mulliken电荷布居分布进行了研究,结果表明晶体具有共价键的特征,其中Al-N键之间的共价性要比Ga-N键强。除此之外,随着Al浓度的增加材料的所有的光学峰均向高能量范围迁移,这是由于导带边缘的蓝移所造成的。通过不同压力下直接和间接带隙的变化,表明AlGaN合金材料在0~15GPa的压力范围内保持闪锌矿结构不变,且带隙随压力的增加而不断增大。
     为了验证理论预测的正确性,本文还将理论结果与我们和前人的实验结果进行了对比,实验结果包括利用XRD对物相结构进行研究分析,以及利用椭偏仪和分光光度计对材料的电子和光学特性进行研究,发现实验结果和计算结果相当吻合,为理论研究奠定了坚实可靠的理论基础。
For having the characteristics of photonic materials advance and electronicmaterials stability, photoelectric materials has a broad application prospect inmicroelectronics, photoelectron, communication technology and other high-techfield. Therefore, investigation on the electro-optical properties of optoelectronicmaterials in optoelectronic devices design and manufacture is particularly necessary.The electronic and optical properties of photoelectric materials are characterized bythe band structure, density of states and all kinds of optical constants. Now theinvestigation of photoelectric materials is focused on the diversification and alloy.However, the increased component makes it not easy to obtain a stoichiometric ratioof crystal sample in experiment, and the increment of the degrees of freedom alsomeans that the properties of these materials become more complex, which makes itdifficult to accurately measure the properties of material s. Based on the densityfunctional theory, the materials properties were simulated using the first-principlesmethod. This method could accurately get the information of the structures andvarious properties of the existing materials, and even could predict the photoelectricproperties of new materials.
     In this paper, the current popular new multiple photoelectric materialsincluding ternary semiconductors CuAlSe_2and CuAl_5Se_8, quaternarysemiconductors I_2-II-IV-VI_4and ternary alloy semiconductor AlxGa1-xN are studied.First, it gives a brief introduction of the development of these novel photoelectricmaterials in the fields of optoelectronic devices. And at the same time the simulationmethods used in the study are introduced. On these bases, the main research contentswere summarized. The contents and conclusions are as follows:
     Firstly, on the basis of analysis of the defect stability, the defect formationenergy of defect pair (2V_(Cu)~-+Al_(Cu)~(+2)) in CuAl_5Se_8is studied using first-principlesmethods and the result proves that this defect pair maybe exist. Then the six elasticconstants of CuAl_5Se_8are investigated and it could found that the results satisfiedwith the Born stability criteria for tetragonal chalcopyrite structure. The analysis ofthe energy band structures and density of states shows that CuAlSe_2and CuAl_5Se_8are the direct gap materials, and the band gap of the defect crystal is bigger than thatof the perfect one. In addition, the optical properties are also studied by calculationsof the dielectric function, absorption spectra, and reflectivity of CuAlSe_2andCuAl_5Se_8. From these results we proposed that the amplitudes of the opticaltransitions for CuAl_5Se_8are always smaller than those of CuAlSe_2in the range of0~4.5eV. Compared with the perfect crystal, the spectra including absorption coefficient and reflectivity for the defect crystal have a blue-shift. And theabsorption coefficient and reflectivity for CuAl_5Se_8also decreased with the decreaseof Cu3d states near the valence band maximum. The above analysis show that thedefect pair could affect the electronic structure s and optical properties of materials.
     Moreover, the geometric structures, electronic and optical properties of thequaternary semiconductor compounds I_2-II-IV-VI_4in three different structures arestudied using first-principles methods, the specific contents are as follows:(1) Byanalyzing the defect stabilities of V_(Cu) and CuZnin kesterite Cu_2ZnSnS4, we foundthat the difference of formation energy between these two point defects is very smalland then they can coexist in the Cu_2ZnSnS_4crystal. From the electronic structures ofCu_2ZnSnS4and the defect semiconductors we found that low concentration defect ofCuZnor VCucould not change the properties of material completely.(2) Theelectronic structures and optical properties of stannite-type Cu_2CdGeSe_4andwurtzite-stannite-type Ag_2HgSnSe_4are also predicted.(3) From the calculatedproperties of the above three quaternary materials, the following conclusions can bedrawn: I_2-II-IV-VI_4are all the direct gap semiconductors, and both the valence bandmaximum and the conduction band minimum exist at Γ point in the Brillouin zone.The valence band maximum is mainly dominated by the I d and VI p states, whilethe conduction band minimum is dominated by IV s and VI p states.
