用户名: 密码: 验证码:
钛酸铋基钙钛矿复合氧化物气、湿敏性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于低维敏感功能材料在化学传感器件领域有着许多潜在的应用价值,人们将各类低维敏感功能材料组装成低维微(纳)尺度装置。这些低维敏感功能材料的奇异物理、化学特性和在构建微纳器件方面的巨大应用潜力引起国内外科研工作者的广泛关注。本文以钛酸铋基粉末、薄膜等敏感功能材料为研究对象,首先对ABO_3型钙钛矿敏感功能材料气、湿敏性能的研究进展和应用背景进行了概述,主要讨论了敏感功能材料的制备方法和表征手段,以及敏感功能材料的气敏特性机理和湿敏特性机理。然后按照从材料制备、材料表征、器件制作、性能测试到器件应用的研究思路,通过系统的实验方法研究了具有较大比表面积钛酸铋基钙钛矿复合氧化物的气、湿敏性能。如钛酸铋基粉末、薄膜材料的制备工艺、灵敏特性、响应恢复特性、湿滞特性、选择特性和稳定特性及离子掺杂对材料敏感性能的影响。主要内容和结果有如下五部分。
     1.采用金属有机物分解法(Metal-Organic-Decomposition, MOD)结合煅烧技术(Calcination Technology)制备了具有高比表面积的K_(0.5)Bi_(0.5)TiO_3(KBT)粉末。采用X射线衍射仪(XRD)、场发射电子显微镜(FE-SEM)、透射电子显微镜(TEM)和电子衍射能谱仪(EDS)对材料的形貌及组织结构进行了表征。运用阻抗分析仪结合湿度发生装置研究了不同相对湿度氛围下KBT粉末的湿敏性能。此外,结合KBT粉末的复阻抗图谱,进一步探讨了基于湿度传感器的KBT粉末湿敏特性机理。研究表明:(a)所制备出的KBT粉末,其表面微观形貌呈珊瑚状,且具有四方相钙钛矿晶体结构。(b)KBT粉末材料的阻抗值在不同相对湿度(Relative Humidity, RH)下受工作频率的影响很大,其最佳工作频率为100Hz。在此频率下,全湿范围内(11%-95%RH)其阻抗值变化量将近4个数量级,且其阻抗-湿度曲线线性度达到最佳。(c)在100Hz工作频率下,KBT粉末的响应恢复速度分别为12秒和25秒,且其最大湿滞为3%RH。(d)笔者根据Kulwicki理论,分析了KBT具有良好湿敏性能的原因。KBT粉末的珊瑚状微观结构使其具有较大的比表面积,从而增大了对空气中水分子的吸附量,最终导致材料对空气湿度具有良好的敏感特性。
     2.采用MOD法结合煅烧技术制备了Na掺杂的(NaK)_(0.5)Bi_(0.5)TiO_3(NKBT)粉末。采用XRD、FE-SEM、TEM和EDS对材料的形貌及组织结构进行了表征。研究了不同相对湿度氛围下NKBT粉末的湿敏性能。此外,结合复阻抗图谱、材料表面形貌及掺杂离子特性,进一步探讨了Na离子掺杂对KBT粉末湿敏特性的影响机制。研究表明:(a)所制备出的NKBT粉末表面形貌为均匀球状结构,且材料具有较高的孔隙率,其晶体结构为四方相钙钛矿结构。(b) NKBT粉末的最佳工作频率为100Hz,全湿范围内其阻抗值变化量超过了4个数量级,且其灵敏度响应值约为KBT材料的3倍。(c)100Hz工作频率下,NKBT粉末的响应恢复速度分别为20秒和60秒,最大湿滞为4%RH。(d)通过对其复阻抗图谱的分析,结合电子传导和离子传导理论,我们发现碱金属Na+在水中的高溶解度和其良好的电学传导特性是材料湿敏性能得到提高的主要原因。
     3.采用MOD法结合煅烧技术制备了Zr掺杂的3%Zr-(Na_(0.85)K_(0.15))_(0.5)Bi_(0.5)TiO_3(Zr-NKBT)粉末。采用XRD、FE-SEM、TEM和EDS对材料的形貌及组织结构进行了表征。通过对不同相对湿度氛围下Zr-NKBT粉末湿敏性能的分析,结合复阻抗图谱、材料表面形貌及掺杂离子特性,研究了Zr离子掺杂对NKBT粉末湿敏特性的影响机制。研究表明:(a)制备出的Zr-NKBT粉末表面形貌为均匀球状结构,且其球状颗粒尺寸略大于NKBT,其晶体结构仍为四方相钙钛矿结构。(b)Zr-NKBT的最佳工作频率为100Hz,其阻抗值在全湿范围内的变化量约为4个数量级,但其在相同湿度条件下的阻抗值较NKBT材料有明显的降低。(c)100Hz工作频率下,Zr-NKBT粉末的响应恢复速度分别为8秒和130秒。(d) Zr的掺杂使得材料晶粒尺寸有略微增大的现象,导致了材料晶界面积的减小,进而致使多晶材料中电阻率的降低。
     4.采用传感器制备工艺制作了KBT粉末旁热式气体传感器。利用智能气敏分析仪结合静态配气系统,测试了KBT粉末材料对乙醇气体的气敏性能。获得了基于旁热式气体传感器下KBT粉末的灵敏度-温度曲线、灵敏度-浓度曲线、响应恢复曲线和选择特性曲线。研究结果为:(a)工作温度对于珊瑚状KBT粉末的灵敏度有着很大的影响,其最佳工作温度为360°C。在此温度下,对500ppm乙醇气体的最大灵敏度值为10。(b) KBT粉末旁热式气体传感器在100ppm-1000ppm乙醇气体浓度区间的灵敏度曲线具有良好的线性度,对500ppm乙醇气体的响应恢复速度分别为8秒和12秒。(c)KBT粉末具有对乙醇气体良好的选择特性(S=10),其对甲醇、氢气、一氧化碳、氨气和乙炔气体基本不敏感,其灵敏度分别为3、1、1、1和1。(d)利用表面反应机制结合氧吸附理论,对KBT材料的乙醇气敏特性机理进行了解释。
     5.采用MOD法结合旋涂技术(Spin-coating),在不同退火环境下制备了具有较大比表面积的Bi3.15Nd0.85Ti3O12(BNdT)薄膜。运用XRD、FE-SEM和EDS对BNdT薄膜的表面形貌、晶体结构和元素组成进行了表征。利用光刻技术、磁控溅射技术结合剥离法,制备出BNdT薄膜气体传感器。采用温控智能气敏分析仪结合动态配气系统,测量了BNdT薄膜的灵敏特性、响应恢复特性等气敏性能。研究结果如下所示:(a)BNdT薄膜为混合取向的铋层状钙钛矿型多晶薄膜,在空气氛围下退火的BNdT薄膜的微观形貌为疏松多孔状结构,而在氧气氛围下退火的BNdT薄膜为表面致密的多晶薄膜。(b)在空气氛围下退火的BNdT薄膜比氧气氛围下退火的薄膜具有更好的气敏性能。相比于传统的气敏材料工作温度(约300°C左右),BNdT薄膜的最佳工作温度仅为100°C,对1ppm乙醇气体的灵敏度值为6,这就意味BNdT薄膜在降低传感器功耗方面具有很大的应用潜力。(c)BNdT薄膜对乙醇气体的极限探测浓度能够达到0.1ppm (100ppb),其灵敏度值为3,且其对1ppm乙醇气体的响应恢复速度约为6秒和10秒。(d)通过利用耗尽层原理和材料表面对目标气体的吸附、解吸附机制解释了BNdT薄膜对乙醇气体高敏感特性的现象,BNdT薄膜的高体表比以及薄膜传感器的平面结构是造成BNdT薄膜具有优异气敏性能的主要原因。
Because of potential application in chemical sensors field,low-dimensional sensitive functional materials are fabricated intolow-dimensional micro (nano) device. The low-dimensional sensitivefunctional materials, which are of special physics properties, chemicalproperties and the great potential application in the filed of micro (nano)device, have attracted a great attention. For the bismuth titanate based powderand thin film, we firstly introduced the research progress and applicationbackground of gas and humidity