用户名: 密码: 验证码:
氧/燃料燃烧方式下钙与铁对煤中氮释放特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭作为目前我国最重要的常规能源,在燃烧过程中放出热量的同时,也向环境中排放了大量的污染物。在这些污染物中包括NOx、SOx、细微颗粒物、重金属等。研究表明,燃煤生成的NO和NO2是酸雨的前驱物,并且参与光化学烟雾污染的生成,N02还是一种温室气体。这些氮氧化物对人类的健康和生态环境都会产生严重的危害。NOx形成机理和释放特性的研究是进行氮氧化物危害评价、法规制定和排放控制的重要基础,因此开展这方面的研究具有重要的科学和实际意义。
     氧/燃料燃烧技术是一种代替传统空气燃烧,有效减少CO2排放的燃煤新技术。在氧/燃料燃烧方式下,空气中分离出的氧气与循环烟气替代了传统煤粉燃烧方式下的空气,这样能得到高纯度的二氧化碳,从而降低了二氧化碳捕获的成本。在氧/燃料燃烧方式下,分子氮的量很低,这会抑制热力型NOx与快速型NOx的形成,从而降低整体NOx的排放率。普遍的结论是氧/燃料燃烧方式下NOx的排放量能减少到空气燃烧方式下的1/3到1/2,其主要原因与氧/燃料燃烧方式下的挥发份和煤焦有关。煤中含有大量矿物质,如Ca,Fe等,这些矿物质对煤热解及燃烧的过程都有很大的影响,它们对含氮物的释放特性也有各种不同的作用。本文从氧/燃料燃烧方式下NOx的排放量减少的原因着手,分析了CO2气氛下含氮物(HCN, NH3, NO和焦氮)的释放特性,以及煤焦燃烧和煤焦与循环烟气中NO反应的特性。并且在此基础上分析了钙和铁在反应过程中对含氮物释放特性的影响。本文主要内容如下:
     应用酸洗的化学方法,以及物理混合和浸溶等矿物质添加方法来研究钙对煤热解过程含氮物释放特性的影响。在传统空气燃烧方式下,N2是主导气体。在氧/燃料燃烧方式下,循环后烟气中C02浓度可达90%以上。实验中煤粉热解气氛分别为N2和C02,用来研究热解气氛的不同引起的含氮物分布的差异。高浓度的N2会改变热解过程中的氮平衡,CO2气体会与NOx前驱物发生反应,所以这两个气氛对热解过程中含氮物释放特性分别会有很大的影响。同时在实验中也选用了不参与反应的惰性气体Ar为热解气氛,作为分析比较。结果发现,在分别添加(CH3COO)2Ca, Ca(OH)2和CaCl2时,焦产率随着钙的添加量的增加而降低。钙的添加对热解过程中HCN和NH3的生成的作用取决于添加钙的种类以及数量。Ar气氛下钙的添加能降低HCN和NH3的生成,而在N2气氛下钙的添加却能提高HCN和NH3的生成。在C02气氛下在热解气体中没有测量到NH3的浓度。但是在C02气氛下测量到了NO的浓度,而且NO的生成随着钙的添加量的增加而减少。
     通过石英管式炉煤热解实验分析了不同热解气氛和不同氯化铁添加方式对含氮物释放特性的影响。氯化铁添加方式包含两种,一种是物理混合,另一种是煤样与氯化铁的水溶液混合。热解气氛有N2,C02和Ar。实验结果发现,在1000℃温度下,Ar气氛下热解时,酸洗煤添加氯化铁会抑制HCN的生成。但是在N2气氛下,HCN生成的量却增加,这是由于高浓度的N2抑制了氯化铁的作用。在C02气氛下,HCN的量明显降低,这是由于在C02气氛下氯化铁不仅促进挥发分的二次分解,还促进了焦氮的转化。在Ae和N2气氛下热解时,两种氯化铁的添加方式都能大幅度地降低NH3的生成。在C02气氛下没有测到NH3的量。
     采用物理混合添加氧化铁,研究了铁对传统空气燃烧和氧/燃料燃烧方式下煤焦燃烧生成的NO的影响。在800℃温度下C02气氛中生成的煤焦颗粒尺寸比N2气氛下大,但是在1300℃时,煤焦颗粒却变小。这是由于煤焦与C02反生气化反应而引起的颗粒破碎。铁的添加能促进NO的转化率,而且铁的作用随着反应的进行而增强,并在最后保持稳定。实验结果表明,在氧/燃料燃烧方式下添加铁更能促进煤焦反应过程中NO的生成。
     最后用高温沉降炉制焦,通过在石英管式炉中煤焦与NO的反应,研究了氧化铁对C02焦和NO反应的影响,并分析了CO对该反应的作用。实验结果表明,对于Ar焦与NO反应,添加氧化铁能促进反应的进行。煤焦中添加氧化铁后,NO释放的浓度的峰值比不添加氧化铁时要降低16%,而且从此开始,氧化铁对煤焦与NO反应的作用一直持续。煤焦与NO的反应是一个缓慢的长时间的过程,而其中氧化铁对反应的作用在一定条件下也是一个长期的作用。添加氧化铁后,CO释放曲线的峰值增加,这与NO释放曲线相互对应,是此消彼长的关系。
Coal as our most important conventional energy sources, while giving off heat in the combustion process, also releases a large number of pollutant emissions to the environment. These pollutants include NOx, SOx, fine particulate matter, trace metals and others. Studies have shown that coal-firing generated NO and NO2which are precursors of acid rain, and participate in the formation of photochemical smog pollution, and NO2is also a greenhouse gas. Nitrogen oxides will generate serious harm to human health and ecological environment. The understanding of NOx Formation Mechanism and Emission was an important foundation of the hazard assessment of nitrogen oxides, regulations and the emission control, to carry out research in this area has important scientific and practical significance.