     Finally, the influence s of Al concentration and pressure on the properties ofzinc-blende AlxGa1-xN alloys are discussed as well. The results of the electronicstructures show that the band gap energy changes from the direct to indirect with theincrease of Al mole fraction(x=0.62). In order to understand the bonding behaviorbetween atoms ulteriorly, the Mulliken charge populations are also studied forzinc-blende AlGaN alloys. The result shows that the alloys have covalent nature andthe covalent bonding strength of the Al-N bond is stronger than the Ga-N bond. Inaddition, due to the blue-shift of conduction band edge, all the optical peaks ofalloys have a tendency of shifting to the higher energy with the increase of Alconcentration. We also analyze the direct and indirect band gaps for alloys underdifferent pressures. The results show that AlGaN alloys keep zinc-blende structurewithin the pressure range of0~15GPa, and the band gap increases with theenhancement of the pressure.
     In order to verify the correctness of the theoretical predictions, the theoreticalresults have been compared with our and previous experimental results. The phasestructure s of thin films are investigated and analyzed by XRD. And the electricaland optical properties of these films are investigated by ellipsometry andspectrophotometry. We found that the experimental results are in good agreement with the calculated results. It laid a solid and reliable theoretical foundation fortheoretical research.
引文
[1]Chen H H, Kalu P N, Kalu E E. CuInSe2Thin-Film Deposition on Flexible Plastic Substrate:Electrolyte. Recirculation Rate and Deposition Potential Effects[J]. Journal of Solid State Electrochemistry,2009,14(6):1013-1020.
    [2]Repins I, Contreras M A, Egaas B, et al.19.9%-Efficient ZnO/CdS/CuInGaSe2Solar Cell with81.2%Fill Factor[J]. Progress in Photovoltaics:Research and Applications,2008,16(3):235-239.
    [3]Contreras M A, Ramanathan K, AbuShama J, et al. Short Communication: Accelerated Publication:Diode Characteristics in State-of-the-Art ZnO/CdS/Cu(In1-XGax)Se2Solar Cells[J]. Progress in Photovoltaics:Research and Applications,2005,13(3):209-216.
    [4]Shafarman W N, Klenk R, McCandless B E. Device and Material Characterization of Cu(InGa)Se2Solar Cells with Increasing Band Gap[J]. Journal of Applied Physics,1996,79(9):7324-7328.
    [5]Rau U, Schmidt M, Jasenek A, et al. Electrical Characterization of Cu(In,Ga)Se2Thin-Film Solar Cells and the Role of Defects for the Device Performance [J]. Solar Energy Materials&Solar Cells,2001,67(1-4):137-143.
    [6]Paulson P D, Haimbodi M W, Marsillac S, et al. CuIn1-xAlxSe2Thin Films and Solar Cells[J]. Journal of Applied Physics,2002,91(12):10153-10156.
    [7]Marsillac S, Paulson P D, Haimbodi M W, et al. High-Efficiency Solar Cells Based on Cu(InAl)Se2Thin Films[J]. Applied Physics Letters,2002,81(7):1350-1352.
    [8]Goetzberger A, Hebling C, Schock H W. Photovoltaic Materials, History, Status and Outlook[J]. Materials Science and Engineering:R:Reports,2003,40(1):1-46.
    [9]赖延清,匡三双,刘芳洋等.电沉积Cu(In,Ga)Se预置层硫化退火制Cu(In,Ga)(Se,S)薄膜及表征[J].物理学报,2010,59(2):1196-1201.
    [10]Ito K, Nakazawa T. Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films[J]. Japanese Journal of Applied Physics,1988,27:2094-2097.
    [II]Guo Q, Hillhouse H W, Agrawal R. Synthesis of Cu2ZnSnS4Nanocrystal Ink and Its Use for Solar Cells[J]. Journal of the American Chemical Society,2009,131(35):12554-12555.
    [12]Nakamura S. GaN Growth Using GaN Buffer Layer[J]. Japanese Journal of Applied Physics,1991,30(10A):L1705-L1707.
    [13]Nakamura S, Mukai T, Senoh M. Candela-Class High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Light-Emitting Diodes [J]. Applied Physics Letters,1994,64(13):1687-1690.
    [14]Nakamura S, Senoh M, Nagahama S, et al. InGaN Multi-Quantum-Well Structure Laser Diodes Grown on MgAl2O4Substrates[J]. Applied Physics Letters,1996,68(15):2105-2107.
    [15]Asif K M, Bhattarai A, Kuznia J N, et al. High Electron Mobility Transistor Based on a GaN-AlxGa1-xN Heterojunction[J]. Applied Physics Letters,1993,63(9):1214-1215.
    [16]Han J, Baca A G, Shul R J, et al. Growth and Fabrication of GaN/AlGaN Heterojunction Bipolar Transistor[J]. Applied Physics Letters,1999,74(18):2702-2704.
    [17]Chen Q, Khan M A, Yang J W, et al. High Transconductance Heterostructure Field-Eeffect Transistors Based on AlGaN/GaN[J]. Applied Physics Letters,1996,69(6):794-796.
    [18]Reddy Y B K, Raja V S. Effect of Cu/Al Ratio on the Properties of CuAlSe2Thin Films Prepared by Co-Evaporation[J]. Materials Chemistry and Physics,2006,100(1):152-157.