sensing properties for ABO_3-type perovskitefunctional materials, and the review focuses on the preparation andcharacterization methods of sensitive functional materials and the gas sensingmechanism and humidity sensing mechanism of sensitive functional materials.Then, according to the idea of preparation-characterization-measurement-application, the gas and humidity sensing properties of bismuth titanate basedperovskite composite oxides, which are of large specific surface, areinvestigated systematically by the experimental methods, such as thefabrication, sensitive properties, response and recovery properties, hysteresisproperties, selectivity properties and stability properties. The main results aresummarized as follows.
     1. KBT powders with large specific surface were synthesized by metalorganic decomposition method (MOD), and characterized by XRD, FE-SEM,TEM and EDS. The humidity sensing properties of KBT powders areinvestigated at different relative humidity (RH) by using the LCR analyzer andhumidity generation sources. By using the complex impedance plots, wediscuss the humidity sensing mechanism based on the KBT powder humiditysensor. The results show:(a) The morphologie of KBT powders is composed ofcoral-like structure, and the crystalline structure of KBT powders is tetragonalperovskite structure.(b) The impedance of KBT powders is greatly affected bythe working frequency at different RH, and the best working frequency is100Hz. At the frequency of100Hz, the impedance changes about four ordersof magnitude within the whole humidity range from11%to95%relativehumidity (RH), and the impedance versus RH curve have the good linearity.(c) At the frequency of100Hz, the response and recovery time are12s and25s,and the maximum hysteresis is around3%RH at the range11–95%RH.(d)According to Kulwicki theory, the good humidity sensing properties can beexplained for the humidity sensor based KBT powders. The coral-like specialmicrostructures are helpful for the increase of the specific surface, andincrease the adsorption of water molecule, which is beneficial for their sensingproperties.
     2. NKBT powders were synthesized by MOD, and characterized by XRD,FE-SEM, TEM and EDS. The humidity sensing properties of NKBT powdersare investigated at different relative humidity (RH) by using the LCR analyzerand static gas distribution system. Based on investigation for the compleximpedance plots, the morphologies of NKBT powders and the electricalproperties of doping ions, the effects of doping ions on the humidity sensingproperties are systematically studied for NKBT powders. The results show:(a)The morphologie of NKBT powders is of homogeneous sphericalmicrostructure with diameters of0.5-2μm, and is also featured by a highporosity. The crystalline structure of NKBT powders is tetragonal perovskitestructure.(b) The best working frequency of NKBT humidity sensor is100Hz,and the impedance changes more than four orders of magnitude within thewhole humidity range from11%to95%RH. The response value of NKBTpowders is nearly three times larger than it of KBT powders.(c) At thefrequency of100Hz, the response and recovery time are20s and60s, and themaximum hysteresis is around4%RH at the range11–95%RH.(d) We canfound that the humidity sensing improvement brought about by Na doping canbe explained by the high solubility of Na+ions combining with its goodconductivity in water.