     Oxy-fuel combustion technology, insteading of traditional air combustion, is a new coal firing technology which can reduce the emission of CO2. In oxy-fuel combustion, O2which was seperated from air, and recycled flue gas took the place of air during traditional air combustion. It caused higher CO2concentration in flue gas, the cost of CO2capture would decrease as well. In oxy-fuel combustion, nitrogen was low, which would decrease the formation of thermal NOx and prompt NOx, so that the emission of NOx in whole would drop greatly. The general conclusion is that the emission of NOx in oxy-fuel combustion would decrease to1/3to1/2of that in air combustion, the main reason is related to volatile matter and char. There are lots of mineral matter, like Ca and Fe, which have great effect of coal pyrolysis and combustion. The mineral matter also have different effects on nitrogen species formation. The reason of NOx emission decrease in oxy-fuel combustion was analysed in this thesis, the nitrogen species(HCN, NH3, NO and char N)formation in CO2atmosphere was studied, the char combustion and the reaction of char in NO were studied too. The effects of Ca and Fe on nitrogen species formation were also analysed. The main contents were as follows:
     With the methods of demineralization, mineral matter addition both of physically and with solution, the effects of Ca on nitrogen species distribution were studied. In conventional air combustion, N2is the dominant gas. The concentration of CO2would be higher than90%in oxy-fuel combustion with recycled flue gas. The pyrolysis atmospheres during experiments were N2and CO2, in order to study the effects of different atmospheres on nitrogen species formation. N2with high concentration would change nitrogen balance during pyrolysis, there is also reaction of CO2and precursors of NOx, which means that the two atmospheres have great effects on nitrogen species formation during pyrolysis. At the same time, Ar, which is inert, was choose as one pyrolysis atmosphere to analysis and compare. The results show that with three different Ca-based additives, i.e.,(CH3COO)2Ca, Ca(OH)2and CaCl2, char yield decreases with the increasing amount of Ca additives in all cases. The effect of Ca on HCN and NH3formation during pyrolysis depends on both the form of Ca and the amount of addition. HCN and NH3formation decreases with Ca addition in Ar, but increases in N2. There is no NH3detected during pyrolysis in CO2. In addition, NO concentration detected decreases sharply with increasing the amount of Ca addition in the atmosphere of CO2.
     The effects of FeCl3addition on nitrogen distribution under different pyrolysis environments were studied by the experiments in horizontal tube furnace. Two mixing way were introduced, one was physically mixing, the other was mixing with a saturated aqueous solution of FeCl3. The results indicate that at the temperature of1000℃, FeCl3addition with DEM decreased HCN in pyrolysis atmosphere of Ar. In N2, FeCl3increased the release of HCN due to high concentration of N2. In atmosphere of CO2, the formation of HCN was much less than that in other environments, because of the effect of FeCl3on devolatilization and char conversion. In Ar or N2environments, NH3decreased sharply with FeCl3addition respectively. But there was no NH3measured under CO2.
