用户名: 密码: 验证码:
PTFE基纳米复合材料微观结构定量分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料微观结构研究对宏观性能分析具有重要意义,目前聚合物基纳米复合材料微观结构以定性分析为主,定量分析较少。本文以PTFE基纳米复合材料微观结构定量分析及探讨其与宏观性能之间相关性为目标,以冷压烧结法制备了3种纳米材料在不同质量分数(3%、5%、7%、9%)及不同处理方式(纳米颗粒未处理与偶联剂表面处理)情况下的纳米AlN/PTFE、纳米SiC/PTFE、纳米Si3N4/PTFE复合材料,用JSM-6000扫描电子显微镜对PTFE基纳米复合材料微观结构进行图像采集,利用Visual C++及Matlab软件设计了纳米复合材料微观结构图像处理程序,包含图像预处理、图像分割、图像形态学处理、区域标记、微观结构特征参数提取(颗粒平均面积分数、颗粒面积相对标准差、颗粒分布均匀度、颗粒分布相对标准差、颗粒分布分形维数、微裂纹区域特征及微裂纹分布分形维数)等功能,定量表征了PTFE基纳米复合材料微观结构特征,并对复合材料宏观性能(拉伸强度、断裂伸长率、冲击强度、硬度、磨损量、摩擦系数)进行测试和分析,研究了PTFE基纳米复合材料宏观性能与微观结构之间关系。得出主要结论如下:
     (1) PTFE基纳米复合材料微观结构SEM图像经预处理后,图像质量提高,对比度明显加强,灰度级变宽,纳米颗粒及微裂纹显示清晰,易于图像分割。形态学处理有利于提取纳米颗粒及微裂纹在复合材料中的有用信息,区域标记能赋予各目标物不同灰度值,以便于区分纳米复合材料微观结构中目标物和定量分析微观结构特征参数。颗粒平均面积分数及颗粒面积相对标准差用于表征复合材料中纳米颗粒的团聚程度,颗粒平均面积分数及颗粒面积相对标准差越小,则纳米颗粒团聚程度越小,分散度高,分散质量越好。颗粒分布均匀度及颗粒分布相对标准差用于表征纳米颗粒在基体中的分布状况,颗粒分布均匀度越大,颗粒分布相对标准差越小,则颗粒在基体中分布越均匀。颗粒分布分形维数用于综合评价复合材料中纳米颗粒的分散质量及分布状况。微裂纹区域特征参数及分布分形维数用于表征复合材料中纳米颗粒与基体的界面结合质量,微裂纹面积分布、长度分布、取向角分布可用于分析微裂纹尺寸分布及数量分布,取向角分布相对标准差及分布分形维数可用于分析微裂纹在复合材料中的分布状况。
     (2)随着纳米颗粒质量分数增加,三种PTFE基纳米复合材料颗粒分散度均有下降趋势,纳米颗粒团聚程度增加,但在质量分数7%时颗粒分散度较大,纳米颗粒在PTFE中分散质量较好。随着纳米颗粒质量分数增加,三种PTFE基纳米复合材料颗粒分布均匀度先增大后减小,纳米A1N质量分数为5%,纳米SiC、Si3N4颗粒质量分数为7%时,颗粒分布均匀度较大,纳米颗粒在PTFE中分布均匀较好。颗粒分布分形维数随纳米颗粒质量分数增加而增大。
     (3)微裂纹面积分布、长度分布直方图表明,随着纳米颗粒质量分数增加,三种PTFE基纳米复合材料微观表面微裂纹数量先增多后减少;纳米A1N质量分数为5%,纳米SiC、Si3N4颗粒质量分数为7%时,微裂纹数量较多,同时微裂纹取向角分布相对标准差较小,微裂纹分布分形维数较大,表明微裂纹分布范围大且混乱,定向性低,更加趋于各向同性。
     (4)偶联剂处理使纳米SiC/PTFE.纳米Si3N4/PTFE复合材料颗粒分散度、颗粒分布均匀度、颗粒分布分形维数增大,纳米AlN.PTFE复合材料颗粒分散度及颗粒分布分形维数增大、颗粒分布均匀度减小;偶联剂处理使纳米SiC/PTFE、纳米Si3N4/PTFE复合材料微裂纹取向角分布相对标准差减小、分布分形维数减小,而纳米AlN/PTFE复合材料微裂纹取向角分布相对标准差及分布分形维数均增大。
     (5)纳米AlN/PTFE复合材料宏观机械性能与微观结构特征参数关系研究表明,纳米AlN/PTFE复合材料拉伸性能、冲击性能、硬度、耐磨性能、减摩性能与颗粒分布分形维数之间均存在较好的线性相关性,它们的相关系数R2值较大。
     (6)本文所设计的图像处理方法可以很好地完成PTFE基纳米复合材料微观结构SEM图像处理工作,可对微观结构特征参数进行提取并定量分析其与宏观性能之间相关性,简单、方便、实用、可靠。
Research on material microstructure was vitally significant to the analysis of macroscopical performance. At present, most qualitative analysis and less quantitative analysis have been carried on microstructure of polymer matrix nano-composites. In this paper, in order to quantitatively analyze the microstructure and discuss the relativity between it and the macroscopical performance of PTFE matrix nano-composites, nano-AlN/PTFE, nano SiC/PTFE, nano-Si3N4/PTFE composites were prepared by cold-pressing and sintering method in the situation of different mass fraction of three nano-materials (mass fraction was3%,5%,7%and9%) and different treatment methods (untreated and coupling treated of nano-granules). The microstructure images of PTFE matrix nano-composites were gathered by JSM-6000scanning electron microscope. The program, used to process the microstructure images of nano-composites, was designed by the software Visual C++and Matlab, including functions of image preprocessing, image segmentation, image morphological processing, region marking, and character parameters of microstructure (granule average area fraction, relative standard deviation of granule area, uniformity of granule distribution, relative standard deviation of granule distribution, fractal dimension of granule distribution, microcrack district character and fractal dimension of microcrack distribution) obtaining. The microstructure characters of PTFE matrix nano-composites were taken attribute, and the macroscopical performance (tensile strength, break elongation ratio, impact strength, hardness degree, wear amount, friction coefficient) were tested and analyzed. The analysis was carried on the relationship between the macroscopical performance and the microstructure character parameters of PTFE matrix nano-composites. The main conclusions were as followed:
     (1) After the microstructure SEM images of PTFE matrix nano-composites were preprocessed, the image quality enhanced, the contrast enhanced obviously, the gray level became broader, and the nano-granules and the microcracks became clearer, which was helpful to image segmentation. Morphological processing was propitious to obtain the useful information of nano-granules and microcracks in composites. Various objects could be given different grey level by region marking, which was convenient to divide objects in the microstructure of nano-composites and quantitatively analyze microstructure character parameters. The agglomeration degree of nano-granules in composites was taken attribute by the granule average area fraction and the relative standard deviation of granule area. The smaller the granule average area fraction and the relative standard deviation of granule area were, then the lower the agglomeration degree of nano-granules was, the higher the dispersion degree was, and the better the dispersion quality was. The distribution status of nano-granules in PTFE matrix was taken attribute by the uniformity of granule distribution and the relative standard deviation of granule distribution. The bigger the uniformity of granule distribution was and the smaller the relative standard deviation of granule distribution was, then the more well-proportioned the granule distributed in PTFE matrix. The dispersion quality and distribution status of nano-granules in composites were taken general attribute by the fractal dimension of granule distribution. The surface connection quality between nano-granules and PTFE matrix was taken attribute by microcrack region character parameters and the fractal dimension of microcrack distribution. The size distribution and amount distribution of microcracks was analyzed by the area distribution, length distribution and oriented angle distribution of microcracks. The distribution status of microcracks in composites could be analyzed by the relative standard deviation of oriented angle distribution and the fractal dimension of distribution.
     (2) Along with the mass fraction of nano-granules increasing, the granule dispersion degree of three kinds of PTFE matrix nano-composites had the drop tendency, and the agglomeration degree of nano-granules enhanced. However, the granule dispersion degree was higher at the mass fraction of7%, and the dispersion quality of nano-granules in PTFE was better. Along with the mass fraction of nano-granules increasing, the uniformity of granule distribution of three kinds of PTFE matrix nano-composites increased first and then reduced. When the mass fraction of nano-AIN was5%and the mass fraction of nano-SiC and nano-Si3N4was7%, the uniformity of granule distribution was bigger and the distribution quality of nano-granules in PTFE was better. The fractal dimension of granule distribution increased along with the mass fraction of nano-granule increasing.