     3. Zr-NKBT powders were prepared by MOD, and XRD, FE-SEM, TEMand EDS were used to characterize the morphologie and crystalline structureof Zr-NKBT powders. By studying the humidity sensing properties ofZr-NKBT powders at different relative humidity (RH), the influencemechanism of Zr-doping in enhancing the humidity sensing properties isinvestigated for Zr-NKBT powders. The results show:(a) The morphologie ofZr-NKBT powders is of homogeneous spherical micro-structure, and thespherical micro-structure size of Zr-NKBT powders is larger than the one of NKBT powders. The crystalline structure of Zr-NKBT powders is tetragonalperovskite structure.(b) The best working frequency of Zr-NKBT humiditysensor is100Hz, and the impedance changes about four orders of magnitudewithin the whole humidity range from11%to95%RH. At the same RH, theimpedance of Zr-NKBT powders is much lower than it of NKBT powders.(c)At the frequency of100Hz, the response and recovery time are8s and130s.(d) Comparing with the grain size of NKBT powders, Zr-NKBT powders are oflarger grain size due to the Zr-doping, and it make the grain boundary surfacedecreased which normally account for low resistivity of a polycrystallinematerial.
     4. The side-heated gas sensors based on KBT powders were fabricated byusing the process of sensor fabrication, and the gas sensing properties of KBTgas sensors were measured by using intelligent gas sensing analyzer and staticvolumetric method. The sensitivity vs. temperature curve, sensitivity vs.concentration curve, response and recovery curve and selectivity curve wasobtained by comparing the resistance of the gas sensor in air with that in thetarget gas. The results show:(a) The sensitivity of the gas sensor based oncoral-like KBT powders is greatly affected by the working temperature, andthe best working temperature of KBT gas sensor is360°C. The sensitivity ofKBT gas sensor to500ppm ethanol is10at the temperature of360°C.(b) Thesensitivity vs. concentration curve is of the good linearity at the ethanolconcentration range of100ppm-1000ppm, and the response and recovery timeare8s and12s.(c) The KBT gas sensor is of good selectivity to gaseousethanol (S=10), and less sensitive to CH3OH, and totally insensitive to H2, CO,NH3and C2H2. The sensitivities are about3,1,1,1and1to CH3OH, H2, CO,NH3and C2H2, respectively.(d) The gas sensing mechanism for ethanol gas isexplained based on the surface reaction mechanism and oxygen-adsorptiontheory.
     5. BNdT thin film with large specific surface was prepared by MOD andSpin-coating technology at the different annealed conditions, and themorphologie and crystalline structure of BNdT thin film were characterized byXRD, FE-SEM and EDS. Based on dissection method, the plane gas sensorbased on BNdT thin film was fabricated by magnetron sputtering andlithograph technology. The gas sensing properties of BNdT thin film, such as sensitivity characterization, response and recovery behaviors etc., weremeasured by intelligent gas sensing analyzer and dynamic volumetric method.The results show:(a) Compared with standard card, BNdT thin film consistingof bismuth-layered perovskite structure is polycrystalline, without a preferredorientation. The morphologie of BNdT thin film which is annealed at airpresents a state of loose and porous, and the morphologie of BNdT thin filmwhich is annealed at O2forms a compact structure.(b) Compared with theBNdT thin film annealed at O2, the BNdT thin film annealed at air is of bettergas sensing properties. The best working temperature of BNdT thin film is100°C, which is lower than the temperature of other gas sensing materials(about300°C), and the sensitivity to1ppm ethanol is6. This means that BNdTthin film has potential application in fabricating low power consumptionsensors.(c) BNdT thin film is sensitive to gaseous ethanol at concentrationdown to0.1ppm, and the corresponding sensitivity is3. The response andrecovery time are6s and10s for the BNdT thin film.(d) The ethanol sensingmechanism for ethanol can be explained by the surface depletion and the targetgas chemisorption and desorption on the materials surface, and the goodethanol sensing properties are mainly caused by the large surface-to-volumeratio of BNdT thin film and plane structure of the gas sensor.
引文
[1]王占国.我国新材料产业的发展. http://www.scachina.org.(上海硅酸盐工业协网),2005年10月26日.
    [2]干福熹.信息材料[M].天津:天津大学出版社,2000.
    [3]伯顿. JJ.加坦.新型催化材料[M].林西平,译.北京:石油工艺出版社,1984.
    [4] G. Martinelli, et al. Screen-printed perovskite-type thick as gas sensors forenvironmental monitoring [J]. Sens. Actuator,1999, B55:99-110.
    [5]李言荣,恽正中.材料物理学概论[M].北京:清华大学出版社,2001.
    [6]吴宪平,胡美风.扩散硅压力传感器性能优化研究[J].传感技术学报,1992,3:1-5.
    [7]牛德芳.力学量敏感元件及其应用[M].北京:科学出版社,1987.
    [8] M. Bursell, M. Pirjamali, Y. Kiros. La0.6Ca0.4O3, La0.6Ca0.9MnO3and LaNiO3asbifunctional oxygen electrodes [J]. Electrochim. Acta,2002,47:1651-1660.
    [9] H. Ikawa, M. Takemoto, M. Katouno, et al. Products and microwave dielectricproperties of ceramics with nominal composition (Ba0.9Ca0.1)(YxB'1/2) O(3x+4.5)/2(B'=Nb5+, Ta5+)[J]. J. Eur. Ceram. Soc.,2003,23:2511-2514.
    [10]何希才,薛永毅.传感器及其应用实例[M].北京:机械工业出版社,2004.
    [11]戴焯.传感与检测技术[M],武汉:武汉理工大学出版社,2003.
    [12]孙良彦.国外湿度传感器的发展动态[J].传感器技术,1996,2:1-4.
    [13] C. CHEN. Humidity in plant tissue culture vessels [J]. Biosyst. Eng.,2004,88:231-241.
    [14] F. H. Ramirez, S. Barth, A. Tarancon, O. Casals, E. Pellicer, J. Rodriguez, A. R.Rodriguez, J. R. Morante, S. Mathur. Water vapor detection with individual tinoxide nanowires [J]. Nanotechnology,2007,18:424016(6pp).
    [15] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, X. G. Gao, J. P. Li. Positivetemperature coefficient resistance and humidity sensing properties of Cd-dopedZnO nanowires [J]. Appl. Phys. Lett.,2004,84:3654-3658.
