用户名: 密码: 验证码:
层状材料/碳纳米管复合填料的制备及其在PP与PVA中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年,由一维型碳纳米管(carbon nanotubes,简称CNT)与二维型层状材料所构建的三维型复合填料开始成为研究的热点,这种新型复合填料汲取两种填料各自的优点,在改善CNT的分散性,以及制备力学性能、导电性能、阻燃性能与电化学性能等多功能型材料领域具有广阔的发展潜力。本文选用具有代表性的无机层状材料蒙脱土(montmorillonite,简称MMT)与层状双金属氢氧化物(layered double hydroxides,简称LDH),研究了MMT-CNT与LDH-CNT复合物的制备、生长机理与其在聚丙烯及聚乙烯醇中的应用。
     本文采用化学气相沉积(chemical vapor deposition,简称CVD)法在负载铁的MMT上原位生长CNT,成功制备出MMT-CNT复合物。考察了离子交换温度、前驱体制备方法及过渡金属种类等因素对离子交换过程及后期CNT生长的影响。结果表明,离子交换温度对MMT吸附Fe3+的过程影响显著。50℃下,MMT对Fe3+的吸附以离子交换吸附为主,100℃下,则以物理吸附为主:随[Fe3+]/[MMT]比值的增大,MMT对Fe3+的吸附量在100℃下迅速上升,而在50℃下则无明显变化。采用熔融共混方法,制备了MMT-CNT/聚丙烯(PP)复合材料,MMT-CNT的加入可在一定程度上提高PP的热稳定性、力学性能与导电性能。但由于MMT在经历了CVD处理后,层间即发生塌陷,严重限制了MMT-CNT在PP中的分散性,导致其改性效果不甚理想。
     为避免CVD法对层状材料所造成的破坏,本文采用条件温和的尿素法制备了微米级、形貌可控的Co-Al LDH-CNT复合物,研究了此复合物的生长过程及其影响因素、在不同溶剂中的剥离机理以及对PP多种性能的影响。结果表明,Co-Al LDH-CNT复合物的生长过程存在一个临界时间t*=16h,当tt*,LDH的尺寸无明显变化,主要是晶体的完善过程;CNT含量(CCNT)变化对LDH的产率无显著影响,但对LDH的形貌、晶体完善程度以及LDH-CNT复合物的形貌影响较大。同时发现,存在一个临界浓度C*CNT=0.33mg/ml。当CCNT≤C*CNT时,LDH片层尺寸无明显变化,而当CCNT>C*CNT时,其片层尺寸显著减小。此外,可通过改变CCNT调控LDH-CNT复合物的形貌;在不同溶剂中,DBS分子链插层的LDH-CNT(DBS-LC)的剥离程度分别为:水>乙醇>二甲苯>DMF。采用溶液混合法,制备了DBS-LC/PP复合材料。发现DBS-LC的加入使PP的热稳定性、阻燃性能、力学性能及导电性能均显著提高,且比单一填料及MMT-CNT具有更高的效率
     为制备环保无毒的高性能LDH-CNT复合物,首先分别采用水热法与尿素法制备了高纯度、高结晶度的纳米级Mg-Al LDH与微米级Mg-Al LDH,并将其与聚乙烯醇(PVA)共混制备Mg-A1LDH/PVA薄膜。与微米级Mg-Al LDH相比较,纳米级Mg-Al LDH对PVA薄膜的力学强度与耐水性的改善效果更佳,且纳米级Mg-Al LDH/PVA薄膜的透明性与纯PVA薄膜相当。在此基础上,采用水热法制备了形貌可控的纳米级Mg-Al LDH-CNT,并对其在PVA中的应用进行了探索。结果表明,LDH与CNT的比值(δ)存在一个转折点δ*=5,当δ<δ*时,LDH-CNT复合物的平均粒径达到微米级,在水中稳定性差,当δ≥δ*时,LDH-CNT复合物的平均粒径随δ的增大而减小,其在水中的稳定性随δ的增加而提高;采用溶液混合法制备了LDH-CNT-A/PVA薄膜,发现LDH的存在有利于改善CNT与PVA之间的相容性。当δ=7时,复合薄膜的拉伸强度达最大值,当δ=18时,所得薄膜兼具优异的强度与韧性。
Recent years, some researches found that the three-dimensional (3D) composite fillers consisting of one-dimensional carbon nanotubes (CNT) and layered materials could fuse the advantages of these two fillers and had the potential in preparing multi-functional composites with excellent mechanical, electrical, flame resistance and electrochemical properties, as well as in improving the dispersion of CNT in matrix. This work adopted montmorillonite (MMT) and layered double hydroxides (LDH) as the layered materials to prepare MMT-CNT and LDH-CNT composites, and studied the growth process、growth mechanism of these composites and their applications in polypropylene (PP) and poly (vinyl alcohol)(PVA).
     Firstly, the MMT-CNT composite was successfully prepared via chemical vapor deposition (CVD) method on Fe3+-MMT, and the influence of ion-exchange temperature、preparation method of Fe3+-MMT、type of transition metal on ion-exchange process and CNT growth were investigated. The results showed that the ion-exchange adsorption of Fe3+onto MMT dominated at50℃while the physical adsorption dominated at100℃; moreover, the amount of Fe3+adsorbed on MMT increased rapidly with the [Fe3+]/[MMT] ratio, whereas that at50℃did not exhibit significant changes. Subsequently. MMT-CNT/PP composite was prepared by melt mixing and the addition of MMT-CNT caused an increase of the thermal stability、mechanical property and electrical property for PP to some extent. However, due to the damage to MMT strucuture from CVD treatment, the dispersion of MMT-CNT was badly restricted, which should be responsible for the low efficiency of MMT-CNT in PP.
     To avoid the damage from the CVD treatment to layered materials, the microscale Co-Al LDH-CNT composite was successfully synthesized via a mild urea-hydrolysis method, and the growth process、growth mechanism and delamination behavior in various solvents of Co-Al LDH-CNT were investigated, as well as effect of this composite filler on PP performace. The results showed that a critical reaction time existed during the growth process of LDH-CNT composite, t*=16h, at t C*CNT. In addition, the morphology of LDH/CNT could be controlled by adjusting CCNT; The delamination degree of DBS-LDH-CNT in various solvents ranked in the following order:water> ethanol> xylene> DMF. However, high-performance DBS-LC/PP composite was obtained via solution mixing, and the results showed that the introduction of DBS-LC leaded to a significant enhance of the thermal stability、flame resistance、mechanical and electrical properties for PP.
     Finally, the nanoscale Mg-Al LDH and microsacle Mg-Al LDH were synthesized via hydrothermal and urea-hydrolysis method respectively. Compared with microscale LDH, incorporation of nanoscale LDH could better enhance the mechanical property and water resistance of PVA film, and the nanoscale LDH/PVA films were highly transparent. Based on the above results, we prepared the controllable nanoscale Mg-Al LDH-CNT via hydrothermal method, and studied its application in PVA. The results showed that, a turning point existed in mlDH/mcNT ratio for LDH-CNT composite,δ*=5, at δ<δ*, size of LDH-CNT reached microscale, and LDH-CNT exhibited highly instable in water, while at δ≥δ*, size of LDH-CNT decreased and its stability in water improvesdwith increasing δ; moreover, existence of LDH could enhance the interaction between CNT and PVA, the LDH-CNT-A/PVA film had the best tensile strength at δ=7, and the film possessed excellent strength and toughness simultaneously at δ=18.
引文
[1]Zhang D S, Shi L Y, Fang J H, Li X K, Dai K, Preparation and modification of carbon nanotubes, Materials Letters,2005,59,4044-4047.