    [19]Lopez-Garcia J, Guillen C. CuIn1-xAlXSe2Thin Films Obtained by Selenization of Evaporated Metallic Precursor Layers[J]. Thin Solid Films,2009,517(7):2240-2243.
    [20]Honeyman W N. Preparation and Properties of Single Crystal CuAlS2and CuAlSe2[J]. Journal of Physics and Chemistry of Solids,1969,30(8):1935-1940.
    [21]Tell B, Shay J L, Kasper H M. Room-Temperature Electrical Properties of Ten I-III-VI2Semiconductors[J]. Journal of Applied Physics,1972,43(5):2469-2470.
    [22]Bettini M. Reflection Measurements with Polarization Modulation:A Method to Investigate Bandgaps in Birefringent Materials Like I-III-VI2Chalcopyrite Compounds[J]. Solid State Communications,1973,13(5):599-602.
    [23]Yamamoto N, Horinaka H, Okada K, et al. Excitonic Structure of CuGaS2xSe2(1-x) and CuAlS2xSe2(1-x)[J]. Japanese Journal of Applied Physics,1977,16(10):1817-1822.
    [24]Honeyman W N. Preparation and Properties of Single Crystal CuAlS2and CuAlSe2[J]. Journal of Physics and Chemistry of Solids,1969,30(8):1935-1940.
    [25]Chichibu S, Shishikura M, Ino J, et al. Electrical and Optical Properties of CuAlSe2Grown by Iodine Chemical Vapor Transport[J]. Journal of Applied Physics,1991,70(3):1648-1655.
    [26]Alonso M I, Pascual J, Garriga M, et al. Optical Properties of CuAlSe2[J]. Journal of Applied Physics,2000,88(4):1923-1928.
    [27]Eifler A, Kudritskaya E A, Bodnar I V, et al. Infrared and Raman Study of Lattice Vibrations of CuAlSe2Single Crystals[J]. Journal of Physics and Chemistry of Solids,2003,64(9-10):1983-1987.
    [28]Hong K J, Bang J J, Jeong T S, et al. Point-Defect Study of CuAlSe2(112) Layers Post-Annealed in Various Ambient[J]. Journal of the Korean Physical Society,2006,48(5):919-924.
    [29]Jaffe J E, Zunger A. Electronic Structure of the Ternary Chalcopyrite Semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2[J]. Physical Review B,1983,28(10):5822-5847.
    [30]Jayalakshmi V, Davapriya S, Murugan R, et al. Electronic Structure and Structural Phase Stability of CuAlX2(X=S, Se, Te) under Pressure [J]. Journal of Physics and Chemistry of Solids,2006,67(4):669-674.
    [31]Reshak A H, Auluck S. Electronic Properties of Chalcopyrite CuAlX2(X=S, Se, Te) Compounds[J]. Solid State Communications,2008,145(11-12):571-576.
    [32]Abdellaoui A, Ghaffour M, Bouslama M, et al. Structural Phase Transition, Elastic Properties and Electronic Properties of Chalcopyrite CuAlX2(X=S, Se, Te)[J]. Journal of Alloys and Compounds,2009,487(1-2):206-213.
    [33]Maeda T, Wada T. Electronic Structure and Characteristics of Chemical Bonds in CuInSe2, CuGaSe2, and CuAlSe2[J]. Japanese Journal of Applied Physics,2010,49(4):04DP07-04DP07-6.
    [34]Seidl A, Gorling A, Vogl P, et al. Generalized Kohn-Sham Schemes and the Band-Gap Problem[J]. Physical Review B,1996,53(7):3764-3774.
    [35]Maeda T, Wada T. First-Principles Calculation of Defect Formation Energy in Chalcopyrite-Type CuInSe2, CuGaSe2and CuAlSe2[J]. Journal of Physics and Chemistry of Solids,2005,66(11):1924-927.
    [36]Seol J S, Lee S Y, Lee J C, et al. Electrical and Optical Properties of Cu2ZnSnS4Thin Films Prepared by Rf Magnetron Sputtering Process[J]. Solar Energy Materials and Solar Cells,2003,75(1-2):155-162.
    [37]Oishi K, Saito G, Ebina K, et al. Growth of Cu2ZnSnS4Thin Films on Si (100) Substrates by Multisource Evaporation [J]. Thin Solid Films,2008,517(4):1449-1452.
    [38]Zhang X, Shi X, Ye W, et al. The Isolation and Characterization of Murine Macrophages[J]. Applied Physics A-Materials Science&Processing,2008,94:381-386.
    [39]Scragg J J, Dale P J, Peter L M. Towards Sustainable Materials for Solar Energy Conversion:Preparation and Photoelectrochemical Characterization of Cu2ZnSnS4[J]. Electrochemistry Communications,2008,10(4):639-642.