    [16] Y. Qiu, S. Yang. ZnO Nanotetrapods: controlled vapor-phase synthesis andapplication for humidity sensing [J]. Adv. Funct. Mater.,2007,17:1345-1352.
    [17] X. Zhan, M. Yang, Z. Lei, Y. Li, Y. Liu, G. Yu, D. Zhu. Photoluminescence,electroluminescence, nonlinear optical, and humidity sensitive properties of poly(p-diethynylbenzene) prepared with a nickel acetylide catalyst [J]. Adv. Mater.,1999,12:51-53.
    [18]康昌鹤,唐省吾等.气、湿敏感器件及其应用[M].北京:科学出版社,1988.
    [19]张彤.电阻型湿敏元件的电特性研究与集成一体化多功能传感器的设计研制[D].长春:吉林大学,2001.
    [20] M. D. Wit, E. Vanneste, H. J. Geise, L. J. Nagels. Chemiresistive sensors ofelectrically conducting poly (2,5-thienylene vinylene) and copolymers: theirresponses to nine organic vapours [J]. Sens. Actuators B,1998,50:164-172.
    [21] S. Saevels, A. Z. Berna, J. Lammertyn, C. D. Natale, B. M. Nicolai.Characterisation of QMB sensors by means of the BET adsorption isotherm [J].Sens. Actuators B,2004,101:242-251.
    [22] C. Chen. Humidity in plant tissue culture vessels [J]. Biosyst. Eng.,2004,88:231-241.
    [23] L. Pancheri, C. J. Oton, Z. Gaburro, G. Soncini, L. Pavesi. Very sensitive poroussilicon NO2sensor [J]. Sens. Actuators B,2003,89:237-239.
    [24]陈艾.敏感材料与传感器[M].北京:化学工业出版社,2004.
    [25]冯祖勇. α-FezOa基气敏纳米材料的制备及其结构、性能的研究[D].福州:福州大学,2001.
    [26]漆奇.低维纳米金属氧化物半导体敏感特性的研究[D].长春:吉林大学,2009.
    [27] G. Tao, et a1. Electronic structure of the perovskite oxides La1-xSrxMnO3. Phys.Lett. A,2006,513:314-318.
    [28] X. L. Yu, Y. Wang, Y. M. Hu, C. B. Cao, H. L. W. Chan, Gas-sensing properties ofperovskite BiFeO3nanoparticle [J]. J. Am. Ceram. Soc.,2009,92:3105-3110.
    [29] Y. D. Wang, X. D. Sun, Y. F. Li, et a1. Perovskite-type NiSnO3used as the ethanolsensitive material [J]. Solid State Electron,2000,44:2009-2012.
    [30] E. Traversa, P. Nunziante, M. Sekamoto, et al. Thermal evolution of the nanosizedLaFeO3powders from the thermal decomposition of heteronuelear complex,La[Fe(C N)6].5H2O [J]. J. Mater. Res.,1998,13:1335-1339.
    [31] M. C. Carotta, G. Martinelli, Y. Sadaoka, et a1. Gas-sensitive electrical propertiesof perovskite-type SmFeO3thick film [J]. Sens. Actuators B,1998,48:270-274.
    [32]孔令兵,沈瑜生,姚熹. MxLa1-xFeO3气敏材料的制备及表征[M].功能材料,1997,28:399-402.
    [33] H. Zheng, O. T. Sorensen. Integrated sensors based Mg-doped SrTiO3fabricated byscreen-printing [J]. Sens. Actuators B,2000,65:299-304.
    [34] M. S. Lee, J. U. Meyer. A new process for fabricating CO2-sensing layers based onBaTiO3and additives [J]. Sens. Actuators B,2000,68:293-297.
    [35] R. Mochinaga, T. Yamasaki, T. Arakawa. Ethanol-sensing properties ofSmCoO3/MO2(M=Zn, Fe, Sn, In) having a heterojunction in wet air [J]. Sens.Actuators B,2000,66:232-238.
    [36] T. Ishihara, H. Fujita, H. Nishiguchi, el al. SrSnO3-WO3as capacitive-type nitrogen oxidesensor for monitoring at high temperature [J]. Sens. Actuators B,2000,65:319-324.
    [37]刘凯,邹德福,廉五州等.纳米传感器的研究现状与应用[M].仪表技术与传感器,2008,1:10-15.
    [38] P. Song, H. W. Qin, L. Zhang, K. An, Z. J. Lin, J. F. Hu, M. H. Jiang. The structure,electrical and ethanol-sensing properties of La1xPbxFeO3perovskite ceramics withx≤0.3[J], Sens. Actuators B,2005,104:312-316.
    [39] M.C. Zhang, C. G. Hu, H. Liu, Y. F. Xiong, Z. W. Zhang. A rapid-response humiditysensor based on BaNbO3nanocrystals [J]. Sens. Actuators B,2009,136:128-132.
    [40] Y. H. Gui, S. M. Li, J. Q. Xu, et a1. Study on TiO2-doped ZnO thick film gas sensorsenhanced by UV light at room temperature [J]. J. Microelectron,2008,39:1120-1126.
    [41] N. Hongsith, C. Viriyaworasakul, P. Mangkorntong, N. Mangkorntong, S. Choopun. Ethanolsensor based on ZnO and Au-doped ZnO nanowires [J]. Ceram. Int.,2008,34:823-826.
    [42] D. A. Lucio, Robertoriva. Selectivity and stability of a tin dioxide sensor formethane [J]. Sens. Actuators B,1995,28:25-29.
    [43] X. C. Lu, T. X. Xu, X. H. Dong. Preparation and characterization of LaNiO3A/Fratio-sensitive thin film by sol-gel process based on amorphous citrate precursors [J].Sens. Actuators B,2000,67:24-28.