    [2]Giannelis E P, Polymer-layered silicate nanocomposites:synthesis, properties and applications, Appl Organomet Chem,1998,12:675-680.
    [3]Sinha R S, Yamada K, Okamoto M, Ueda K, New polylactide/layered silicate nanocomposite:a novel biodegradable material, Nano Lett,2002,2:1093-1096.
    [4]Liu L, Grunlan J C, Clay assisted dispersion of carbon nanotubes in conductive epoxy nanocomposites, Adv Funct Mater,2007,17:2343-2348.
    [5]Zhao Y Q, Lau K T, Wang Z, Wang Z C, Cheung H Y, Yang Z, Li H L, Fabrication and properties of clay-supported carbon nanotube/poly (vinyl alcohol) nanocomposites, Polymer Composites, 2009,702-707.
    [6]Lee S Y, Cho W J, Kim K J, Interaction between cationic surfactants and montmorillonites under nonequilibrium condition, Journal of Colloid and Interface Science,2005,284:667-673
    [7]Nguyen H, Block K, Teresa J, Adsorption of hydrogen sulfide on montmorillonites modified with iron, Chemosphere,2005,59:343-353
    [8]Zhou X Y, Huang Q Y, Chen S W, Adsorption of the insecticidal protein of Bacillus thuringiensis on montmorillonite, kaolinite, silica, goethite and red soil, Applied Clay Science,2005,30:87-93.
    [9]Ding Z, Zhu H Y, Lu G Q, Photocatalytic properties of titania pillared clays by different drying methods, Journal of Colloid Interface Science,1999,209:193-199.
    [10]Shaijumon M M, Bejoy N, Ramaprabhu S, Catalytic growth of carbon nanotubes over Ni/Cr hydrotalcite-type anionic clay and their hydrogen storage properties, Applied Surface Science, 2005,242:192-198.
    [11]Gournis D, Karakassides M A, Bakas T, Boukos N, Petridis D, Atalytic synthesis of carbon nanotubes on clay minerals, Carbon,2002,40:2641-2646.
    [12]Bakandritsos A, Simopoulos A, Petridis D, Carbon Nanotube Growth on a Swellable Clay Matrix, Chem Mater,2005,17,3468-3474.
    [13]Isamu H, Yoshiaki I, Yasuaki O, Agricultural covering material, US Patent:5771630,1998.
    [14]Takayoshi W, Satoru A, Shinichi O, Katsuhiro S, Atsushi T, Anti-bacterial film suitable for food packaging, US Patent:5929133,1999.
    [15]黄宝展,李峰,张慧,矫庆泽,段雪,郝建薇,纳米双羚基复合金属氧化物的阻燃性能,应用化学,2002,19:71~75.
    [16]张泽江,梅秀娟,徐成华等,乳液聚合法制备聚苯乙烯/Mg-Al层状双氢氧化物米复合材料,高分子学报,2005,4:589~592.
    [17]Chen W, Qu B J, LLDPE/ZnAl LDH-exfoliated nanocomposites:effeets of nanolayers on thermal and mechanical properties. J Mater Chem,2004,11:1705-1710.
    [18]丁鹏,层离高密度聚乙烯/层状双氢氧化物纳米复合材料的制备,中国科学计术学学报,2006,1:120~124.
    [19]孙维林,王铁军,刘庆旺,粘土理化性能,地质出版社,1992.
    [20]易发成,戴淑霞,侯兰杰等,钙基蒙脱土钠化改型工艺及其产品应用现状,中国矿业,1997,6:65-68.
    [21]Giannelis E P, Polymer layered silicate nanocomposites, Adv Mater,1996,8:29-35.
    [22]Biswas M, Sinha Ray S, Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites, Adv Polym Sci,2001,155:167-221.
    [23]Xu R, Manias E, Snyder A J, Runt J, New biomedical poly(urethane uera)-layered silicate nanocomposites, Macromolecules,2001,34:337-339.
    [24]Bourbigot S, LeBras M, Dabrowski F, Gilman J W, Kashiwagi T, PA6-clay nanocomposite hybrid as charforming agent in intumescent formulations, Fire Mater,2000,24:201-208.
    [25]Gilman J W, Flammability and thermal stability studies of polymer-layered silicate (clay) nanocomposites, Appl Clay Sci,1999,15:31-49.
    [26]Billingham J, TiO2-pillared catalyst for selective catalytic reduction of NO with ammonia, J Catal,2000,190:22-31.
    [27]Yamada H, Hashizume H, Shimomura S, Formation of smectite crystals at high pressures and temperatures, Clays and Clay Minerals,1994,42:674-680.
    [28]Tibbetts G G, Why are carbon filaments tubular? J Cryst Growth,1984,66:632-638.
    [29]Cassel A M, Raymakers A, Kong J, Dai H J, Large scale CVD synthesis of single-walled carbon nanotubes, J Phys Chem B,1999,103:6484-6492.
    [30]罗志强,张孝彬,程继鹏,李昱,刘芙,陶新永,印万忠,韩跃新,高等学校化学学报,2004,25:1879-1884.
    [31]Fonseca A, Hernadi K, Nagy J B, Bernaerts D, Lucas A A, Optimization of catalytic production and purification of buckytubes, JMol Catal A:Chem,1996,107:159-168.
    [32]Ivanov V, Nagy J B, Lambin P H, Lucas A, Zhang X B, Zhang X F, Bernaerts D, Tendeloo G V, Amelinckx S, Landuyt J V, The study of carbon nanotubes produced by catalytic method. Chem Phys Lett,1994,223:329-335.
    [33]Cheung C L, Kurtz A, Park H, Lieber C M, Diameter-controlled synthesis of carbon nanotubes, J Phys Chem B,2002,106:2429-2433.
    [34]Duesberg G S, Graham A P, Liebau M, Seidel R, Unger E, Kreupl F, Hoenlein W, Growth of isolated carbon nanotubes with lithographically defined diameter and location, Nano Lett,2003,3: 257-259.
    [35]Dai H J, Rinzler A G, Nikolaev P, Thess A, Colbert D T, Smalley R E, Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem Phys Lett,1996,260: 471-475.
    [36]Helveg S, Lopez-Cartes C, Sehested J, Hansen P L, Clausen B S, Rostrup-Nielsen J R, Abild-Pedersen F, Norskov J K, Atomic-scale imaging of carbon nanotube growth, Nature,2004, 427:426-429.
    [37]Kathyayini H, Nagaraju H, Fonseca A, Nagy J B, Catalyst activity of Fe, Co and Fe/Co supported on Ca and Mg oxides, hydroxides and carbonates in the synthesis of carbon nanotubes, JMol CatalA:Chem,2004,223:129-136.
    [38]Li W Z, Xie S S, Qian L X, Chang B H, Zou B S, Zhou W Y, Zhao R A, Wang G, Large-scale synthesis of aligned carbon nanotubes, Science,1996,274:1701-1703.
    [39]Kong J, Cassell A M, Dai H J, Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem Phys Lett,1998,292:567-574.
    [40]Li Y, Zhang X B, Tao X Y, Xu J M, Chen F, Shen L H, Yang X F, Liu F, Tendeloo G V, Geise H J, Single phase MgMoO4 as catalyst for the synthesis of bundled multi-walled carbon nanotubes by CVD, Carbon,2005,43:1325-1328.
    [41]Tao X Y, Zhang X B, Cheng J P, Large-scale CVD synthesis of nitrogen-doped multi-walled carbon nanotubes with controllable nitrogen content on a CoxMg1-x MoO4 catalyst, Diam Relat Mater, In press.