     (3) It was indicated by the area distribution histogram and the length distribution histogram of microcracks that the microcracks amount of three kinds of PTFE matrix nano-composites increased first and then reduced along with the mass fraction of nano-granules increasing. When the mass fraction of nano-AIN was5%and the mass fraction of nano-SiC and nano-Si3N4was7%, the microcracks amount was much more, the relative standard deviation of microcrack oriented angle distribution is smaller, and the fractal dimension of microcrack distribution is bigger, which indicated that the microcrack distribution range was big and disordered, the orientation property of microcracks was low and tended to isotropism.
     (4) By coupling treated, the granule dispersion degree, the uniformity and the fractal dimension of granule distribution of nano-SiC/PTFE, nano-Si3N4/PTFE composites increased. By coupling treated, the granule dispersion degree and the fractal dimension of granule distribution of nano-AlN/PTFE composites increased, while the uniformity of granule distribution reduced. By coupling treated, the relative standard deviation of microcrack oriented angle distribution and the fractal dimension of microcrack distribution of nano-SiC/PTFE, nano-Si3N4/PTFE composites reduced, while the relative standard deviation of microcrack oriented angle distribution and the fractal dimension of microcrack distribution of nano-AlN/PTFE composites increased.
     (5) It was indicated by the research of relation between the macroscopical mechanizm performance and the microstructure character parameters of nano-AlN/PTFE composites that:there was better linear relativity between tensile performance, impact performance, hardness degree, wear resistance, friction reducing of nano-AlN/PTFE composites and fractal dimension of granule distribution, while the correlation coefficient R2was bigger.
     (6) The processing work of microstructure images of PTFE matrix nano-composites could be well done by the image processing methods designed in this article. The microstructure character parameters could be obtained and the relativity between it and macroscopical performance could be quantitatively analyzed. The image processing methods were simple, convenient, practical and reliable.
引文
[1]张招柱,薛群基,沈维长,等.金属填充PTFE复合材料的摩擦磨损性能研究[J].高分子材料科学与工程,1999,15(1):68-72
    [2]骆志高,周士冲,陈坤,等.PTFE/金属自润滑复合材料的磨损性能研究[J].化工新型材料,2006,34(5):52-54
    [3]Ding H X, Kun L S. Friction and wear behavior of self-lubricating and heavily loaded metal-PTFE composites [J]. Wear 2006,260:1112-1118