     The effects of Fe on NO formation under the reactions in air and oxy-fuel combustion were studied with the method of physically addition. The particle size of char generated at800℃in CO2is larger than that in N2. However, at1300℃, it is smaller in CO2atmosphere due to particle breaking by gasification of char and CO2. The Fe addition increases the NO conversion ratio, and the effect of Fe rises steeply with the process going until it becomes stable in the end. The results also indicate that the release of NO increases more significantly with the Fe addition in oxy-fuel environment.
     Finally, the effect of Fe2O3on reaction of CO2-char and NO has been studied by experiments of devolatilization in high temperature drop tube furnace and the reaction of char and NO in horizontal tube furnace. It was found that the addition of Fe2O3promotes the reaction of Ar-char and NO. With Fe2O3addition, the peak of NO release dropped16%during the reaction of Ar-char and NO, from that point on, the effect of Fe2O3became stable. The reaction of char and NO was not a quick one, so the effect of Fe2O3was also lasting and effective. There was a strong connection between the release of NO and CO.
引文
[1]曾汉才,燃烧与污染武汉:华中理工大学出版社,1992.
    [2]国家环境保护总局,2006年中国环境状况公报.2007.
    [3]张楚莹,王书肖,邢佳,赵瑜,郝吉明,中国能源相关的氮氧化物排放现状与发展趋势分析.环境科学学报,2008.28(12):2470-2479.
    [4]苏亚欣,毛如玉,徐璋,燃煤氮氧化物排放控制技术.北京:化学工业出版社,2005.
    [5]J.A. Miller and C.T. Bowman, Mechanism and modeling of nitrogen chemistry in combustion Progress in Energy and Combustion Science,1989.15(4):287-338.
    [6]P. Glarborg, A. D. Jensen, and J. E. Johnsson, Fuel nitrogen conversion in solid fuel fired systems. Progress in Energy and Combustion Science,2003.29(2): 89-113.
    [7]Y.B. Zeldovich, The oxidation of nitrogen in combustion and explosions. Acta Physicochem USSR,1946.21:577-628.
    [8]F. Normann, K. Andersson, B. Leckner, and F. Johnsson, Emission control of nitrogen oxides in the oxy-fuel process. Progress in Energy and Combustion Science,2009.35(5):385-397.
    [9]S. P. Visona and B. R. Stanmore, Modelling NO formation in a swirling pulverized coal flame. Chemical Engineering Science,1998.53(11):2013-2027.
    [10]K. M. Thomas, The release of nitrogen oxides during char combustion Fuel,1997. 76(6):457-473.
    [11]E.J. Daniels and S.P. Altaner, Inorganic nitrogen in anthracite from eastern Pennsylvania, USA. International Journal of Coal Geology,1993.22(1):21-35.
    [12]. L. L. Tan and C. Z. Li, Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part II. Effects of experimental conditions on the yields of NOx and SOx precursors from the pyrolysis of a Victorian brown coal. Fuel,2000. 79(15):1891-1897.
    [13]L. L. Tan and C. Z. Li, Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part I. Effects of reactor configuration on the determined yields of HCN and NH3 during pyrolysis. Fuel,2000.79(15):1883-1889.
    [14]P.F. Nelson, M.D. Kelly, and M.J. Wornat, Conversion of fuel nitrogen in coal volatiles to NOx precursors under rapid heating conditions. Fuel,1991.70: 403-407.
    [15]C.P. Fenimore, Reactions of fuel-nitrogen in rich flame gases. Combustion and Flame,1976.26:249-256.
    [16]王蓉,斯东波,池作和,岑可法,煤热解过程中氮分配规律的试验研究.热力发电,2005.11:47-53.
    [17]谢建军,杨学民,吕雪松,丁同利,姚建中,林伟刚,煤热解过程中硫氮分配及迁移规律研究进展.化工进展,2004.23(11):1214-1218.
    [18]赵宗彬,李文,李保庆,陈皓侃,钠、钙、铁对模型化合物热解及燃烧过程中氮逸出规律的影响.燃料化学学报,2002.30(4):294-299.