    [42]Hernadi K, Fonseca A, Nagy J B, Bernaerts D, Fudala A, Lucas A A, Catalytic synthesis of carbon nanotubes using zeolite support, Zeolites,1996,17:416-423.
    [43]Yang Z X, Xia Y D, Mokaya R, Aligned N-doped carbon nanotube bundles prepared via CVD using zeolite substrates, Chem Mater,2005,17:4502-4508.
    [44]程继鹏,天然纳米矿物作为催化剂CVD法合成纳米碳管及纳米碳管吸氢性能的研究,博士学位论文,浙江大学,2005.
    [45]Hernadi K, Konya Z, Siska A, Kiss J, Oszko A, Nagy J B, Kiricsi I, On the role of the catalyst, catalyst support and their intercalation in synthesis of carbon nanotubes by CVD, Mater Chem Phys,2002,77:536-541.
    [46]Zhang A M, Cui L, Bai S L, Xu Q H, A novel method of varying the diameter of carbon nanotubes on an Fe-supported Y zeolite catalyst. Micro Mesop Mater,1999,29:383-388.
    [47]Jiang D X, He N Y, Zhang Y Y, Xu C X, Yuan C W, Catalytic growth of carbon nanotubes from the internal surface of Fe-loading mesoporous molecular sieves materials, Mater Chem Phys, 2001,69:246-251.
    [48]程继鹏,张孝彬,叶瑛,天然矿物在CVD法合成碳纳米管中的应用,矿物岩石,2006,26:9-12.
    [49]Fonseca A, Hernadi K, Piedigrosso P, Colomer J F, Mukhopadhyay K, Doome R, Lazarescu S, Biro L P, Lambin P H, Thiry P A, Bernaerts D, Nagy J B, Synthesis of single-and multi-wall carbon nanotubes over supported catalysts, Appl Phys A,1998,67:11-22.
    [50]Bakandritsos A, Simopoulos A, Petridis D, Carbon nanotube growth on a swellable clay Matrix, Chem Mater,2005,17,3468-3474.
    [51]Bakandritsos A, Simopoulos A, Petridis D, Iron changes in natural and Fe(Ⅲ) loaded montmorillonite during carbon nanotube growth, Nanotechnology,2006,17:1112-1117.
    [52]Kadlec i kova'M, Breza J, Jesena'k K, Pastorkova'K, Lupta'kova'V, Kolmac ka M, Vojac kova'A, Michalka M, Va'vra I, Kriz anova Z, The growth of carbon nanotubes on montmorillonite and zeolite (clinoptilolite), Applied Surface Science,2008,254:5073-5079.
    [53]段雪,张法智,插层组装与功能材料,化学工业出版社,北京,2007.
    [54]Miyata S, Kumura T, Synthesis of new hydrotalcite-like compounds and their physicochemical properties, Chem Lett,1973,8:843-848.
    [55]Nicod J F, Toward new mufti-property materials, Science,1994,263:636-637.
    [56]Mascolo G, Marino O, Discrimination between synthetic Mg-Al double hydroxides and related carbonate phases, Thermochim. Acta,1980,35:93-98.
    [57]肖铁,马骏,任韵玲,碳酸根离子柱撑钻铝LDH的合成和表征,催化学报,1999,20:459~462.
    [58]Bhattacharyya A, Hall D B, Novel oligovanadate-pillared hydrotalcites, Appl Clay Sci,1995,10: 57-62.
    [59]Bhattacharyya A, Hall D B. New triborate-pillared hydrotalcite, Ionrg Chem,1992,31:3689-3670.
    [60]Martin K J, Pinnavaia T J, Layered double hydroxides as supported anionic reagents Halide-ion reactivity in zinc chromium hydroxides. J Am Chem Soc,1986,108:541-542.
    [61]Chibwe K, Jones W, Synthesis of polyoxotoaetalate-pillared layered double hydroxides via calcined precursors, Chem Mater,1989,1:489-490.
    [62]Maya K, Chang H C, Uchida I, Anion-exchanged clay(hydrotalcite-like compounds) modified electrodes, Inorg Chem,1987,26:624-626.
    [63]Kwon T, Pinnavaia T J, Pillaring of layered double hydroxides by-polyoxometalates with Keggin-ion structures, Chem Mater,1989,1:381-383.
    [64]华瑞年,李宝利,郭车等,钨硅系列三元杂多柱撑阴离子粘土的合成与表征.无机化学学报,1997,13:101~110.
    [65]Cavani F, Trifiro F, Vaccari A, Hydrotalcite-type anionic clays:preparation, prooerties and applications, Catalysts Today,1991,11:173-301.
    [66]Parker L M, Milestone N B, Newman R H, The use of hydrotalcites as an anion absorbent, Industrial and Engineering Chemistry Research,1995,34:1196-1202.
    [67]段雪,李蕾等,均分散超细阴离子材料的新合成方法,中国专利,CN9911382,1999.
    [68]Hwang S H, Choy J H, The effect of synthetic conditions on tailoring the size of hydrotalcite particles, Solid State ionics,2002,151:285-291.
    [69]张强,吕杰彬,水滑石填充聚乙烯材料研究进展,现代化工,2001,21,1:18-22.
    [70]Tsutornu N, Wataru H, Sawa Y, Ultraviolet protective caleined hydrotalcites for resins or cosmetics, EP:737711A1,1996.
    [71]Shen J Y, Guang B, Tu M, Chen Y, Preparation and characterization of Fe/MgO catalysts obtained from hydrotalcite-like compounds, Catal Today,1996,30:77-83.
    [72]Clause O, Goncalves C C, Gazzano M, Matteuzzi D, Synthesis and thermal reactivity of nickel-containing anionic clays, Appl Clay Sci,1993,8:169-186.
    [73]Yun S K, Pinnavaia Y J, Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides, Chem Mater,1995,7:348-354.
    [74]Wang J, Wei M, Rao R, Evans D G, Duan X, Structure and thermal decomposition of sulfated cyclodextrin intercalated in a layered double hydroxide, J Solid State Chem,2004,177:366 372.
    [75]Fornasari G, Gazzano M, Matteuzzi D, Trifiro F, Vaccari A, Structure and reactivity of high-surface-area Ni/Mg/Al mixed oxides, Appl Clay Sci,1995,10:69-82.
    [76]Millange F, Walton R I, O'Hare D, Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hdyrotalcite-like compounds, J Mater Chem, 2000,10:1713-1720.
    [77]Aramendia M M A, Aviles Y, Borau V, Thermal decomposition of Mg/Al and Mg/Ga layered double hydroxides:a spectroscopic study, J Mater Chem,1999,9:1603-1607.
    [78]孟锦荣,张慧,Evans D G,段雪,超分子结构草甘膦插层水滑石的组装及结构表征,高等学校化学学报,2003,24:1315~1319.
    [79]Gastuche M C, Brown G, Mortland M, Mixed magnesium-aluminium hydroxides, Clay Miner, 1967,7:193-201.
    [80]Paunch I, Lohse H H, Schumann K, Allmann R, Synthesis of disordered and Al-rich hydrotalcite-like compounds, Clays and Clay Minerals,1986,34:507-510.
    [81]Adaehi-Pagano M, Forano C, Jean P-B, Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction-control of size and morphology, J Mater Chem,2003,13:1988 -1993.
    [82]Ogawa M, Kaiho H, Homogeneous Precipitation of uniform hydrotalcite particles, Langnuir, 2002,18:4240-4242.
    [83]Xu Z P, Lu G Q, Hydrothermal synthesis of layered double hydroxides(LDHs) from mixed MgO and Al2O3:LDH formation mechanism, Chem Mater,2005,17:1055-1062.