    [4]Masaaki Y, Tadeusz A. Stolarski, Shogo Tobe. Influence of counter material on friction and wear performance of PTFE-metal binary coatings [J]. Tribology International,2008,41:269-281
    [5]丁美平,寇开昌,田普锋,等.不同方法处理碳纤维增强PTFE复合材料性能的研究[J].工程塑料应用,2006,34(4):25-28
    [6]万芳新,何春霞,黄晓鹏.碳纤维填充PTFE复合材料摩擦磨损性能研究[J].甘肃农业大学学报,2009,44(2):157-160
    [7]薛玉君,程先华.稀土元素表面处理玻璃纤维增强PTFE复合材料的拉伸性能[J].中国稀土学报,2002,20(1):41-44
    [8]程先华,薛玉君,谢超英.稀土处理玻璃纤维填充PTFE复合材料的滑动磨损性能[J].复合材料学报,2003,20(3):108-112
    [9]余达强,肖建中,胡树兵.短玻纤填充PTFE复合材料磨损性能研究[J].润滑与密封,2004,(6):64-65,68
    [10]叶素娟,禹权,黄承亚.纤维填充PTFE复合材料的摩擦学研究[J].塑料工业,2006,34(6):46-49
    [11]徐红星,袁新华,程晓农,等.碳纤维/玻璃纤维/石墨协同改性PTFE复合材料力学性能[J].润滑与密封,2007,32(9):88-90,118
    [12]何春霞,康丽霞.聚四氟乙烯及其石墨填充复合材料的摩擦磨损特性[J].工程塑料应用,2001,29(3):1-3
    [13]范清,叶素娟.石墨及纤维填充聚四氟乙烯复合材料的摩擦学研究[J].润滑与密封,2008,33(5):81-83
    [14]张招柱,薛群基,刘维民,等.几种金属氧化物填充聚四氟乙烯复合材料在干摩擦条件下的摩擦磨损性能[J].摩擦学学报,1997,17(1):45-52
    [15]周惠娣,贾均红,陈建敏,等.金属氧化物填充聚四氟乙烯复合材料在水润滑条件下的摩擦学性能研究[J].摩擦学学报,2002,22(6):449-453
    [16]张招柱,薛群基,刘维民,等.金属硫化物及石墨填充PTFE复合材料的摩擦磨损性能研究[J].复合材料学报,1999,16(4):58-63
    [17]王晓波,冯治中,阎逢元.SiO2填充聚四氟乙烯复合材料的摩擦学行为研究[J].润滑与密封,2002,(1):47-49
    [18]徐立红,董允,张洪波,等.SiC颗粒填充PTFE复合材料耐磨性能的研究[J].河北工业大学学 报,2002,31(2):58-61
    [19]余达强,郑根稳,谢孝林,等. A1203/PTFE复合材料的磨损性能研究[J].塑料工业,2004,32(2):33-35
    [20]张在利,曾子敏,李嘉,等.耐高温低磨耗聚苯酯改性聚四氟乙烯[J].化工新型材料,2002,30(8):1-5
    [21]赵普,刘近朱,王齐华,等.聚苯酯、聚酰亚胺填充聚四氟乙烯复合材料的摩擦学性能研究[J].材料科学与工程学报,2003,21(6):851-854
    [22]杨文娟,马少波,解挺,等.聚酰亚胺对聚四氟乙烯基自润滑复合材料摩擦磨损性能的影响[J].轴承,2009,(3):26-29
    [23]吴良奎,焦明华.Ekonol填充PTFE三层复合材料摩擦学性能研究[J].润滑与密封,2008,33(10):49-51
    [24]Lee J Y, Lim D P, Lim D S. Tribological behavior of PTFE nanocomposite films reinforced with carbon nanogranules [J]. Composites:Part B,2007,38:810-816
    [25]Jaydeep K, loan N, Efstathios I M. Sliding wear behavior of PTFE composites [J]. Wear,2002, 252:361-369
    [26]Sawyer W G, Kevin D F, Praveen B, et al. A study on the friction and wear behavior of PTFE filled with alumina nanogranules [J]. Wear,2003,254:573-580
    [27]David L B, Sawyer W G. Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanogranules [J]. Wear,2006,260:915-918
    [28]赵正平,栾道成,饶耀. PTFE/Nano-CaC03复合材料组织性能研究[J].塑料,2006,35(5):28-30,38
    [29]陈兴明,刘科伟,杨琼芬.PTFE/纳米Si02复合材料的制备及其力学性能[J].化学研究与应用,2007,19(7):831-833
    [30]张招柱,曹佩弦,王坤,等.PTFE复合材料的摩擦学性能及力学性能[J].高分子材料科学与工程,2005,21(2):189-192
    [31]丁永涛,王鸷,殷敬华.高分子复合材料研究新进展[M].郑州:黄河水利出版社,2005
    [32]宋继瑞,沈志刚,陈建峰,等.ABS/改性纳米CaCO3复合材料的微观结构和力学性能[J].高分子材料科学与工程,2004,20(3):126-128
    [33]张敬武,谭菁,周兴平,等.聚丙烯/BA原位聚合改性MMT纳米复合材料的微观结构[J].塑料工业,2003,31(4):38-40
    [34]徐妍,张小哲,周持兴,等.PVC/重晶石纳米复合材料力学性能与形态研究[J].高分子材料科学与工程,2007,23(5):144-147,151
    [35]吴素霞,吕志平,万兆荣,等.聚氨酯/碳纳米管复合材料的制备与表征[J].聚氨酯工业, 2007,22(3):9-12