    [40]Kamoun N, Bouzouita H, Rezig B. Fabrication and Characterization of Cu2ZnSnS4Thin Films Deposited by Spray Pyrolysis Technique [J]. Thin Solid Films,2007,515(15):5949-5952.
    [41]Moriya K, Tanaka K, Uchiki H. Fabrication of Cu2ZnSnS4Thin-Film Solar Cell Prepared by Pulsed Laser Deposition [J]. Japanese Journal of Applied Physics,2007,46(9A):5780-5781.
    [42]Moriya K, Tanaka K, Uchiki H. Cu2ZnSnS4Thin Films Annealed in H2S Atmosphere for Solar Cell Absorber Prepared by Pulsed Laser Deposition [J]. Japanese Journal of Applied Physics,2008,47(1):602-604.
    [43]Paier J, Asahi R, Nagoya A, et al. Cu2ZnSnS4as a Potential Photovoltaic Material:A Hybrid Hartree-Fock Density Functional Theory Study[J]. Physics Review B,2009,79(11):115126-115126-8.
    [44]Chen S Y, Gong X G, Walsh A, et al. Crystal and Electronic Band Structure of Cu2ZnSnX4(X=S and Se) Photovoltaic Absorbers:First-Principles Insights[J]. Applied Physics Letters,2009,94(4):041903-041903-3.
    [45]Altosaar M, Raudoja J, Timmo K, et al. Cu2Zn1-xdxSn(Se1-ySy)4Solid Solutions as Absorber Materials for Solar Cells[J]. Physica Status Solidi A,2008,205(1):167-170.
    [46]Hones K, Zscherpel E, Scragg J, et al. Shallow Defects in Cu2ZnSnS4[J]. Physica B:Condensed Matter,2009,404(23-24):4949-4952.
    [47]Nagoya A, Asahi R, Wahl R, et al. Defect Formation and Phase Stability of Cu2ZnSnS4Photovoltaic Material[J]. Physics Review B,2010,81(11):113202-113202-4.
    [48]Chen S Y, Yang J H, Gong X G, et al. Intrinsic Point Defects and Complexes in the Quaternary Kesterite Semiconductor Cu2ZnSnS4[J]. Physics Review B,2010,81(24):245204-245204-10.
    [49]Chen S Y, Gong X G, Walsh A, et al. Defect Physics of the Kesterite Thin-Flm Solar Cell Absorber Cu2ZnSnS4[J]. Applied Physics Letters,2010,96(2):021902-021902-3.
    [50]Matsushita H, Maeda T, Katsui A, et al. Thermal Analysis and Synthesis from the Melts of Cu-Based Quaternary Compounds Cu-Ⅲ-Ⅳ-Ⅵ4and Cu2-Ⅱ-Ⅳ-Ⅵ4(Ⅱ=Zn, Cd; Ⅲ=Ga, In; Ⅳ=Ge, Sn; Ⅵ=Se)[J]. Journal of Crystal Growth,2000,208(1-4):416-422.
    [51]Gulay L D, Romanyuk Y E, Parasyuk O V. Crystal Structures of Low-and High-Temperature Modifications of Cu2CdGeSe4[J]. Journal of Alloys and Compounds,2002,347(1-2):193-197.
    [52]Haueseler H, Himmrich M. Neue Verbindungen Ag2HgMX4Mit Wurtzstannitstruktur[J]. Zeitschrift Fur Naturforschung B,1989,44(9):1035-1036.
    [53]Parasyuk O V, Chykhrij S I, Bozhko V V, et al. Phase Diagram of the Ag2S-HgS-SnS2System and Single Crystal Preparation, Crystal Structure and Properties of Ag2HgSnS4[J]. Journal of Alloys and Compounds,2005,399(1-2):32-37.
    [54]Parasyuk O V, Gulay L D, Piskach L V, et al. The Ag2Se-HgSe-SnSe2System and the Crystal Structure of the Ag2HgSnSe4Compound[J]. Journal of Alloys and Compounds,2002,339(1-2):140-143.
    [55]Khan M R H, Koide Y, Itoh H, et al. Edge Emission of AlxGa1-xN[J]. Solid State Communications,1986,60(6):509-512.
    [56]Koide Y, Itoh H, Khan M R H, et al. Energy Band-Gap Bowing Parameter in an AlxGa1-xN Alloy [J]. Journal of Applied Physics,1987,61(9):4540-4543.
    [57]Lee S R, Wright A F, Crawford M H, et al. The Band-Gap Bowing of AlxGa1-xN alloys[J]. Applied Physics Letters,1999,74(22):3344-3346.
    [58]Bergman L, Chen X B, McIlroy D, et al. Probing the AlGaN Spatial Alloy Fluctuation via UV-Photoluminescence and Raman at Submicron Scale[J]. Applied Physics Letters,2002,81(22):4186-4188.