    [84]Lu Z, Zhang F Z, Lei X D, Yang L, Evans D G, Duan X, Microstructure-controlled synthesis of oriented layered double hydroxide thin films:Effect of varying the preparation conditions and a kinetic arid mechanistic study of film formation, Chemical Engineering Science,2007,62:6069-6075.
    [85]Malak-Polaczyk A, Vix-Guterl C, Frackowiak E, Carbon/layered double hydroxide (LDH) composites for supercapacitor application, Energy Fuels,2010,24:3346-3351
    [86]Fornasari G, Gazzzano M, Matteuzzi D, Trifro F, Vaccari A, Structure and reactivity of high-surface-area Ni/Mg/Al mixed oxides, Appl Clay Sci,1995,10:69-82.
    [87]Constantino V R L, Pinnavaia T, Basic properties of layered double hydroxides intercalated by carbonate, hydroxide, chloride and sulfate anions, J Inorg Chem,1995,34:883-889.
    [88]杜以波,何静,李峰,Evans D G,段雪,王作新,水滑石及柱撑水滑石的制备和表征,北京化工大学学报,1997,24:76~82.
    [89]卫敏,何静,李峰,Evans D G,段雪,TPPTS柱撑水滑石的制备及表征,石油学报,1999,15:71-74.
    [90]Chisem I C, Jones W, Martin I, Martin C, Rives V, Probing the surface acidity of lithium aluminium and magnesium aluminium layered double hydroxides, J Mater Chem,1998,8:1917-1925.
    [91]李殿清,冯桃,Evans D G,段雪,有机阴离子柱撑水滑石的插层结构组装及超分子结构,过程工程学报,2002,2:355~360.
    [92]孙幼松,矫庆泽,赵芸,己二酸柱撑LDH的制备及表征,无机化学学报,2001,17:414418.
    [93]Liang J B, Ma R Z, Iyi N B O, Ebina Y, Takada K, Sasaki T, Topochemical synthesis, anion exchange, and exfoliation of Co-Ni layered double hydroxides:a route to positively charged Co-Ni hydroxide nanosheets with tunable composition, Chem Mater,2010,22:371-378.
    [94]Adachi-Pagano M, Forano C, Besse J P, Delamination of layered double hydroxides by use of surfactants, Chemical Communications,2000,91-92.
    [95]Venugopal B R, Shivakumara C, Rajamathi M, Effect of various factors influencing the delamination behavior of surfactant intercalated layered double hydroxides, J Colloid Interface Sci,2006,294:234-239.
    [96]Jobbagy M, Regazzoni A E, Delamination and restacking of hybrid layered double hydroxides assessed by in situ XRD, J Colloid Interface Sci,2004,275:345-348.
    [97]O'Leary S, O'Hare D, Seeley G, Delamination of layered double hydroxides in polar monomers: new LDH-acrylate nanocomposites, Chem Commun,2002,1506-1507.
    [98]Chen W, Feng L, Qu B J, Preparation of Nanocomposites by Exfoliation of ZnAl Layered Double Hydroxides in Nonpolar LLDPE Solution, Chem Mater,2004,16:368-370.
    [99]Chen W, Qu B J, Structural characteristics and thermal properties of PE-g-MA/MgAl-LDH exfoliation nanocomposites synthesized by solution intercalation, Chem Mater,2003,15:3208-3213.
    [100]Iyi N, Ebina Y, Sasaki T, Water-Sswellable MgAl-LDH (layered double hydroxide) hybrids: synthesis, characterization, and film preparation, Langmuir,2008,24:5591-5603.
    [101]Hibino T, Kobayashi M, Delamination of layered double hydroxides in water, J Mater Chem, 2005,15:653-656.
    [102]Li L, Ma R Z, Ebina N, Iyi N, Sasaki T, Positively charged nanosheets derived via total delamination of layered double hydroxides, Chem Mater,2005,17:4386-4391.
    [103]Wu Q L, Olafsen A, Vistad O B, Roots J, Norby P, Delamination and restacking of a layered double hydroxide with nitrate as counter anion, J Mater Chem,2005,15:4695-4700.
    [104]Hibino T, Jones W, New approach to the delamination of layered double hydroxides, J Mater Chem,2001,11:1321-1323.
    [105]Hibino T, Delamination of layered double hydroxides containing amino acids, Chem Mater, 2004,16:5482-5488.
    [106]罗忠富,表面处理对HDPE/Nano-CaCO3复合材料性能的影响,中国塑料,1999,13:47
    [107]Jeon H G, Morphology of polymer silicate nanocomposites:High density polyethylene and a nitrile copolymer, Polymer Bull,1998,41:107-113.
    [108]Dong C L, Lee W J, Preparation and characterization of PMMA-clay hybrid composite by emulsion polymerization, Journal of Applied Polymer Science,1996,61:1117-1122.
    [109]乔放,聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究,高分子通报,1997,3:135-143.
    [110]刘晓辉,聚丙烯/蒙脱土纳米复合材料的制备、表征及动态力学性能,高分子学报,2000,5:563-567.
    [111]王胜杰,聚苯乙烯/蒙脱土熔融插层复合的研究,高分子学报,1998,2:129~133.
    [112]Naoli H, Hirotaka O, Makoto K, Preparation and mechanical properties of polypropylene-clay hybrids based on modified polypropylene and organophilic clay, Journal of Applied Polymer Science,2000,78:1918-1922.
    [113]Erickson K L, Bostrom T E, Frost R L, A study of structural memory effects in synthetic hydrotalcites using environmental SEM, Mater Lett,2005,59:226-229.
    [114]Zammarano M, Franceschi M, Bellayer S, Gilman J W, Meriani S, Preparation and flame resistance properties of revolutionary self-extinguishing epoxy nanocomposites based on layered double hydroxides, Polymer,2005,46:9314-9328.
    [115]Costache M C, Heidecker M J, Manias E, Camino G, Frache A, Beyer G, The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene-vinyl acetate copolymer and polystyrene, Polymer,2007,48:6532-6545.
    [116]Qiu L, Chen W, Qu B, Structural characterization and thermal properties of exfoliated polystyrene/ZnAl layered double hydroxide nanocomposites prepared via solution intercalation, Polym Degrad Stab,2005,87,433-440.
    [117]Hsueh H B, Chen C Y, Preparation and properties of LDHs/polyimide nanocomposites. Polymer,2003,44,1151-1161.
    [118]Hsueh H B, Chen C Y, Preparation and properties of LDHs/epoxy nanocomposites, Polymer, 2003,44,1151-1161.
    [119]Du L, Qu B, Meng Y, Zhu Q, Structural characterization and thermal and mechanical properties of poly(propylene carbonate)/MgAl-LDH exfoliation nanocomposite via solution intercalation, Compos Sci Technol,2008,66:913-918.
    [120]Leroux F, Besse J P, Polymer interleaved layered double hydroxide:a new emerging class of nanocomposites, Chem Mater,2001,13:3507-3515.
    [121]Li F, Tan Q, G. Evans D, Duan X, Synthesis of carbon nanotubes using a novel catalyst derived from hydrotalcite-like Co-Al layered double hydroxide precursor, Catalysis Letters,2005,99:151-156.
    [122]Zhao Y, Jiao Q, Li C H, Liang J, Catalytic synthesis of carbon nanostrucures using layered double hydroxides as catalyst precursors, Carbon,2007,45:2159-2163.
    [123]Xiang X, Zhang L, Hima H I, Li F, G Evans D, Co-based catalysts from Co/Al/Fe layered double hydroxides for preparation of carbon nanotubes, Applied Clay Science,2009,42:405-409.