    [36]郑怡磊,李远莉,刘欣,等.聚碳酸酯/羟基磷灰石纳米复合材料的力学性能与热性能[J].高分子材料科学与工程,24(4):62-65
    [37]李丽坤,马永梅,官建国,等.聚丙烯/凹凸棒石纳米复合材料的制备与性能研究[J].高分子学报,2008,5:501-506
    [38]Gilbert M, Haghighat S, Chua S K, et al. Development of PVC/silica Hybrids Using PVC [J].Macromolecular Symposia,2006,233:1022-1360
    [39]Varlot K M, Chazeau L, Gauthier C, et al. The relationship between the electrical and mechanical properties of polymer-nanotube nanocomposites and their microstructure [J]. Composites Science and Technology,2009,1
    [40]杨娟,刘滢,徐宏德.熔融插层制备SBS/蒙脱土纳米复合材料的微观结构研究[J].电子显微学报,2005,24(2):120-123
    [41]王君龙,梁国正,祝保林.CE/EP/纳米SiC复合材料研究[J].工程塑料应用,2007,35(6):16-19
    [42]王俊霞,宋国君,吕海金,等.不同亚微观形态的聚丙烯/蒙脱土纳米复合材料的研究[J].塑料工业,2006,34(4):44-47
    [43]陈县萍,王贵友,徐强,等.聚氨酯/ZnO纳米复合材料的制备和性能[J].高分子材料科学与工程,2007,23(5):156-159
    [44]王彦宗,沈明,刘振营,等.聚苯胺/二氧化锡纳米复合材料合成及表征[J].化工新型材料,2007,35(1):46-47,69
    [45]翁盛光,陈建定,夏浙安,等.纳米碳酸钙/聚苯乙烯原位复合材料的制备及表征[J].过程工程学报,2007,7(4):790-795
    [46]Wang D Y, Parlow D, Yao Q, et al. PVC-Clay Nanocompoites:Preparation, Thermal and Mechanical Properties [J]. Journal of Vinyl and Additive Technology,2001(4):203-213
    [47]Boukerma K, Piquemal J Y, Chehimi M M, et al. Synthesis and interfacial properties of montmorillonite/polypyrrole nanocomposites [J]. Polymer,2006,47(2):569-576
    [48]Peeterbroeck S, Alexandre M, Jerome R, et al. Poly(ethyleme-co-vinyl acetate)/clay nanocomposites:Effect of clay nature and organic modifiers on morphology, mechanical and thermal properties [J]. Polymer Degradation and Stability,2005,90:288-294
    [49]Pegel S, Potschke P, Villmow T, et al. Spatial statistics of carbon nanotube polymer composites [J]. Polymer,2009,2
    [50]Laus M, Camerani M, Lilli M, et al. Hybrid Nanocomposites Based on Polystyrene and a Reactive Organophilic Clay [J]. Journal of Materials Science.1998,33:2883-2888
    [51]王柯,张琴,江璐霞,等.聚丙烯/有机蒙脱土纳米复合材的制备及性能研究[J].绝缘材 料,2002(3):3-7
    [52]张强,庄韦,单海涛,等.聚丙烯/蒙脱土纳米复合材料的制备和表征[J].高分子材料科学与工程,2007,23(5):242-245
    [53]吕海金,宋国君,李培耀,等.尼龙6/水滑石纳米复合材料的制备与表征[J].塑料工业,2007,35(9):11-14
    [54]胡海彦,潘明旺.聚氯乙烯/黏土纳米复合材料的制备及性能[J].高分子材料科学与工程,2004,20(5):162-165
    [55]郭汉洋,徐卫兵.聚氯乙烯/极性单体改性蒙脱土纳米复合材料的制备及性能[J].高分子材料科学与工程,2005,21(6):254-257
    [56]刘秋萍,高玲香,阳林.聚酰亚胺/硅石-钛酸钡纳米复合材料的制备与表征[J].陕西师范大学学报(自然科学版),2007,35(3):65-68
    [57]方建波,任强,刘春林,等.剥离型聚苯乙烯/蒙脱土纳米复合材料的制备及表征[J].江苏工业学院学报,2008,20(1):1-4
    [58]徐涛,雷华,于杰,等.滑石粉填充PP材料中颗粒分布分形特征及其与冲击性能的关系[J].高分子材料科学与工程,2002,18(1):135-139
    [59]王传洋,谢志民,黄汉雄.图象分析技术在聚合物/粘土纳米复合材料微观结构形态研究中的应用[J].塑料工业,2003,31(2):45-47
    [60]聂鹏,陈芳,赵学增.纳米复合材料分散相粒度分布评价[J].哈尔滨商业大学学报(自然科学版).2004,20(1):46-40
    [61]陈芳,赵学增,聂鹏,等.基于分形的纳米复合材料分散相分散均匀性描述[J].塑料工业,2004,32(1):50-53