    [59]Yun F, Reshchikov M A, He L, et al. Energy Band Bowing Parameter in AlxGa1-xN Alloys[J]. Journal of Applied Physics,2002,92(8):4837-4839.
    [60]Shan W, Ager J W, Walukiewicz W, et al. Near-Band-Edge Photoluminescence Emission in AlxGa1-xN under High Pressure[J]. Applied Physics Letters,1998,72(18):2274-2276.
    [61]Eblinga D G, Kirste L, Benz K W, et al. Optical Properties and Ordering of AlxGa1-xN MBE-Layers[J]. Journal of Crystal Growth,2001,227-228:453-457.
    [62]Liou B T, Yen S H, Kuo Y K. First-Principles Calculation for Bowing Parameter of Wurtize AlxGa1-xN[J]. Applied Physics A,2005,81(7):1459-1463.
    [63]Albanesi E A, Lambrecht W R L, Segall B. Electronic Structure and Equilibrium Properties of GaxAl1-xN Alloys[J]. Physics Review B,1993,48(24):17841-17847.
    [64]Teles L K, Furthmller J, Scolfaro L M R, et al. First-Principles Calculations of the Thermodynamic and Structural Properties of Strained InxGa1-xN and AlxGa1-xN Alloys[J]. Physics Review B,2000,62(4):2475-2485.
    [65]Teles L K, Scolfaro L M R, Leite J R, et al. Phase Diagram, Chemical Bonds, and Gap Bowing of Cubic InxAl1-xN Alloys:Ab Initio Calculations[J]. Journal of Applied Physics,2002,92(12):7109-7113.
    [66]De Paiva R, Alves J L A, Nogueira R A, et al. Theoretical Study of the AlxGa1-xN Alloys[J]. Materials Science and Engineering B,2002,93(1-3):2-5.
    [67]Wright A F, Nelson J S. Consistent Structural Properties for AlN, GaN, and InN[J]. Physics Review B,1995,51(12):7866-7869.
    [68]Kanoun M B, Goumri-Said S, Merad A E, et al. Ab Initio Study of Structural Parameters and Gap Bowing in Zinc-Blende AlxGa1-xN and AlxIn1-xN Alloys[J]. Journal of Applied Physics,2005,98(6):063710-063710-5.
    [69]Wright A F, Nelson J S. First-Principles Calculations for Zinc-Blende AlInN Alloys[J]. Applied Physics Letters,1995,66(25):3465-3467.
    [70]Van S M, Sher A, Chen A B. Theory of A1N, GaN, InN and Their Alloys[J]. Journal of Crystal Growth,1997,178(1-2):8-31.
    [71]Fan W J, Li M F, Chong T C, et al. Electronic Properties of Zinc-Blende GaN, AlN, and Their Alloys Ga1-xALxN[J]. Journal of Applied Physics,1996,79(1):188-194.
    [72]Martinez-Guerrero E, Enjalbert F, Barjon J, et al. Optical Characterization of MBE Grown Zinc-Blende AlGaN[J]. Physica Status Solidi A,2001,188(2):695-698.
    [73]Dridi Z, Bouhafs B, Ruterana P. Pressure Dependence of Energy Band Gaps for AlxGa1-xN, InxGa1-xN and InxAl1-xN. New Journal of Physics,2002,4(1):94.1-94.15.
    [74]Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Physical Review,1964,136(3B):B864-B871.
    [75]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Physical Review,1965,140(4A):A1133-A1138.
    [76]Segall M D, Lindan P J D, Probert M J, et al. First-Principles Simulation:Ideas, Illustrations and the CASTEP Code[J]. Journal of Physics:Condensed Matter,2002,14(11):2717-2744.
    [77]Shirakata S, Chichibu S, Matsumoto S, et al. Photoreflectance Study of CuAlSe2Heteroepitaxial Layers[J]. Japanese Journal of Applied Physics,1993,32(2A):L167-L169.
    [78]Alonso M I, Garriga M, Durante Rincon C A, et al. Optical Properties of Chalcopyrite CuAlxIn1-xSe2Alloys[J]. Journal of Applied Physics,2000,88(10):5796-5801.
    [79]Xue D, Betzler K, Hesse H. Dielectric Properties of Ⅰ-Ⅲ-Ⅵ2-Type Chalcopyrite Semiconductors [J]. Physical Review B,2000,62(20):13546-13551.
    [80]Chemla D S. Dielectric Theory of Tetrahedral Solids:Application to Ternary Compounds with Chalcopyrite Structure Dielectric Theory of Tetrahedral Solids:Application to Ternary Compounds with Chalcopyrite Structure [J]. Physical Review Letters,1971,26(23):1441-1444.
    [81]Reddy R R, Rama G K, Narasimhulu K, et al. Interrelationship Between Structural, Optical, Electronic and Elastic Properties of Materials[J]. Journal of Alloys and Compounds,2009,473(1-2):28-35.