    [124]Zhao M Q, Zhang Q, Jia X L, Huang J Q, Zhang Y H, Wei F, Hierarchical composites of single/double-walled carbon nanotubes interlinked flakes from direct carbon deposition on layered double hydroxides, Adv Funct Mater,2010,20,677-685.
    [1]Hou H, Schaper A K, Jun Z, Weller F, Greiner, A, Large-scale synthesis of aligned carbon nanotubes using FeCl3 as floating catalyst precursor, Chem Mater,2003,15:580-585.
    [2]Cassell A M, Raymakers J A, Kong J; Dai, H, Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes, JPhys Chem B,1999,103:6484-6492.
    [3]Park C, Keane M A, Growth of filamentous carbon from the surface of Ni/SiO2 doped with alkali metal bromides, J Colloid Interface Sci,2002,250:37-48.
    [4]Shaijumon M M, Bejoy N, Ramaprabhu S, Catalytic growth of carbon nanotubes over Ni/Cr hydrotalcite-type anionic clay and their hydrogen storage properties, Applied Surface Science, 2005,242:192-198
    [5]Gournis D, Karakassides M A, Bakas T, Boukos N, Petridis D, Atalytic synthesis of carbon nanotubes on clay minerals, Carbon,2002,40:2641-2646.
    [6]Bakandritsos A, Simopoulos A, Petridis D, Carbon Nanotube Growth on a Swellable Clay Matrix, Chem Mater,2005,17,3468-3474.
    [7]Ye L, Wu J H, Master-Degree Dissertation of Huaqiao University,2005.
    [8]Weil E D, Patel N G, Iron compounds in non-halogen flame-retardant polyamide systems, Polym Degrad Stab,2003,82:291-296.
    [9]Bakandritsos A, Simopoulos A, Petridis D, Iron changes in natural and Fe(III) loaded montmorillonite during carbon nanotube growth, Nanotechnology,2006,17:1112-1117.
    [10]Li Q, Yan H, Ye Y C, Zhang J, Liu Z F, Defect Location of Individual Single-Walled Carbon Nanotubes with a Thermal Oxidation Strategy, JPhys Chem B,2002,106:11085-11088.
    [11]Bahlawane, Novel sol-gel process depositing α-Al2O3 for the improvement of graphite oxidation-resistance, N Thin Solid Films,2001,396:126-130.
    [12]Geng J, Singh C, Shephard D S, Shaffer M S P, Johnson B F G, Windle A H, Synthesis of high purity single-walled carbon nanotubes in high yield, Chem Commun,2002,15:2666-2667.
    [13]Kadlecikova M, Breza J, Jesenak K, Pastorkova K, Luptakova V, Kolmacka M, The growth of carbon nanotubes on montmorillonite and zeolite (clinoptilolite), Appl Surf Sci,2008,254:5073-5079.
    [14]Bhattacharyya K G, Gupta S S, Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite:A review, Advances in Colloid and Interface Science,2008,140: 114-131.
    [15]Wang J F, Du B Z, Master-Degree Dissertation of Xian University of Technology,2006.
    [16]Xu D, Zhou X, Wang X K, Adsorption and desorption of Ni2+on Na-montmorillonite:Effect of pH, ionic strength, fulvic acid, humic acid and addition sequences, Appl Clay Sci,2008,39:133-141.
    [17]Wang H X, Bentonite,1980.
    [18]Yuan P, Annabi-Bergaya F, Tao Q, Fan M D, Liu Z W, Zhu J X, He H P, Chen T H, A combined study by XRD, FTIR, TG and HRTEM on the structure of delaminated Fe-intercalated/pillared clay, J Colloid Interface Sci,2008,324:142-149.
    [19]Ye L, Wu J H, Master-Degree Dissertation of Zhejiang University,2005.
    [20]近藤精一,石川达雄著,李国希译,吸附科学,化学工业出版社,2006.
    [21]Brunauer S, Deming L S, Deming W S, Teller W J, On a Theory of the van der Waals Adsorption of Gases, J Am Chem Soc,1940,62:1723-1732.
    [22]Fonseca A, Hernadi K, Piedigrosso P, Colomer J F, Mukhopadhyay K, Doome R, Synthesis of single-and multi-wall carbon nanotubes over supported catalysts, Appl Phys A,1998,67:11-22.
    [23]Zhang W D, Phang I Y, Liu T X, Growth of carbon nanotubes on clay:unique nanostructured filler for high-performance polymer nanocomposites, Adv Mater,2006,18:73-77.
    [24]Bourlinos A B, Karakassides M A, Simopoulos A, Petridis D, Synthesis and characterization of magnetically modified clay composites, Chem Mater,2000,12:2640-2645.
    [25]Belin T, Epron F, Characterization methods of carbon nanotubes:a review, Materials Science and Engineering B,2005,119:105-118.
    [26]Arepalli S, Nikolaev P, Gorelik O, Hadjiev V, Holmes W, Files B, Yowell L, Protocol for the characterization of single-wall carbon nanotube material quality, Carbon,2004,42:1783-1791.
    [27]Ferrari A, Robertson J, Interpretation of Raman spectra of disordered and amorphous carbon, Phys Rev B,2000,61:14095-14107.
    [28]Mamedov A A, Kotov N A, Prato M, Guldi D M, Wicksted J P, Hirsch A, Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites, Nat Mater,2002,1: 190-194.
    [29]Hiura H, Ebbesen T, Tanigaki K, Takahashi H, Raman studies of carbon nanotubes, Chem Phys Lett,1993,202:509-512.
    [30]Zhang X X, Jiang D D, Wilkie C A. Thermal and flame properties of polyethylene and polypropylene nanocomposites based on an oligomerically-modified clay, Polymer Degradation and Stability,2006,91:289-297.
    [31]Zhang J G, Jiang D D, Wilkie C A, Fire properties of styrenic polymer-clay nanocomposites based on oligomerically-midified clay, Polymer Degradation and Stability,2006,91:358-366.
    [32]Zhang J G, Jiang D D, Wilkie C A, Polyethylene and polypropylene nanocomposites based on a three component oligomerically-midified clay, Polymer Degradation and Stability,2006,91:641-648.
    [33]Andrews R, Jacques D, Minot M, Rantell T, Fabrication of carbon multiwall nanotube/polymer composites by shear mixing, Macromol Mater Eng,2002,287:395-403.
    [34]Kharchenko S B, Douglas J F, Obrzut J, Grulke E A, Migler K B, Flow-induced properties of nanotube-filled polymer materials, Nat Mater,2004,3:564-368.
    [35]Tjong S C, Liang G D, Bao S P, Electrical behavior of polypropylene/multiwalled carbon nanotube nanocomposites with low percolation threshold, Scripta Mater,2007,57:461-464.
    [36]Seo M K, Park S J, Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites, Chem Phys Lett,2004,395:44-48.
    [37]Sluzarenko N, Heurtefeu B, Maugey M, Zakri C, Poulin P, Lecommandoux S, Diblock copolymer stabilization of multi-wall carbon nanotubes inorganic solvents and their use in composites, Carbon,2006,44:3207-3212.
    [38]陈梅红,罗筑,张乐,孙华伟,宋洁,OMMT对聚丙烯纳米复合材料性能的影响,塑料工业,2011,5:78~81.
    [39]倪卓,孙忠梅,宫永辉,马来酸酐接枝聚丙烯对聚丙烯/蒙脱土纳米复合材料的影响,高分子材料科学与工程,2006,21:79~86.