    [44]曾宇平,高兆芬,沈荷生. ZnSnO3气敏薄膜的制备和性能[J].传感器与微系统,2006,25:70-72.
    [45] X. L. Yu, Y. Wang, Y. M. Hu, C. B. Cao, H. L. W. Chan. Gas-sensing properties ofperovskite BiFeO3nanoparticle [J]. J. Am. Ceram. Soc.,2009,92:3105-3110.
    [46]中共中央办公厅文件.中办发[2006]11号,《2006-2020年国家信息化发展战略》.2006年3月19日.
    [47]张洪润.传感器技术大全[M].北京:北京航空航天大学出版社,2007.
    [48]何金田,成连庆,李伟锋.传感器技术[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [49]曲炳郡. TiNi形状记忆合金薄膜制备工艺及其单元互联微执行器研究[D].大连:大连理工大学,2011.
    [50] F. F. Gao, N. Chino, S. P. Naik, Y. Sasaki, T, Okubo. Photoelectric properties ofnano-ZnO fabricated in mesoporous silica film [J]. Mater. Lett.,2007,61:3179–3184.
    [51] Q. Qi, T. Zhang, L. Liu, X. J. Zheng, Q. J. Yu, Y. Zeng, H. B. Yang. Selectiveacetone sensor based on dumbbell-like ZnO with rapid response and recovery [J].Sens. Actuators B,2008,134:166–170.
    [52] Y. Zhang, X. J. Zheng, T. Zhang, J. Sun, Y. Bian, J. Song. Gas sensing properties ofcoral-like Bi0.5K0.5TiO3powders synthesized by metal-organic decomposition [J].Meas. Sci. Technol.,2011,22:115205(6pp).
    [53] H. Obayashi, Y. Sakurai, T. Gejo. Perovskite-Type Oxides as Ethanol Sensors [J]. J.Solid State Chem.,1976,17:299-303.
    [54] X. L. Yu, Y. Wang, Y. M. Hu, C. B. Cao, H. L. W. Chan. Gas-sensing properties ofperovskite BiFeO3nanoparticles [J]. J. Am. Ceram. Soc.,2009,92:3105-3110.
    [55]张之圣,刘如净,刘志刚.采用金属有机化合物热分解法研制锆钛酸铅薄膜[J].压电与声光,2001,23:44-48.
    [56]王卓.钛酸铋钠基铁电薄膜的制备及相关刻蚀工艺的研究[D].济南:山东大学,2003.
    [57]杨建桃. BNT、PZT铁电薄膜的残余应力[D].湘潭:湘潭大学,2006.
    [58] M.W. De, H. J. Geise, E. L. J. Nagels, Vanneste. Chemiresistive sensors ofelectrically conducting poly (2,5-thienylene vinylene) and copolymers: theirresponses to nine organic vapours [J]. Sens. Actuators B,1998,50:164-172.
    [59] J. X. Wang, B. Zou, S. P. Ruan, J. Zhao, Q. K. Chen, F. Q. Wu. HCHO sensingproperties of Ag-doped In2O3nanofibers synthesized by electrospinning [J]. Mater.Lett.2009,63:1750-1753.
    [60] J. Wang, M. Y. Su, J. Q. Qi, L. Q. Chang. Sensitivity and complex impedance ofnanometer zirconia thick film humidity sensors [J]. Sens. Actuators B,2009,139:418-424.
    [61] P. M. Faia, A. J. Ferreira, C. S. Furtado. Establishing and interpreting an electricalcircuit representing a TiO2-WO3series of humidity thick film sensors [J]. Sens.Actuators B,2009,140:128-133.
    [62] S. H. Xiao, H. J. Xu, J. Hu, W. F. Jiang, X. J. Li. Structure and humidity sensingproperties of barium strontium titanate/silicon nanoporous pillar array compositefilms [J]. Thin Solid Films,2008,517:929-932.
    [63] Y. Y. Zhang, W. Y. Fu, H. B. Yang, M. H. Li, Y. X. Li, W. Y. Zhao, P. Sun, M. X.Yuan, D. Ma, B. B. Liu, G. T. Zou. A novel humidity sensor based on Na2Ti3O7nanowires with rapid response-recovery [J]. Sens. Actuators B,2008,135:317-321.
    [64] Y. M. Li,W. Chen, Q. Xu, J. Zhou, X. Y. Gu. Piezoelectric and ferroelectricproperties of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3–BaTiO3piezoelectric ceramics [J]. Mater.Lett.,2005,59:1361-1364.
    [65] Y. M. Li, W. Chen, J. Zhou, Q. Xu, H. Sun, M. S. Liao. Dielectric and ferroelectricproperties of lead-free Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3ferroelectric ceramics [J].Ceram. Int.,2005,31:139-142.
    [66] K. H. Lam, X. X. Wang, H. L. W. Chan. Lead-free piezoceramic cymbal actuator[J]. Sens. Actuators A,2006,125:393-397.
    [67] L. Greenspan. Humidity fixed points of binary saturated aqueous solutions [J]. J.Res. NBS,1977,81A:89-96.
    [68] Z. Y. Wang, L. Y. Shi, F. Q. Wu, S. A. Yuan, Y. Zhao, M. H. Zhang. Structure andhumidity sensing properties of La1xKxCo0.3Fe0.7O3yperovskite [J]. Sens. ActuatorsB,2011,158:89-96.
    [69] M. C. Zhang, C. G. Hua, H. Liu, Y. F. Xiong, Z. W. Zhang. A rapid-response humiditysensor based on BaNbO3nanocrystals [J]. Sens. Actuators B,2009,136:128-132.
    [70] Y. Xia, T. Fei, Y. He, R. Wang, F. Jiang, T. Zhang. Preparation and humiditysensing properties of Ba0.8Sr0.2TiO3nanofibers via electrospinning [J]. Mater. Lett.,2012,66:19-21.