    [82]Lany S, Zunger A. Metal-Dimer Atomic Reconstruction Leading to Deep Donor States of the Anion Vacancy in II-VI and Chalcopyrite Semiconductors[J]. Physics Review Letters,2004,93(15):156404-156404-3.
    [83]Hahn H, Frank G, Klingler W, et al. Untersuchungen Uber Ternare Chalkogenide. V. Uber Einige Ternare Chalkogenide Mit Chalkopyritstruktur[J]. Zeitschrift Fur Anorganische und Allgemeine Chemie,1953,274(3-4):153-170.
    [84]Yin M T, Cohen M L. Theory of Ab Initio Pseudopotential Calculations[J]. Physics Review B,1982,25(12):7403-7412.
    [85]Fork V. Naherungsmethode Zur Losung Des Quantenmechanischen Mehrkorper Problems[J]. Zeitschrift Fur Physik,1930,61:126-148.
    [86]Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physics Review Letters,1996,77(18):3865-3868.
    [87]Perdew J P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas[J]. Physics Review B,1986,33(12):8822-8824.
    [88]Ceperley D M, Alder B J. Ground State of the Electron Gas by a Stochastic Method[J]. Physics Review Letter,1980,45(7):566-569.
    [89]Perdew J P, Zunger A. Self-Interaction Correction to Density Functional Approximations for Many-Electron Systems[J]. Physics Review B,1981,23(10):5048-5079.
    [90]Perdew J P, Wang Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy[J]. Physics Review B,1992,45(23):13244-13249.
    [91]Perdew J P, Wang Y. Pair-Distribution Function and Its Coupling-Constant Average for the Spin-Polarized Electron Gas[J]. Physics Review B,1992,46(20):12947-12954.
    [92]Becke A D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior[J]. Physics Review A,1993,38(6):3098-3100.
    [93]Hamann D R, Schliiter M, Chiang C. Norm-Conserving Pseudopotentials[J]. Physics Review Letter,1979,43(20):1494-1497.
    [94]Vanderbilt D. Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J]. Physics Review B,1990,41(11):7892-7895.
    [95]Birch F. Finite Elastic Strain of Cubic Crystals[J]. Physics Review,1947,71(11):809-824.
    [96]张芳英.ZnO系列和过渡金属掺杂GaN体系几何结构与电子性质的第一性原理研究[D].上海:复旦大学,2007:15-42.
    [97]Ackland G J. Embrittlement and the Bistable Crystal Structure of Zirconium Hydride[J]. Physics Review Letters,1998,80(10):2233-2236.
    [98]Cai M Q, Yin Z, Zhang M S. First-Frinciples Study of Optical Properties of Barium Titanate[J]. Applied Physics Letters,2003,83(14):2805-2807.
    [99]Saha S, Sinha T P, Mookerjee A. Electronic Structure, Chemical Bonding, and Optical Properties of Paraelectric BaTiO3[J]. Physics Review B,2000,62(13):8828-8834.
    [100]Monkhorst H J, Pack J D. Special Points for Brillouin-Zone Integrations [J]. Physical Review B,1976,13(12):5188-5192.
    [101]Jaffe J E, Zunger A. Theory of the Band-Gap Anomaly in ABC2Chalcopyrite Semiconductors[J]. Physics Review B,1984,29(13):1882-1906.
    [102]Zhang S B, Northrup J E. Chemical Potential Dependence of Defect Formation Energies in GaAs:Application to Ga Self-Diffusion[J]. Physics Review Letters,1991,67(17):2339-2342.
    [103]Tanaka T, Matsunaga K, Ikuhara Y, et al. First-Principles Study on Structures and Energetics of Intrinsic Vacancies in SrTiO3[J]. Physics Review B,2003,68(20):205213-205213-8.
    [104]Hoglund A, Castleton C W M, Mirbt S. Relative Concentration and Structure of Native Defects in GaP[J]. Physics Review B,2005,72(19):195213-195213-16.
    [105]Ailing B, Shallcross S, Abrikosov I A. Role of Stoichiometric and Nonstoichiometric Defects on the Magnetic Properties of the Half-Metallic FerromagnetNiMnSb[J]. Physics Review B,2006,73(6):064418-064418-9.
    [106]Mahadevan P, Zunger A. Room-Temperature Ferromagnetism in Mn-Doped Semiconducting CdGeP2[J]. Physics Review Letters,2002,88(4): 047205-047205-4.
    [107]Gurel T, Eryigit R. Ab Initio Volume-Dependent Elastic and Lattice Dynamical Properties of Chal copy rite CuAlSe2[J]. Journal of Physics:Condensed Mater,2006,18(4):1413-1425.
    [108]Levine Z H, Allane D C. Quasiparticle Calculation of the Dielectric Response of Silicon and Germanium[J]. Physics Review B,1991,43(5):4187-4207.