    [19]J.P. Hamalainen and M.J. Aho, Conversion of fuel nitrogen through HCN and NH3 to nitrogen oxides at elevated pressure. Fuel,1996.75(12):1377-1386.
    [20]P. R. Solomon and M. B. Colket, Evolution of fuel nitrogen in coal devolatilization. Fuel,1978.57(12):749-755.
    [21]Z. Wu, Y. Sugimoto, and H. Kawashima, Catalytic nitrogen release during a fixed-bed pyrolysis of model coals containing pyrrolic or pyridinic nitrogen. Fuel, 2001.80(2):251-254.
    [22]Y. Ohtsuka, H. Mori, K. Nonaka, T. Watanabe, and K. Asami, Selective conversion of coal nitrogen to N2 with iron. Energy & Fuels,1993.7(6):1095-1096.
    [23]Y. Ohtsuka, W. Zhiheng, and E. Furimsky, Effect of alkali and alkaline earth metals on nitrogen release during temperature programmed pyrolysis of coal. Fuel,1997. 76(14-15):1361-1367.
    [24]Y. Ohtsuka and Z. Wu, Nitrogen release during fixed-bed gasification of several coals with CO2:factors controlling formation of N2. Fuel,1999.78(5):521-527.
    [25]N. Tsubouchi and Y. Ohtsuka, Nitrogen and sulfur release during high temperature pyrolysis of coals. Fuel Chemistry Division Preprints,2002.47(1):196-197.
    [26]P. F. Nelson, M. D. Kelly, and M. J. Wornat, Conversion of fuel nitrogen in coal volatiles to NOx precursors under rapid heating conditions. Fuel,1991.70(3): 403-407.
    [27]C. Z. Li and L. L. Tan, Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part III. Further discussion on the formation of HCN and NH3 during pyrolysis. Fuel,2000.79(15):1899-1906.
    [28]Z. Xie, J. Feng, W. Zhao, K. C. Xie, K. C. Pratt, and C. Z. Li, Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part IV. Pyrolysis of a set of Australian and Chinese coals. Fuel,2001.80(15):2131-2138.
    [29]G. G. De Soete, Heterogeneous N2O and NO formation from bound nitrogen atoms during coal char combustion. Symposium (International) on Combustion,1991. 23(1):1257-1264.
    [30]M.J. Lazaro, J.V. Ibarra, R. Moliner, A. Gonzalez de Andres, and K.M. Thomas, The release of nitrogen during the combustion of coal chars:the role of volatile matter and surface area. Fuel,1996.75(8):1014-1024.
    [31]S. D. Brown and K. M. Thomas, A comparison of NO release from coals and entrained-flow reactor chars during temperature-programmed combustion. Fuel, 1993.72(3):359-365.
    [32]A. W. Harding, S. D. Brown, and K. M. Thomas, Release of NO from the combustion of coal chars. Combustion and Flame,1996.107(4):336-350.
    [33]D. C. Park, S. J. Day, and P. F. Nelson, Nitrogen release during reaction of coal char with O2, CO2, and H2O. Proceedings of the Combustion Institute,2005.30: 2169-2175.
    [34]J. O. L. Wendt and O. E. Schulze, On the fate of fuel nitrogen during coal char combustion. American Institute of Chemical Engineers,1976.22(1):102-110.
    [35]T. Shimizu, Y. Sazawa, T. Adschiri, and T. Furusawa, Conversion of char-bound nitrogen to nitric oxide during combustion. Fuel,1992.71(4):361-365.
    [36]R.F.W. Kopsel and S. Halang, Catalytic influence of ash elements on NOx formation in char combustion under fluidized bed conditions. Fuel,1997.76(4): 345-351.
    [37]E. Croiset, C. Heurtebise, J.P. Rouan, and J.R. Richard, Influence of pressure on the heterogeneous formation and destruction of nitrogen oxides during char combustion Combustion and Flame,1998.112(1-2):33-44.
    [38]K. Stanczyk, Nitrogen Oxide Evolution from Nitrogen-Containing Model Chars Combustion. Energy & Fuels,1998.13(1):82-87.
    [39]F.L. Horn and M. Steinberg, Control of carbon dioxide emissions from a power plant (and use in enhanced oil recovery). Fuel,1982.61(5):415-422.
    [40]. B. J. P. Buhre, L. K. Elliott, C. D. Sheng, R. P. Gupta, and T. F. Wall, Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science,2005.31(4):283-307.