    [1]Acharya H, Srivastava S K, Bhowmich A K, Synthesis of partially exfoliated EPDM/LDH nanocomposites by solution intercalation:structural characterization and properties, Compos Sci Technol,2007,67:2807-2816.
    [2]Qiu L Z, Chen W, Qu B J, Morphology and thermal stabilization mechanism of LLDPE/MMT and LLDPE/LDH nanocomposites, Polymer,2006,47:922-930.
    [3]Qiu L Z, Chen W, Qu B J, Structural characterisation and thermal properties of exfoliated polystyrene/ZnAl layered double hydroxide nanocomposites prepared via solution intercalation, Polym Degrad Stab,2005,87:433-440.
    [4]Liu J, Chen G M, Yang J P, Preparation and characterization of poly(vinyl chloride)/layered double hydroxide nanocomposites with enhanced thermal stability, Polymer,2008,49:3923. 3927.
    [5]Zammarano M, Franceschi M, Bellayer S, Gilman JW, Meriani S, Preparation and flame resistance properties of revolutionary self-extinguishing epoxy nanocomposites based on layered double hydroxides, Polymer,2005,46:9314-9328.
    [6]Zammarano M, Bellayer S, Gilman JW, Franceschi M, Beyer FL, Harris RH, Delamination of organo-modified layered double hydroxides in polyamide 6 by melt processing, Polymer,2006, 47:652-662.
    [7]Wang LJ, Su SP, Chen D, Wilkie CA, Variation of anions in layered double hydroxides:effects on dispersion and fire properties, Polym Degrad Stab,2009,94:770-781.
    [8]Nyambo C, Chen D, Su SP, Wilkie CA, Variation of benzyl anions in MgAl-layered double hydroxides:fire and thermal properties in PMMA, Polym Degrad Stab,2009,94:496-505.
    [9]Liu Z, Ma R, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T, Synthesis, Anion Exchange, and Delamination of Co-Al Layered Double Hydroxide:Assembly of the Exfoliated Nanosheet/Polyanion Composite Films and Magneto-Optical Studies, J Am Chem Soc,2006,128: 4872-4880.
    [10]M F Chiang, T M Wu, Synthesis and characterization of biodegradable poly(l-lactide)/layered double hydroxide nanocomposites, Compos Sci Technol,2010,70:110-115.
    [11]Wang Y, Yang W, Chen C, Evans D G, Fabrication and electrochemical characterization of cobalt-based layered double hydroxide nanosheet thin-film electrodes, Power Sources,2008,184: 682-690.
    [12]Wang Y, Yang W, Zhang S, Evans D G, Duan X J, Synthesis and Electrochemical Characterization of Co-Al Layered Double Hydroxides, J Electrochem Soc,2005,152:A2130-A2137.
    [13]Su L H, Zhang G J, Effect of carbon entrapped in Co-Al double oxides on structural restacking and electrochemical performances, Power Sources,2007,172:999-1006.
    [14]Guo X, Zhang F, Evans D G, Duan X, Layered double hydroxide films:synthesis, properties and applications, Chem Commun,2010,46:5197-5210.
    [15]杨飘萍,宿美平,杨胥微,刘国宗等,无机化学学报[J],2003,5:485-490
    [16]Matijevic E, Preparation and properties of uniform size colloids, Chem Mater,1993,5:412-426
    [17]Malak-Polaczyk A, Vix-Guterl C, Frackowiak E, Carbon/Layered Double Hydroxide (LDH) Composites for Supercapacitor Application, Energy Fuels,2010,24:3346-3351.
    [18]Costantino U, Marmottini F, Nochetti M, Vivani R, New Synthetic Routes to Hydrotalcite-Like Compounds-Characterisation and Properties of the Obtained Materials, Eur J Inorg Chem,1998, 1439-1446.
    [19]Cavani F, Trifiro F, Vaccari A, Hydrotalcite-type anionic clays:Preparation, properties and applications, Catal Today,1991,11:173-301.
    [20]Adachi-Pagano M, Forano C, Besse J P, Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction-control of size and morphology, J Mater Chem,2003,13:1988-1993.
    [21]Boclair J W, Braterman P S, Layered double hydroxide stability.1. Relative stabilities of layered double hydroxides and their simple counterparts, Chem Mater,1999,11:298-302.
    [22]Millange F, WaltonR I, O'Hare D.Time-resolved in situ X-ray diffraetion study of the liquid-phase reconstruction of Mg-Al carbonate hydrotalcite-like compounds [J]. J. Mater. Chem.,2000,10:1713-1720.
    [23]Shen J Y, Guang B, Tu M, Chen Y, Preparation and characterization of Fe/MgO catalysts obtained from hydrotalcite-like compounds. Catal Today,1996,30:77-82.
    [24]Clause O, Goncalves C C, Gazzano M, Matteuzzi D, Synthesis and thermal reactivity of nickel-containing anionic clays. Appl Clay Sci,1993,8:169-186.
    [25]Pausch I, Lohse H H, Schurmann K, Syntheses of disordered and Al-rich hydrotalcite-like compounds, Clay Clay Miner,1986,34:507-510.
    [26]Okamoto K, Iyi N, Sasaki T, Factors affecting the crystal size of the MgAl-LDH (layered double hydroxide) prepared by using ammonia-releasing reagents, Appl Clay Sci,2007,37:23-31.
    [27]Iyi N, Matsumoto T, Kaneko Y, Kitamura K, Deintercalation of carbonate ions from a hydrotalcite-like compound:enhanced decarbonation using acid-salt mixed solution, Chem Mater, 2004,16:2926-2932.
    [28]Wang D Y, Costa F R, Vyalikh A, Leuteritz A, Scheler U, Jehnichen D, Wagenknecht U, Haussler L, Heinrich G, One-step synthesis of organic LDH and its comparison with regeneration and anion exchange method, Chem Mater,2009,21:4490-4497.
    [29]Massiot D, Fayon F, Capron M, King I, LeCalve S, Alonso B, Durand J O, Bujoli B, Gan Z, Hoatson G, Modelling one-and two-dimensional solid-state NMR spectra, Magn Reson Chem, 2002,40:70-76.
    [30]Burum D P, Rhim W K, JPhys Chem,1979,71:944.
    [31]Costa F R, Leuteritz A, Wagenknecht U, Jehnichen D, Haussler L, Heinrich G, Intercalation of Mg-Al layered double hydroxide by anionic surfactants:preparation and characterization, Appl Clay Sci,2008,38:153-164.
    [1]Zhang W D, Phang I Y, Liu T X, Growth of carbon nanotubes on clay:unique nanostructured filler for high-performance polymer nanocomposites, Adv Mater,2006,18:73-77.
    [2]Sun D, Chu C C, Sue H J, Simple approach for preparation of epoxy hybrid nanocomposites based on carbon nanotubes and a model clay, Chem Mater,2010,22:3773-3778.
    [3]高濂,刘阳桥,碳纳米管的分散及表面改性,硅酸盐通报,2005,5:114-119
    [4]Dujardin E, Ebbesen T W, Krishnan A, Treacy M M J, Purification of Single-Shell Nanotubes, Adv Mater,1998,10:611-613.
    [5]Banerjee S, Hemraj-Benny T, Wong S S, Covalent surface chemistry of single-walled carbon nanotubes, Adv Mater,2005,17:17-29.
    [6]Liu J, Rinzler A G, Dai H J, Fullerene Pipes, Science,1998,280:1253-1256.
    [7]Chen J, Hamon M A, Hu H, Solution properties of single-walled carbon nanotubes, Science,1998, 282:95-98.
    [8]Hiura H, Ebbesen T W, Tanigaki K, Opening and purification of carbon nanotubes in high yields, Adv Mater,1995,7:275-276.