    [109]Sun J, Zhou X F, Fan Y X, et al. First-Principles Study of Electronic Structure and Optical Properties of Heterodiamond BC2N[J]. Physics Review B,2006,73(4):045108-045108-10.
    [110]Leon M, Levcenko S, Nateprov A, et al. Optical Constants of CuGa5Se8Crystals[J]. Journal of Applied Physics,2007,102(11):113503-113503-5.
    [111]李健,朱洁.溅射Cu/In叠层预置膜再硒化法制备CuInSe2薄膜[J].太阳能学报,2008,29(3):312-318.
    [112]Redingera A, Siebentritt S. Coevaporation of Cu2ZnSnSe4Thin Films[J]. Applied Physics Letters,2010,97(9):092111-092111-3.
    [113]Chen S, Gong X G, Walsh A, et al. Electronic Structure and Stability of Quaternary Chalcogenide Semiconductors Derived from Cation Cross-Substitution of Ⅱ-Ⅵ and Ⅰ-Ⅲ-Ⅵ2Compounds[J]. Physical Review B,2009,79(16):165211-165211-10.
    [114]Chen S, Walsh A, Luo Y, et al. Wurtzite-Derived Polytypes of Kesterite and Stannite Quaternary Chalcogenide Semiconductors[J]. Physical Review B,2010,82(19):195203-195203-8.
    [115]Hall R S, Szymanski J T, Stewart J M. Kesterite, Cu2(Zn,Fe)SnS4, and Stannite, Cu2(Fe,Zn)SnS4, Structurally Similar but Distinct Minerals[J]. The Canadian Mineralogist,1978,16(2):131-137.
    [116]Quintero E, Tovar R, Quintero M, et al. Lattice Parameter Values and Phase Transitions for the Cu2Cd1-zGeSe4and Cu2Cdi-zFezGeSe4Alloys[J]. Journal of Alloys and Compounds,2007,432(1-2):142-148.
    [117]Raulot J M, Domain C, Guillemoles J F. Ab Initio Investigation of Potential Indium and Gallium Free Chalcopyrite Compounds for Photovoltaic Application[J]. Journal of Physics and Chemistry of Solids,2005,66(11):2019-2023.
    [118]Pamplin B R. A Systematic Method of Deriving New Semiconducting Compounds by Structural Analogy [J]. Journal of Physics and Chemistry of Solids,1964,25(7):675-684.
    [119]Bouhemadou A, Khenata R. Ab Initio Study of the Structural, Elastic, Electronic and Optical Properties of the Antiperovskite SbNMg3[J]. Computational Materials Science,2007,39(4):803-807.
    [120]Saniz R, Ye L, Shishidou T, et al. Structural, Electronic, and Optical Properties of NiAl3:First-Principles Calculations[J]. Physical Review B,2006,74(1):014209-014209-7.
    [121]Himmrich M, Haeuseler H. Far Infrared Studies on Stannite and Wurtzstannite Type Compounds[J]. Spectrochimica Acta Part A:Molecular Spectroscopy,1991,47(7):933-942.
    [122]Parasyuk O V. Phase Relations of the Ag2SnS3-HgS and Ag33.3Sn16.7Se/Te/50-HgSe/Te/Section in Ag-Hg-Sn-S/Se,Te/Systems[J]. Journal of Alloys and Compounds,1999,291(1-2):215-216.
    [123]Hou Z, Cao M, Yuan J, et al. Temperature-Frequency Dependence and Mechanism of Dielectric Properties for γ-Y2Si2O7[J]. Chinese Physics B,2010,19(1):017702-017702-5.
    [124]Cao M, Hou Z, Yuan J, et al. Low Dielectric Loss and Non-Debye Relaxation of Gamma-Y2Si2O7Ceramic at Elevated Temperature in X-band[J]. Journal of Applied Physics,2009,105(1):106102-106102-3.
    [125]李向阳,许金通等.GaN基紫外探测器及其研究进展[J].红外与激光工程,2006,35(3):276-280.
    [126]施敏,武国钰.半导体器件物理[M].西安:西安交通大学出版社,2008:102-142.
    [127]丁志博,王琦,王坤等InGaN/GaN多量子阱的组分确定和晶格常数计算[J].物理学报,2007,56(5):2873-2877.
    [128]刘斌,张荣,谢自力等MOCVD生长不同Al组分的AlGaN薄膜[J].激光与红外,2007,37:964-970.
    [129]高志远,段焕涛,郝跃等.薄膜大型V形表面坑的形成和光学性质[J].材料研究学报,2008,22(6):657-663.
    [130]Gao Z Y, Hao Y, Zhang J C. Reliable Evaluation of Dislocation Densities in GaN Epilayers by Molten KOH Etching[J]. Journal of Functional Materials and Devices,2008,14(4):742-750.