    [71] Y. J. Li, P. P. Tsai. Lacunar pyrochlore-type tungsten oxides as humidity-sensingmaterials [J]. Solid State Ionic,1996,86-88:1001-1004.
    [72] V. Bondarenka, S. Grebinskij, S. Mickevicius, V. Volkov, G. Zacharova. Thin filmsof poly-vanadium–molybdenum acid as starting materials for humidity sensors [J].Sens. Actuators B,1995,28:227-231.
    [73] J. Wang, H. Wan, Q. H. Lin. Properties of a nanocrystalline barium titanate onsilicon humidity sensor [J]. Meas. Sci. Technol.,2003,14:172-175.
    [74] S. Agarwal, G. L. Sharma. Humidity sensing properties of (Ba, Sr)TiO3thin films grownby hydrothermal–electrochemical method [J]. Sens. Actuators B,2002,85:205-211.
    [75] Q. Qi, T. Zhang, X. J. Zheng, L. F. Wan. Preparation and humidity sensing properties ofFe-doped mesoporous silica SBA-15[J]. Sens. Actuators B,2008,135:255-261.
    [76] Q. Qi, T. Zhang, Q. J. Yu, R. Wang, Y. Zeng, L. Liu, H. B. Yang. Properties ofhumidity sensing ZnO nanorods-base sensor fabricated by screen-printing [J]. Sens.Actuators B,2008,133:638-643.
    [77] Q. Qi, T. Zhang, Y. Zeng, H. B. Yang. Humidity sensing properties of KCl-dopedCu–Zn/CuO–ZnO nanoparticles [J]. Sens. Actuators B,2009,137:21-26.
    [78] J. Wang, B. K. Xu, S. P. Ruan, S. P. Wang. Preparation and electrical properties ofhumidity sensing films of BaTiO3/polystyrene sulfonic sodium [J]. Mater. Chem.Phys.,2003,78:746-750.
    [79] Y. Li, M. J. Yang. A novel highly reversible humidity sensor based on poly(2-propyn-2-furoate)[J]. Sens. Actuators B,2002,86:155-159.
    [80] E. Traversa, A. Bearzotti, M. Miyayama, H. Yanagida. Study of the conductionmechanism of La0.2CuO4-ZnO heterocontracts at different relative humdities [J].Sens. Actuators B,1995,24-25:714-718.
    [81] E. Traversa, G. Gnappi, A. Montenero, G. Gusmano. Ceramic thin films by sol-gelprocessing as novel materials for integrated humidity sensors [J]. Sens. Actuators B,1996,31:59-70.
    [82] C. D. Feng, S. L. Sun, H. Wang, C. U. Segre, J. R. Stetter. Humidity sensingproperties of Nafion and sol-gel derived SiO2/Nafion composite thin films [J]. Sens.Actuators B,1997,40:217-222.
    [83] G. C. Miceli, M. J. Yang, N. Camaioni, C. M. Mari, Y. Li, H. Sun, M. Ling.Investigations on the ion transport mechanism in conducting polymer films [J].Solid State Ionics,2000,131:311-321.
    [84] E. Quartarone, P. Mustarelli, A. Magistris, M.V. Russo, I. Fratoddi, A. Furlani.Investigations by impedance spectroscopy on the behaviour of poly(N,Ndimethylpropargylamine) as humidity sensor [J]. Solid State Ionics,2000,136-137:667-670.
    [85] B. M. Kulwicki. Humidity sensors [J]. J. Am. Ceram. Soc.,1991,74:697-708.
    [86] R. Schaub, P. Thostrup, N. Lopez, E. L gsgaard, I. Stensgaard, J.K. N rskov, F.Besenbacher. Oxygen vacancies as active sites for water dissociation on rutile TiO2(110)[J]. Phys. Rev. Lett.,2001,87:266104/1-266104/4.
    [87] A. Tsuchinari, T. Hokii, O. Shimobayashi, C. Kanaoka. Influence ofgrain size andfiring temperature on the structure of porous magnesiaceramics [J]. J. Ceram. Soc.Jpn.,1992,100:216-220.
    [88] H. T. Sun, M. T. Wu, P. Li, X. Yao. Porosity control of humidity-sensitive ceramicsand theoretical model of humidity-sensitive characteristics [J]. Sens. Actuators,1989,19:61-70.
    [89] W. P. Tai, J. H. Oh. Fabrication and humidity sensing properties of nanostructuredTiO2-SnO2thin films [J]. Sens. Actuators B,2002,85:154-157.
    [90]李明月,陈文,徐庆,江向平,张玉平.四方相区NBT-KBT无铅铁电介电弛豫与铁电相变研究[J].人工晶体学报,2006,35:851-853.
    [91] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomicdistances in halides and chalcogenides [J]. Acta Crystrallogr. A,1976,32:751-767.
    [92] A. Hussaina, C. W. Ahnb, J. S. Leea, A. Ullahc, I. W. Kim, Largeelectric-field-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5TiO3piezoelectric ceramics [J]. Sens. Actuators A,2010,158:84-89.
    [93] S. J. Kuang, X. G. Tang, L. Y. Lee, Y. P. Jang, Q. X. Liu. Influence of Zr dopant onthe dielectric properties and curie temperatures of Ba(ZrxTi1x)O3(0≤X0≤0.12)ceramics [J]. Scrip. Mater.,2009,61:68-71.
    [94] A. Watcharapasorn, S. Jiansirisomboon, T. Tunkasiri. Microstructures andmechanical properties of zirconium-doped bismuth sodium titanate ceramics [J].Chiang Mai J. Sci.,2006,33:169-173.
    [95] V. Bondarenka, S. Grebinskij, S. Mickevicius, V. Volkov, G. Zacharova. Thin filmsof poly-vanadium-molybdenum acid as starting materials for humidity sensors [J].Sens. Actuators B,1995,28:227-231.