    [62]李鸿利,郑秀婷,吴大鸣,等.利用分形评定高聚物/无机颗粒体系的分散效果[J].工程塑料应用,2004,32(12):48-50
    [63]Eric S, Samd G, Lionel C. Model development for the description of silica granules dispersion in silicone polymer [J]. Chemical Engineering Science,2006,61:5664-5677
    [64]Liang J Z. Evaluation of dispersion of nano-CaCO3 granules in polypropylene matrix based on fractal method [J]. Composites,2007,38:1502-1506
    [65]Luo Z P, Koo J H. Quantifying the dispersion of mixture microstructures [J]. Journal of microscopy, 2007,225:118-125
    [66]Luo Z P, Koo J H. Quantitative study of the dispersion degree in carbon nanofiber/polymer and carbon nanotube/polymer nanocomposites [J]. Materials Letters,2008(62):3493-3496
    [67]Luo Z P, Koo J H. Quantification of the layer dispersion degree in polymer layered silicate nanocomposites by transmission electron microscopy [J]. Polymer,2008(49):1841-1852
    [68]吴建军.计算机图像处理技术在定量金相分析中的应用研究[D].重庆:重庆大学,2002
    [69]王建萍,王家平,许建广.数字图像处理在定量金相分析中的应用[J].材料导报,2003,17(1)63-65,77
    [70]徐建林.球墨铸铁金相图片分析系统[J].钢铁研究学报,2001,13(1):73-76
    [71]衣雪梅,郭康权.Matlab图形图像处理在农机材料定量金相分析中的应用[J].农机化研究,2006(5):169-171
    [72]浦红,杨峥,陈斌.用计算机图形处理软件定量分析SEM图像[J].物理测试,2004(1):30-32
    [73]王改莲,吴翠微,董建新,等.计算机图形处理软件在SEM图像定量测定中的应用[J].电子显微学报,2001,20(4):279-282
    [74]张季如,祝杰,黄丽,等.土壤微观结构定量分析的IPP图像技术研究[J].武汉理工大学学报,2008,(4):15-18
    [75]Tovey N K. A digital computer technique for orientation analysis of micrographs soil fabric [J].1990,120:303-315
    [76]Tovey N K, Krinsley D H. Mapping of the orientation of fine-grained minerals in soils and sediments [J]. Bulletin of IAEG,1992,46:93-101
    [77]Penumadu D. Evaluation clay micro fabric using scanning electron microscopy and digital information processing [J]. Transportation Research Record,1996,1526:112-120
    [78]Wen B P. Natural and development of slip zones in landslides of igneous saprelates [D]. The University of HongKong,2002
    [79]Wen B P. Natural and development of slip zones in landslides of igneous saprelates [D]. The University of HongKong,2002
    [80]施斌,李生林.粘性土微观结构SEM图象的定量研究[J].中国科学,1995,25(6):666-672
    [81]施斌.粘性土击实过程中微观结构的定量评价[J].岩土工程学报,1996,18(4):57-62
    [82]金克盛.昆明红土的固化特性及微观结构图像特征参数研究[D].昆明:昆明理工大学,2005
    [83]Akesson U, Lindqvist J E, Goransson M, et al. Relationship between texture and mechanical properties for granites, central Sweden, by use of image-analyzing technique [J]. Bulletin of Engineering Geology and the Environment,2001,60:277-284
    [84]Akesson U, Stigh J, Lindqvist J E, et al. The influence of foliation on the fragility of granitic rocks, image analysis and quantitative microscopy [J]. Engineering Geology,2003,68:275-288