    [41]T. Wall, Y. Liu, C. Spero, L. Elliott, S. Khare, R. Rathnam, F. Zeenathal, B. Moghtaderi, B. J. P. Buhre, C. D. Sheng, R. Gupta, T. Yamada, K. Makino, and J. Yu, An overview on oxy fuel coal combustion-State of the art research and technology development. Chemical Engineering Research and Design,2009.87(8): 1003-1016.
    [42]M. B. Toftegaard, J. Brix, P. A. Jensen, P. Glarborg, and A. D. Jensen, Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science,2010. 36(5):581-625.
    [43]L. Chen, S.Z. Yong, and A.F. Ghoniem, Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Progress in Energy and Combustion Science,2012.38(2):156-214.
    [44]F. Chatel-Pelage, R. Varagani, P. Pranda, N. Perrin, H. Farzan, Vecci S. J., Yongqi L., S. Chen, M. Rostam-Abadi, and Bose A. C., Applications of oxygen for NOx control and CO2 capture in coal-fired power plants. Thermal Science 2006.10(3): 119-142.
    [45]N. Kimura, K. Omata, T. Kiga, S. Takano, and S. Shikisima, The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery. Energy Conversion and Management,1995.36(6-9):805-808.
    [46]E. Croiset and K. V. Thambimuthu, NOx and SO2 emissions from O2/CO2 recycle coal combustion. Fuel 2001.80(14):2117-2121.
    [47]T. Nozaki, S. Takano, T. Kiga, K. Omata, and N. Kimura, Analysis of the flame formed during oxidation of pulverized coal by an O2/CO2 mixture. Energy 1997. 22(2-3):199-205.
    [48]E. Croiset, K. Thambimuthu, and A. Palmer, Coal combustion in O2/CO2 mixtures compared with air. The Canadian Journal of Chemical Engineering,2000.78(2): 402-407.
    [49]Y. Tan, E. Croiset, M.A. Douglas, and K.V. Thambimuthu, Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel,2006. 85(4):507-512.
    [50]J. O. L. Wendt, C. V. Sternling, and M. A. Matovich, Reduction of sulfur trioxide and nitrogen oxides by secondary fuel injection. Symposium (International) on Combustion,1973.14(1):897-904.
    [51]K. Okazaki and T. Ando, NOx reduction mechanism in coal combustion with recycled CO2. Energy,1997.22(2-3):207-215.
    [52]F. Normann, K. Andersson, B. Leckner, and F. Johnsson, High-temperature reduction of nitrogen oxides in oxy-fuel combustion. Fuel,2008.87(17-18): 3579-3585.
    [53]K. Andersson, F. Normann, F. Johnsson, and B. Leckner, NO emission during oxy-fuel combustion of lignite. Industrial & Engineering Chemistry Research, 2008.47(6):1835-1845.
    [54]T. Mendiara and P. Glarborg, Reburn Chemistry in Oxy-fuel Combustion of Methane. Energy & Fuels,2009.23(7):3565-3572.
    [55]T. Mendiara and P. Glarborg, Ammonia chemistry in oxy-fuel combustion of methane. Combustion and Flame,2009.156(10):1937-1949.
    [56]D. Lopez and J. Calo, The NO-Carbon reaction:The influence of potassium and CO on reactivity and populations of oxygen surface complexes. Energy & Fuels, 2007.21(4):1872-1877.
    [57]Jan E. Johnsson, Formation and reduction of nitrogen oxides in fluidized-bed combustion. Fuel,1993.73(9):1398-1415.
    [58]A.G. Borrego and D. Alvarez, Comparison of Chars Obtained under Oxy-Fuel and Conventional Pulverized Coal Combustion Atmospheres. Energy & Fuels,2007. 21(6):3171-3179.
    [59]R.K. Rathnam, L.K. Elliott, T.F. Wall, Y. Liu, and B. Moghtaderi, Differences in reactivity of pulverised coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions. Fuel Processing Technology,2009.90(6):797-802.
    [60]T. Nozaki, S. Takano, T. Kiga, K. Omata, and N. Kimura, Analysis of the flame formed during oxidation of pulverized coal by an O2/CO2 mixture. Energy,1997. 22(2-3):199-205.