    [96] Y. Zhang, X. J. Zheng, T. Zhang, L. J. Gong, S. H. Dai, Y. Q. Chen. Humiditysensing properties of the sensor based on Bi0.5K0.5TiO3powder [J]. Sens. ActuatorsB,2010,147:180-184.
    [97] W. Ku, J. U. Meyer. A novel thick-film ceramic humidity sensor [J]. Sens.Actuators B,1997,40:175-182.
    [98] J. H. Anderson, G. A. Parks. The electrical conductivity of silica gel in the presenceof adsorbed water [J]. J. Phys. Chem.,1968,72:3662-3668.
    [99] F. M. Ernsberger. The nonconformist ion [J]. J. Am. Ceram. Soc.,1983,66:747-750.
    [100] Y. Sakai, M. Matsuguchi, N. Yonesato. Humidity sensor based on alkali salts ofpoly(2-acrylamido-2-methylpropane sulfonic acid)[J]. Electrochim. Acta,2001,46:1509-1514.
    [101] Y. Sadaoka, M. Matsuguchi, Y. Sakai, S. Mitsui. Electrical properties ofazirconium phosphate and its alkali salts in a humid atmosphere [J]. J. Mater. Sci.,1988,23:2666-2675.
    [102] T. Y. Kim, D. H. Lee, Y. C. Shim, J. U. Bu, S. T. Kim. Effects of alkaline oxideadditives on the microstructure and humidity sensitivity of MgCr2O4–TiO2[J]. Sens.Actuators B,1992,9:221-225.
    [103] G. Neri, A. Bonavita, C. Milone, A. Pistone, S. Galvagno. Gold promotedLi–Fe2O3thin films for humidity sensors [J]. Sens. Actuators B,2003,92:326-330.
    [104] Y. C. Yeh, T. Y. Tseng. Electrical properties of K2O-doped Ba0.5Sr0.5TiO3ceramichumidity sensor [J]. IEEE Trans. Compon. Hybrids, Manuf. Technol. CHMT-12,1989,259-266.
    [105] N. Rezlescu, C. Doroftel, P. D. Popa. Humidity-sensitive electrical resistivity of MgFe2O4and Mg0.9Sn0.1Fe2O4porous ceramics [J]. Romanian J. Phys.,2007,52:353-360.
    [106] D. M. Eagiks. Theory of transitions from large to nearly-small polarons, with applicationto Zr-Doped Superconducting SrTiO3. physical review [J].1969,181:1278-1290.
    [107] R. Schaub, P. Thostrup, N. Lopez, E. L gsgaard, I. Stensgaard, J. K. N rskov, F.Besenbacher. Oxygen vacancies as active sites for water dissociation on rutile TiO2(110)[J]. Phys. Rev. Lett.,2001,87:266104(4pp).
    [108] S. H. Hu, G. Fu. Humidity-sensitive properties based on liquid stateLiZnVO4-doped SnO2[J]. Sensors and Actuators A,2010,163:481-485.
    [109] N. Yamazoe. Toward innovations of gas sensor technology [J]. Sens. Actuators B,2005,108:2-14.
    [110] J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. Cho, H. J. Dai.Nanotube molecular wires as chemical sensors [J]. Science,2000,287:622-625.
    [111] R. K Paul, S. Badhulika, A. Mulchandani. Room temperature detection of NO2using InSb nanowire [J]. Appl. Phys. Lett.,2011,99:033103-1-3.
    [112] Y. J. Li, K. M. Li, C. Y. Wang, C. I. Kuo, L. J. Chen. Low-temperatureelectrodeposited Co-doped ZnO nanorods with enhanced ethanol and CO sensingproperties [J]. Sens. Actuators B,2012,161:734-739.
    [113] Y. Hu, O. K. Tan, J. S. Pan, H. Huang, W. Cao. The effects of annealingtemperature on the sensing properties of low temperature nano-sized SrTiO3oxygengas sensor [J]. Sensors Actuators B,2005,108:244-249.
    [114] S. J. Litzelman, A. Rothschild, H. L. Tuller. The electrical properties and stabilityof SrTi0.65Fe0.35O3thin films for automotive oxygen sensor applications [J]. SensorsActuators B,2005,108:231-237.
    [115] X. F. Song, Z. J. Wang, Y. B. Liu, C. Wang, L. J. Li. A highly sensitive ethanol sensorbased on mesoporous ZnO–SnO2nanofibers [J]. Nanotechnology,2009,20:075501(5pp).
    [116] T. Hyodo, S. Abe, Y. Shimizu, M. Egashira. Gas-sensing properties of orderedmesoporous SnO2and effects of coatings thereof [J]. Sens. Actuators B,2003,93:590-600.
    [117] H. Obayashi, Y. Sakurai, T, Gejo. Perovskite-type oxides as ethanol sensors [J]. J.Solid State Chem.,1976,17:299-303.
    [118] X. L. Yu, Y. Wang, Y. M. Hu, C. B. Cao, H, L, W, Chan. Gas-sensing propertiesof perovskite BiFeO3nanoparticle [J]. J. Am. Ceram. Soc.,2009,92:3105-3110.
    [119] C. H. Yang, Z. Wang, X. F. Cheng, X. J. Yi, G. P. Ma, F. Y. Jiang, J. R. Han.Properties of K0.5Bi0.5TiO3thin films deposited on different substrates [J]. SolidState Commun.,2005,134:461-464.
    [120] F. F. Gao, N. Chino, S. P. Naik, Y. Sasaki, T. Okubo. Photoelectric properties ofnano-ZnO fabricated in mesoporous silica film [J]. Mater. Lett.,2007,61:3179-3184.
    [121] X. D. Lou, S. P. Liu, D. Y. Shi, W. F. Chu. Ethanol-sensing characteristics of CdFe2O4sensor prepared by sol–gel method [J]. Mater. Chem. Phys.,2007,105:67-70.