    [85]刘慧.基于CT图像处理的冻融岩石细观损伤特性研究[D].西安:西安科技大学,2006
    [86]渠文平.基于数字图像处理技术的岩石细观量化试验研究[D].南京:河海大学,2006
    [87]吴继敏.应用图像分析法评价花岗岩结构特征[J].河海大学学报,1998,26(4):1-7
    [88]Wang L B, Frost J D, Shashidhar N. Microstructure study of Wes Track mixes from X-ray tomography images [J].Transportation Research Record,2001,1767:85-94
    [89]Wang L B, Frost J D, Voyiadjis G Z, et al. Quantification of damage parameters using X-ray tomography images [J]. Mechanics of Materials,2003,25:777-790
    [90]Ketcham R A, Shashidhar N. Quantitative analysis of 3-D images of asphalt concrete [C]. Transportation Research Board 8th Annual Meeting, WashingtonDC,2001
    [91]陈佩林,虞将苗,李晓军,等.基于数字图像处理技术的沥青混合料微观结构有限元分析[J].安徽工业大学学报,2006,23(3):327-330
    [92]彭勇,孙立军,杨宇亮,等.一种基于数字图像处理技术的沥青混合料均匀性研究新方法[J].公路交通科技,2004,21(11):10-12
    [93]Ammouche A, Breysse D, Hornain H, et al. A new image analysis technique for the quantitative assessment of micro cracks in cement-based materials [J]. Cement and Concrete Research,2000,3:25-35
    [94]Ammouche A, Riss J, Breysse D, et al. Image analysis for the automated study of micro cracks in concrete [J]. Cement & Concrete Composites,2001,23:267-278
    [95]Dequiedt A S, Coster M, Chermant L, et al. Study of phase dispersion in concrete by image analysis [J]. Cement & Concrete Composites,2001,23:215-226
    [96]Dequiedt A S, Coster M, Chermant L, et al. Distances between air-voids in concrete by automatic methods [J]. Cement & Concrete Composites,2001,23:247-254
    [97]Diamond S. Considerations in image analysis as applied to investigations of the ITZ in concrete [J]. Cement & Concrete Composites,2001,23:171-178
    [98]Diamond S, Huang J. The ITZ in concrete-a different view based on image analysis and SEM observations [J]. Cement & Concrete Composites,2001,23:179-188
    [99]Marinoni N, Pavese A, Foi M. Characterization of mortar morphology in thin sections by digital image processing [J].Cement and Concrete Research,2005,35:1613-1619
    [100]Mertens G, Elsen J. Use of computer assisted image analysis for the determination of the grain-size distribution of sands used in mortars [J]. Cement and Concrete Research,2006,36:1453-1459
    [101]刘清元,谈桥.基于图像处理的混凝土裂缝的检测[J].武汉理工大学学报,2005,27(4):69-71
    [102]Lebourg T, Riss J, Pirard E. Influence of morphological characteristics of heterogeneous moraine formations on their mechanical behaviour using image and statistical analysis [J].Engineering Geology,2004,73:37-50
    [103]徐文杰,胡瑞林,岳中琦,等.土石混合体细观结构及力学特性数值模拟研究[J].岩石力学与工程学报,2007,26(2):300-311
    [104]徐文杰,胡瑞林,岳中琦.基于数字图像处理的土石混合体细观结构研究[J].辽宁工程技术大学学报
    [105]毛灵涛,薛茹,安里千.MATLAB在微观结构SEM图像定量分析中的应用[J].电子显微学报,2004,23(5):579-583