    [9]Feng T, Li D Q, Evans D G, Duan X, On the Factors Influencing the Crystal Structure and Crystalline Size of Layered Double Hydroxide, Chin J Appl Chem,2003,20,117-120.
    [10]VanderHart D L, Asano A, Gilman J W, NMR measurementsrelated to clay dispersion quality and organic-modifierstability in nylon 6/clay nanocomposites, Macromolecules,2001,34:3819- 3822.
    [11]Belin T, Epron F, Characterization methods of carbon nanotubes:a review, Mater Sci Eng B, 2005,119:105-118.
    [12]赵芸,段雪,层状双金属氢氧化物及氧化物的可控制备和应用研究,北京化工大学博士论文,2002.
    [13]Millange F, WaltonR I, O'Hare D, Time-resolved in situ X-ray diffraetion study of the liquid-phase reconstruction of Mg-Al carbonate hydrotalcite-like compounds, J Mater Chem, 2000,10:1713-1720.
    [14]Malak-Polaczyk A, Vix-Guterl C, Frackowiak E, Carbon/layered double hydroxide (LDH) composites for supercapacitor application, Energy Fuels,2010,24:3346-3351.
    [15]许元泽译,范克雷维伦著,聚合物的性质:性质的估算及其与化学结构的关系,北京:科学出版社,1981.
    [16]Hibino T, Jones W, New approach to the delamination of layered double hydroxides, J Mater Chem,2001,11:1321-1323;
    [17]Li L, Ma R, Ebina Y, Iyi N, Sasaki T, Positively charged nanosheets derived via total delamination of layered double hydroxides, Chem Mater,2005,17:4386-4391.
    [18]Wu Q, Olafsen A, Roots J, Norby P, Delamination and restacking of a layered double hydroxide with nitrate as counter anion, J Mater Chem,2005,15:4695-4700.
    [19]Venugopal B R, Shivakumara C, Rajamathi M, Effect of various factors influencing the delamination behavior of surfactant intercalated layered double hydroxides, Journal of Colloid and Interface Science,2006,294:234-239.
    [20]Hibino T, Delamination of layered double hydroxides containing amino acids, Chem Mater, 2004,16:5482-5488
    [21]Kyotani T, Nakazaki S, Xu W H, Tomita A, Chemical modification of the inner walls of carbon nanotubes by HN03 oxidation, Carbon,2001,39:771-785
    [22]Ramasubramaniam R, Chen J, Liu H, Homogeneous carbon nanotube/polymer composites for electrical applications, Appl Phys Lett,2003,83:2928-2930.
    [23]Sandler J K W, Kirk J E, Kinloch I A, Shaffer M S P, Windle A H, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites, Polymer,2003,44:5893-5899.
    [24]Bai J B, Allaoui A, Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites-experimental investigation, Composites Part A,2003,34:689-694.
    [25]Martin C A, Sandier J K W, Shaffer M S P, Schwarz M K, Bauhofer W, Schulte K, Windle A H. Formation of percolating networks in multi-wall carbon-nanotube/epoxy composites, Compos Sci Technol,2004,64:2309-2316.
    [26]Li S, Qin Y, Shi J, Guo Z X, Li Y, Zhu D, Electrical Properties of Soluble Carbon Nanotube/Polymer Composite Films, Chem Mater,2005,17:130-135.
    [27]Wang D Y. Das A, Leuteritz A, Boldt R, Hauβler L, Wagenknech U, Heinrich G, Thermal degradation behaviors of a novel nanocomposite based on polypropylene and CoeAl layered double hydroxide, Polymer Degradation and Stability,2011,96:285-290.
    [28]Xie X L, Zhou X P, Tang J, Hu H C, Wu H B, Zhang J W. China Synth Rubber Ind.2002.25,46.
    [29]Tjong S C, Liang G D, Bao S P. Electrical behavior of polypropylene/multiwalled carbon nanotube nanocomposites with low percolation threshold, Scripta Mater,2007,57,461-464.
    [30]Seo M K, Park S J, Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites. Chem Phys Lett,2004,395,44-48.
    [31]Coiai S, Passaglia E, Hermann A, Augier S, Pratelli D, Streller C, The Influence of the compatibilizer on the morphology and thermal properties of polypropylene-layered double hydroxide composites, Polymer Composites,2010,26:744-754
    [32]Chen W, Feng L, Qu B J, Preparation of nanocomposites by exfoliation of ZnAl layered double hydroxides in nonpolar LLDPE solution, Chem Mater,2004,16:368-370.
    [33]Isci S, Atlcl O, Polypropylene nanocomposites prepared with natural and ODTABr-modified montmorillonite, Journal of Applied Polymer Science,2009,113:367-374.
    [34]Riva A, Zanetti M, Braglia M, Thermal degradation and rheological behaviour of EVA/montmorillonite nanocomposites, Polymer Degradation and Stability,2002,77:299-304.
    [35]Song Y S, Effect of surface treatment for carbon nanotubes on morphological and rheological properties of poly(ethyleneoxide) nanocomposites, Polymer Engineering and Science,2006,46: 1350-1357.
    [36]Wu D F, Wu L, Zhang M, Viscoelasticity and thermal stability of polylactide composites with various funtionalized carbon nanotubes, Polymer Degradation and Stability,2008,93:1577-1584.
    [37]Zheng X X, Wilkie C A, Flame retardancy of polystyrene nanocomposites based on an oligomeric organically-modifier stability in nylon-6/clay nanocomposites. Macromolecules,2001, 34:3819-3922.
    [38]Man-Nshuti C, Wang D Y, Wilkie C A, The role of the trivalent metal in an LDH:Synthesis, characterization and fire properties of thermally stable PMMA/LDH systems, Polymer Degradation and Stability,2009,94:705-711.
    [39]Wang L J, Su S P, Chen D, Wilkie C A, Variation of anions in layered double hydroxides:Effects on dispersion and fire properties, Polymer Degradation and Stability,2009,94,770-781.
    [40]Man-Nshuti C, Songtipy P, Manias E, Jimenez-Gasco M M, Wilkie C A, Polymer nanocomposites using zinc aluminum and magnesium aluminum oleate layered double hydroxides:Effects of polymeric compatibilizer and of composition on the thermal and fire properties of PP/LDH nanocomposites, Polymer Degradation and Stability,2009,94:2042 2054.
    [41]Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J, Thermal degradation and flammability properties of polypropylene/carbon nanotube composites, Macromolecular Rapid Communications,2002,23:761-765.
    [42]Kashiwagi T, Du F, Douglas J F, Winey K I, Harris R H, Shields J R, Nanoparticle networks reduce the flammability of polymer nanocomposites, Natrure Materials,2005,4:928-933.
    [43]Kashiwagi T, Mu M F, Winey K I, Cipriano B, Raghavan S R, Pack S, Relation between the viscoelastic and flammability properties of polymer nanocomposites, Polymer,2008,49: 4358-4368.
    [44]Ma H Y, Tong L F, Xu Z B, Fang Z P, Functionalizing carbon nanotubes by grafting on intumescent flame retardant:nanocomposite synthesis, morphology, rheology, and flammablity, Advanced Functional Materials,2008,18:414-421.
    [45]Shi L, Li D Q, Li S F, Wang J R, Evans D G, Duan X, Structure, flame retarding and smoke suppressing properties of Zn-Mg-Al CO3 layered double hydroxides, Chinese Science Bulletin, 2005,50,1101-1104.
    [46]Wei M, Yuan Q, Evans D G, Wang Z Q, Duan X, Layered solids as a "molecular container" for pharmaceutical agents:L-tyrosine-intercalated layered double hydroxides, Journal of Materials Chemistry,2005,15:1197-1203.