    [122] A. D’amico, C. D. Natale, A. Taroni, Sensors parameters Proc. First EuropeanSchool on Sensors (ESS’94) on Sensors for Domestic Applications (Castro Marina,Leece, Italy,1994,12-17: pp3-13.
    [123] V. D. Kapse, S. A. Ghosh, F. C. Raghuwanshi, S. D. Kapse. Nanocrystallinespinel Ni0.6Zn0.4Fe2O4: a novel material for H2S sensing [J]. Mater. Chem. Phys.,2009,113:638-644.
    [124] X. F. Chu, X. Q. Liu, G. Y. Meng. The catalytic effect of SmInO3on thegas-sensing properties of CdIn2O4[J]. Mater. Sci. Eng. B,1999,64:60-63.
    [125] M. Zhao, H. Peng, S. M. Fang, J. F. Hu, Microstructure, electrical andethanol-sensing properties of perovskite-type SmFe0.7Co0.3O3[J]. Sens. Actuators B,2008,130:609-613.
    [126] Y. D. Wang, J. B. Chen, X. H. Wu, Preparation and gas-sensing properties ofperovskite-type SrFeO oxide [J]. Mater. Lett.,2001,49:361-364.
    [127] P. Song, Q. Wang, Z. X. Yang. The effects of annealing temperature on theCO-sensing property of perovskite La0.8Pb0.2Fe0.8Cu0.2O3nanoparticles [J]. Sens.Actuators B,2009,141:109-115.
    [128] Z. X. Yang, Y. Huang, G. N. Chen, Z. P. Guo, S. Y. Cheng, S. Z. Huang. Ethanolgas sensor based on Al-doped ZnO nanomaterial with many gas diffusing channels[J]. Sens Actuators B,2009,140:549-556.
    [129] L. Liu, T. Zhang, Q. Qi, L. Zhang, W. Y. Chen, B. K. Xu. A novel micro-structureethanol gas sensor with low power consumption based on La0.7Sr0.3FeO3[J].Solid-State Electron.,2007,51,1029-1033.
    [130] T. P. HüLser, H. Wiggers, F. E. Kruis, A. Lorke. Nanostructured gas sensors andelectrical characterization of deposited SnO2nanoparticles in ambient gasatmosphere [J]. Sens. Actuators B,2005,109:13-18.
    [131] C. H. Han, S. D. Han, I. Singh, T. Toupance. Micro-bead of nano-crystalline F-dopedSnO2as a sensitive hydrogen gas sensor [J]. Sens. Actuators B,2005,109:264-269.
    [132]李佳,于军,彭刚,王耘波,高俊雄,周文利. Sol-gel法制备Bi3.15Nd0.85Ti3O12铁电薄膜的性能研究[J].功能材料,2007,38:56-58.
    [133]侯芳,臧涛成,李建康.预退火工艺对铁电薄膜性质的影响[J].苏州科技学院学报,2009,26:27-30.
    [134] X. L. Zhong, J. B. Wang, X. J. Zheng, Y. C. Zhou, G. W. Yang. Structure evolutionand ferroelectric and dielectric properties of Bi3.5Nd0.5Ti3O12thin films under amoderate temperature annealing [J]. Appl. Phys. Lett.,2004,85:5661(4pp).
    [135] X. J. Zheng, W. M. Yi, Y. Q. Chen, Q. Y. Wu, L. He. The effects of annealingtemperature on the properties of Bi3.15Nd0.85Ti3O12thin films [J]. Scripta Mater.,2007,57:675-678.
    [136] S. T. Shishiyanu, T. S. Shishiyanu, O. I. Lupan. Sensing characteristics of tin-dopedZnO thin films as NO2gas sensor [J]. Sens. Actuators B,2005,107:379-386.
    [137] L. M. Wu, F. F. Song, X. X. Fang, Z. X. Guo, S. Liang. A practical vacuum sensorbased on a ZnO nanowire array [J]. Nanotechnology.2010.21:475502(5pp).
    [138] X. J. Zheng, B. Yang, T. Zhang, C. B. Jiang, S. X. Mao, Y. Q. Chen, B, Yuan. Enhancementin ultraviolet optoelectronic performance of photoconductive semiconductor switch based onZnO nanobelts film [J]. Appl. Phys. Lett.,2009,95:221106-3.
    [139] Y. G. Liu, P. Feng, X. Y. Xue, S. L. Shi, X. Q. Fu, Y. G. Wang. Room-temperatureoxygen sensitivity of ZnS nanobelts [J]. Appl. Phys. Lett.,2007,90:042109-3.
    [140] Q. H. Li, T. Gao, Y. G. Wang, T. H. Wang. Adsorption and desorption of oxygenprobed from ZnO nanowire films by photocurrent measurements [J]. Appl. Phys.Lett.,2005,86:123117-3.
    [141] X. Y. Xue, Y. J. Chen, Y. G. Liu, S. L. Shi, Y. G. wang, T. H. Wang. Synthesisand ethanol sensing properties of indium-doped tin oxide nanowires [J]. Appl. Phys.Lett.,2006,88:201907-3.
    [142] C. W. Chen, C. J. Pan, F. C. Tsao, Y. L. Liu, G. C. Chi, C. Y. Chang, T. H. Hsueh.ECS Trans.,2009,25:113-118.
    [143] S. C. Hung, C. W. Chen, C. Y. Shieh, G. C. Chi, R. Fan, S. J. Pearton. Highsensitivity carbon monoxide sensors made by zinc oxide modified gated GaN/AlGaNhigh electron mobility transistors under room temperature [J]. Appl. Phys. Lett.,2011,98:223504-3.
    [144]胡向东,刘京诚,余成波.传感器与检测技术[M].北京:机械工业出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700