    [106]贾永刚.基于图像处理的材料细观结构分析方法研究[D].南京:南京林业大学,2006
    [107]李想,万永菁,周又玲.一种改进的阂值分割算法在复合材料图像处理中的应用[J].江南大学学报(自然科学版),2006,5(4):467-471
    [108]成玲,江笑婵,陈利,等.三维编织复合材料断层剖面图像分析[J].天津工业大学学报,2006,25(5):3-6
    [109]万振凯,杨晓蓉,张冬萍.基于图像处理的复合材料参数测定研究[J].纺织学报,2004,25(2):16-18
    [110]万振凯,张冬萍,杨晓蓉.三维编织复合材料拉伸断面图像分析研究[J].纺织学报,2004,25(1):50-52
    [111]舒扬.应用于永磁铁氧体材料生产中的金相及图像分析技术[J].矿冶,2001,10(4):67-70
    [112]滑亚慧.生物材料表面性能定量评价数字图像分析系统[D].四川:四川大学,2006
    []13]王育钢,王珏,张义先.简易数字图像技术在耐火材料中的应用[J].耐火材料,2000,34(1):57-58
    [114]童登金,周洞汝.绝缘材料中电树图像的处理与测量分析[J].现代计算机,2001(109):65-67
    [115]江林佳,朱熤.SEM材料图像分析中的多阈值分割方法[J].计算机时代,2007(4):6-7
    [116]徐建林,陈超.材料显微组织分析的研究[J].计量学报,2004,25(4):369-373
    [1]王富耻.材料现代分析测试方法[M].北京:北京理工大学出版社,2006
    [2]夏良正.数字图像处理[M].南京:东南大学出版社,1999
    [3]高赟.图像灰度增强算法的研究[D].西安:西安电子科技大学,2007
    [4]章毓晋.图像工程(中册)一图像分析[M].北京:清华大学出版社,2005
    [5]Fu K S, Mui J K. A survey of image segmentation [J]. Pattern Recognition 1981; 13(1):3-16
    [6]Haralick R M, Shapiro L G. Image segmentation techniques [J]. Computer Vision, Graphics and Image Processing,1985,29(1):100-132
    [7]Sahoo P K. A survey of thresholding techniques [J]. Computer Vision, Graphics and Image Processing,1988,41(1):233-260
    [8]Nikhil R, Sankar K. A review on image segmentation techniques [J]. Pattern Rcognition 1993,26(9): 1277-1294
    [9]吴一全,朱兆达.图像处理中阈值选取方法30年(1962-1992)的进展(一)[J].数据采集与处理,1993,9(3):193-201
    [10]吴一全,朱兆达.图像处理中阈值选取方法30年(1962-1992)的进展(二)[J].数据采集与处理,1993,9(4):268-281
    [11]赵荣椿,迟耀斌,朱重光.图像分割技术进展[J].中国体视学与图像分析,1998,3(2):121-128
    [12]王秋让.基于自动门限化的图像分割以目标提取方法研究[D].西安:西北工业大学博士论文,2001
    [13]江林佳,朱煜.SEM材料图像分析中的多阈值分割方法[J].计算机时代,2007(4):6-7
    [14]齐丽娜,张博,王战凯.最大类间方差法在图像处理中的应用[J].信号与信息处理,2006,36(7):25,26,44
    [15]邓继中,张泰岭.数字图像处理技术.广州:广东科技出版社,2005.9
    [16]朱军,李毕忠.聚合物/无机纳米复合材料研究进展[J].化工新型材料,2000,28(10):3-11
    [17]宋洪祥,吴承顺,袁茂全.纳米复合技术在聚氯乙烯增韧改性中的应用[J].合成技术及应用,2000,15(4):22-26
    [18]郑亚萍,宁荣昌,乔生儒.环氧树脂基纳米复合材料研究进展[J].化工新型材料,2001,28(3):17-18
    [19]方吕,李淑芬.基于数学形态学测定橡胶炭黑微粒分散度的方法[J].理化检验-物理分册,2008,44(12):689-693
    [20]Luo Z P, Koo J H. Quantifying the dispersion of mixture microstructures [J]. Journal of microscopy, 2007(225):118-125
    [21]辛厚文.分形理论及其应用[M].合肥:中国科学技术大学出版社,1993
    [22]陈顼,陈凌.分形几何学[M].北京:地震出版社,1998
    [23]王铁成,杨建江,方芃.混凝土结构裂缝状态及其扩展的分形几何解析[J].大连理工大学学报,1997,37(增1):77-81
    [24]曹茂森,任青文,翟爱良,等.混凝土结构损伤的分形特征实验分析[J].岩土力学,2005,26(10):1570-1574
    [25]孙洪军,董锦坤,赵丽红.分形插值方法对混凝土损伤裂纹的预测[J].辽宁工学院学报,2007,27(1):33-35
    [26]谢其泰,王建力.石材裂纹扩展分形特性[J].岩石力学与工程学报,2007,26(增1):3355-3360
    [27]王凤娥,朱昌星.MATLAB环境下岩石SEM图像损伤分形维数的实现[J].舰船电子工程,2009,29(8):144-146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700