    [131]Komatsu T, Nomura M, Kakudate Y, et al. Synthesis and Characterization of a Shock-Synthesized Cubic B-C-N Solid Solution of Composition BC2.sN[J]. Journal of Materials Chemistry,19966(11):1799-1803.
    [132]Trampert A, Brandt O, Ploog K H. Crystal Structure of Group III Nitrides[J]. Semiconductors and Semimetals,1997,50:167-192.
    [133]Lei T, Moustakas T D, Graham R J, et al. Epitaxial Growth and Characterization of Zinc-Blende Gallium Nitride on (001) Silicon[J]. Journal of Applied Physics,1992,71(10):4933-4943.
    [134]Riane R, Boussahl Z, Zaoui A, et al. Structural and Electronic Properties of Zinc Blende BxGa1-xN Nitrides[J]. Solid State Sciences,2009,11(1):200-206.
    [135]Paiva R, Alves J L A, Nogueira R A, et al. Theoretical Study of the AlxGa1-xN Alloys[J]. Materials Science and Engineering B,2002,93(1-3):2-5.
    [136]Goumri-Said S, Kanoun M B, Merad A E, et al. Prediction of Structural and Thermodynamic Properties of Zinc-Blende AlN:Molecular Dynamics Simulation[J]. Chemical Physics,2004,302(1-3):135-141.
    [137]徐光宪,黎乐民,王德民.量子化学:基本原理和从头计算法(中册)[M].北京:科学出版社,2009:794-796.
    [138]Kim J, Kang S. First Principles Investigation of Temperature and Pressure Dependent Elastic Properties of ZrC and ZrN Using Debye-Gruneisen Theory[J]. Journal of Alloys and Compounds,2012,540:94-99.
    [139]Zhou Y H, Yang Z R, Li L. Magnetic Field and External Pressure Effects on the Spiral Order of Polycrystalline MnCr2O4[J]. Journal of Magnetism and Magnetic Materials,2012,324(22)3799-3801.
    [140]Kaya F, Karagoz I. Experimental and Numerical Investigation of Pressure Drop Coefficient and Static Pressure Difference in a Tangential Inlet Cyclone Separator[J]. Chemical Papers,2012,66(11):1019-1025.
    [141]Yun S H, Shin S H, Lee J Y, et al. Effect of Pressure on Through-Plane Proton Conductivity of Polymer Electrolyte Membranes [J]. Journal of Membrane Science,2012,417:210-216.
    [142]Cai L G, Liu F M, Zhang D. Electronic and Optical Properties of Distorted Rare-Earth Manganite under Hydrostatic Pressure [J]. Solid State Communications,2012,152(12):1036-1041.
    [143]Yuan X L, Wei D Q, Cheng Y. Pressure Effects on Elastic and Thermodynamic Properties of Zr3Al Intermetallic Compound[J]. Computational Materials Sciences,2012,58:125-130.
    [144]Sarwan M, Singh S. Effect of Covalency on High Pressure Phase Transition and Elastic Behaviour of Compound Semiconductors:Gallium Pnictides and Their Alloys[J]. Computational Materials Sciences,2012,58:167-174.
    [145]Gupta D C, Raypuria G S. High Pressure Phase Transition and Elastic Behaviour of Lanthanum Monochalcogenides[J]. European Physical Journal B,2011,84(1):99-108.
    [146]Feng W, Hu H, Cui S. First-Principles Studies on Ti3Si0.5Ge0.5C2under Pressure[J]. Solid State Communications,2011,151(21):1564-1567.
    [147]Vovk R V, Zavgorodniy A A, Obolenskii M A. Influence of High Pressure on the Temperature-Dependence of the Pseudo-Gap in Oxygen Deficient YBa2CusO7-Delta Single Crystals[J]. Modern Physics Letters B,2010,24(22):2295-2301.
    [148]Gour A, Singh S. Pressure-Induced Phase Transition Phenomena in NpSe and NpTe[J]. Journal of Alloys and Compounds,2010,504(2):427-430.
    [149]Cui S X, Hu H Q, Feng W X. Pressure-Induced Phase Transition and Metallization of Solid ZnSe[J]. Journal of Alloys and Compounds,2009,472(1-2):294-298.
    [150]Moon Y K, Bang B, Kim S H, et al. Effects of Working Pressure on the Electrical and Optical Properties of Aluminum-Doped Zinc Oxide Thin Films[J]. Journal of Materials Science:Materials in Electronics,2008,19(6):528-1532.
    [151]Xiao H Y, Jiang X D, Duan G, et al. First-Principles Calculations of Pressure-Induced Phase Transformation In A1N and GaN[J]. Computational Materials Science,2010,48(4):768-772.
    [152]Suzuki T, Yaguchi H, Okumura H, Ishida Y and Yoshida S. Optical Constants of Cubic GaN, AlN, and AlGaN Alloys [J]. Japanese Journal of Applied Physics,2000,39(6A):L497-L499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700