    [47]杜宝宪,方征平,纳米填料/膨胀型阻燃剂复配阻燃聚丙烯研究,硕士学位论文,浙江大学,2009.
    [48]马长宝,改性滑石粉填充聚丙烯的研究,广州化工,2011,4:92~94.
    [49]Xie X L, Zhou X P, Tang J, Hu H C, Wu H B, Zhang J W, China Synth Rubber Ind,2002,25:46-50
    [50]过梅丽编,高聚物与复合材料的动态力学热分析,北京,化学工业出版社.
    [51]Bandi S, Schiraldi, D A, Glass transition behavior of clay aerogel/poly(vinyl alcohol) composites, Macromolecules,2006,39:6537-6545.
    [52]Mucha M, Marszalek J, Fifrych A, Crystallization of isotactic polypropylene containing carbon black as a filler, Polymer,2000,41:4137-4142.
    [53]Maiti P, Nam P H, Okamoto M, Kotaka T, Hasegawa N, Usuki A, Influence of crystallization on intercalation, morphology, and mechanical properties of propylene/clay nanocomposites, Macromolecules,2002,35:2042-2049.
    [54]Maiti P, Nam P H, Okamoto M, Kotaka T, Hasegawa N, Usuki A, The effect of crystallization on the structure and morphology of polypropylene/clay nanocomposites, Polym Engng Sci,2002, 42:1864-1871.
    [55]Zhu S P, Chen J Y, Li H L, Influence of poly (ethylene glycol)/montmorillonite hybrids on the rheological behaviors and mechanical properties of polypropylene, Polym Bul,2009,63:245-257.
    [56]刘振海,陈学思编著,聚合物量热测定,北京,化学工业出版社,2002.
    [57]殷敬华,莫志深著,现代高分子物理学,北京,科学出版社,2001.
    [58]Jeziomy A, Parameters charaeterizing the kinetics of the non-isothermal crystallization of Poly(ethylene terephthalate) determined by DSC, Polymer,1978,19:142-149.
    [59]Ding P, Qu B, Structure, thermal stability, and photocrosslinking characterization of HDPE/LDH nanocomposites synthesized by melt-intercalation, J Polym Sci Part B:Polym Phys,2006,44: 3165-3172.
    [60]王平华,徐国永,聚丙烯/凹凸棒土纳米复合材料的非等温结晶动力学,应用化学,2004,21:783~787.
    [1]Chiellini E, Corti A, Politi B, Biodegradation of poly(vinyl alcohol) on solid substrate, Polym Degrad Stab,1999,64:305-312.
    [2]Corti A, Cinelli P, D'Antone S, Biodegradation of polyvinyl alcohol) in soil environment: Influence of natural organic fillers and structural parameters, Macromol Chem Phys,2002,203: 1526-1531.
    [3]Hassan C M, Peppas N A, Structure and applications of Poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods, Adv Polym Sci,2000,153:37-65.
    [4]Zhang Z, Britt I J, Tung M A, Permeation of oxygen and water vapor through EVOH films as influenced by relative humidity, JAppl Polym Sci,2001,82:1866-1872.
    [5]Marten F L, Kroschwitz J I, Encyclopedia of Polymer Science and Engineering Wiley:New York, 1989.
    [6]Kickelbick G, Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale, Prog Polym Sci,2003,28:83-114.
    [7]Bandyopadhyay A, Sarkar M D, Bhowmick A K, Effect of reaction parameters on the structure and properties of acrylic rubber/silica hybrid nanocomposites prepared by sol-gel technique, J Polym Sci Polym Phys,2005,43:2399-2412.
    [8]Luo L, Yu S H, Qian H S, Zhou T, Large-scale fabrication of flexible silver/cross-linked poly(vinyl alcohol) coaxial nanocables by a facile solution approach, J Am Chem Soc,2005,127: 2822-2823.
    [9]Han J B, Yan D P, Shi W Y, Ma J, Yan H, Wei M, Evans DC, Duan X, Layer-by-Layer Ultrathin Films of Azobenzene-Containing Polymer/Layered Double Hydroxides with Reversible Photoresponsive Behavior, JPhys Chem B,2010,114,5678-5685.
    [10]Ye L, Ding P, Zhang M, Qu B J, Synergistic effects of exfoliated LDH with some halogen-free flame retardants in LDPE/EVA/HFMH/LDH nanocomposites, JAppl Polym Sci,2008,107:3694-3701.
    [11]Huang S, Cen X, Peng H D, Guo S Z, Wang W Z, Liu TX, Heterogeneous Ultrathin Films of Poly(vinyl alcohol)/Layered Double Hydroxide and Montmorillonite Nanosheets via Layer-by-Layer Assembly, JPhys Chem B,2009,113:15225-15230.
    [12]Ramaraj B, Nayak K S, Yoon R K, Poly(vinyl alcohol) and layered double hydroxide composites: Thermal and mechanical properties, J Appl Polym Sci,2010,116:1671-1677.
    [13]Xu Z P, Stevenson G S, Lu C Q, Lu G Q, Bartlet P F, Gray P P, Stable suspension of layered double hydroxide nanoparticles in aqueous solution, J Am Chem Soc,2006,128:36-37.
    [14]Xu Z P, Stevenson G S, Lu C Q, Lu G Q, Dispersion and size control of layered double hydroxide nanoparticles in aqueous solution, JPhys Chem B,2006,110:16923-16929.
    [15]Xu, Z P, Lu G Q, Hydrothermal synthesis of layered double hydroxides (LDHs) from mixed MgO and Al2O3:LDH formation mechanism, Chem Mater,2005,17:1055-1062.
    [16]Diez-Gutiorrez S, Rodrigulz-Perez M A, Desaja J A, Dynamic mechanical analysis of injection-moulded discs of polypropylene and untreated and silane-treated talc-filled polypropylene, Polymer,1999,40:5345-5353.
    [17]Zhao X, Zhang Q H, Chen D J, Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites, Macromolecules,2010,43,2357-2363.
    [18]张英杰,彭人勇,聚乙烯醇/蒙脱土复合材料的研究,硕士研究生学位论文,青岛科技大学,2005.
    [19]Satokawa Y, Shikata T, Hydration structure and dynamic behavior of poly(vinyl alcohol)s in aqueous solution, Macromolecules,2008,41:2908-2913.
    [20]Liou G S, Lin P H, Yen H J, Yu Y Y, Chen W C, Flexible nanocrystalline-titania/polyimide hybrids with high refractive index and excellent thermal dimensional stability, J Polym Sci A: Polym Chem,2010,48:1433-1440.
    [21]Cui L, Tarte N H, Woo S I, Synthesis and characterization of PMMA/MWNT nanocomposites prepared by in situ polymerization with Ni(ACAC)2 catalyst, Macromolecules,2009,42:8649-8654.
    [22]Sun D, Sue H J, Miyatake N, Optical properties of ZnO quantum dots in epoxy with controlled dispersion, JPhys Chem C,2008,112:16002-16010.
    [23]Huang S, Chen X, Zhu H, Yang Z, Yang Y, Tjiu W W, Liu Y X, Facile preparation of poly (vinyl alcohol) nanocomposites with pristine layered double hydroxides, Materials Chemistry and Physics,2011,130:890-896.
    [24]聚乙烯醇的性质与应用,北京有机化工厂研究所,1979.
    [25]Du B X, Fang Z P, The preparation of layered double hydroxide wrapped carbon nanotubes and their application as a flame retardant for polypropylene, Nanotechnology,2010,21:315603-315609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700