    [61]Y. Hu, S. Naito, N. Kobayashi, and M. Hasatani, CO2, NOx and SO2 emissions from the combustion of coal with high oxygen concentration gases. Fuel,2000. 79(15):1925-1932.
    [62]Y. Q. Hu, N. Kobayashi, and M. Hasatani, The reduction of recycled-NOx in coal combustion with 02/recycled flue gas under low recycling ratio. Fuel,2001.80(13): 1851-1855.
    [63]H. Liu, R. Zailani, and B. M. Gibbs, Comparisons of pulverized coal combustion in air and in mixtures of O2/CO2. Fuel,2005.84(7-8):833-840.
    [64]H. Liu, R. Zailani, and B.M. Gibbs, Pulverized coal combustion in air and in O2/CO2 mixtures with NOx recycle. Fuel,2005.84(16):2109-2115.
    [65]D. Toporov, P. Bocian, P. Heil, A. Kellermann, H. Stadler, S. Tschunko, M. Forster, and R. Kneer, Detailed investigation of a pulverized fuel swirl flame in CO2/O2 atmosphere. Combustion and Flame,2008.155(4):605-618.
    [66]S. Hjartstam, K. Andersson, F. Johnsson, and B. Leckner, Combustion characteristics of lignite-fired oxy-fuel flames. Fuel,2009.88(11):2216-2224.
    [67]T. F. Wall, Combustion processes for carbon capture. Proceedings of the Combustion Institute,2007.31:31-47.
    [68]徐秀峰,顾永达,陈诵英,铁催化剂对煤热解过程中氮元素迁移的影响.燃烧化学学报,1998.26(1):18-23.
    [69]N. Tsubouchi and Y. Ohtsuka, Nitrogen chemistry in coal pyrolysis:Catalytic roles of metal cations in secondary reactions of volatile nitrogen and char nitrogen. Fuel Processing Technology,2008.89(4):379-390.
    [70]R. G. Guan, W. Li, and B. Q. Li, Effects of Ca-based additives on desulfurization during coal pyrolysis. Fuel,2003.82(15-17):1961-1966.
    [71]李绚天,骆仲泱,倪明江,岑可法,煤燃烧过程中加石灰石脱硫对NOx排放影响的研究.1,1991.19(1):71-76.
    [72]侯祥松,李金平,张海,赵石铁,吕俊复,岳光溪,石灰石脱硫对循环流化床中NOx生成和排放的影响.电站系统工程,2005.21(1):5-7.
    [73]Z. B. Zhao, J.S. Qiu, W. Li, H. K. Chen, and B. Q. Li, Influence of mineral matter in coal on decomposition of NO over coal chars and emission of NO during char combustion. Fuel,2003.82(8):949-957.
    [74]X.Z. Gong, Z.C. Guo, and Z. Wang, Variation of Char Structure during Anthracite Pyrolysis Catalyzed by Fe2O3 and Its Influence on Char Combustion Reactivity. Energy & Fuels,2009.23(9):4547-4552.
    [75]A. Nabeel, T. A. Khan, and D. K. Sharma, Studies on the Production of Ultra-clean Coal by Alkali-acid Leaching of Low-grade Coals. Energy Sources Part a-Recovery Utilization and Environmental Effects,2009.31(7):594-601.
    [76]K. M. Steel and J. W. Patrick, The production of ultra clean coal by sequential leaching with HF followed by HNO3. Fuel,2003.82(15-17):1917-1920.
    [77]K. M. Steel and J. W. Patrick, The production of ultra clean coal by chemical demineralisation. Fuel,2001.80(14):2019-2023.
    [78]K. M. Steel, J. Besida, T. A. O'Donnell, and D. G. Wood, Production of Ultra Clean Coal Part I-Dissolution behaviour of mineral matter in black coal toward hydrochloric and hydrofluoric acids. Fuel Processing Technology,2001.70(3): 171-192.
    [79]K. M. Steel, J. Besida, T. A. O'Donnell, and D. G. Wood, Production of Ultra Clean Coal Part II-Ionic equilibria in solution when mineral matter from black coal is treated with aqueous hydrofluoric acid. Fuel Processing Technology,2001.70(3): 193-219.
    [80]J. Friebel and R.F.W. Kopsel, The fate of nitrogen during pyrolysis of German low rank coals - a parameter study. Fuel,1999.78(8):923-932.
    [81]N. Tsubouchi and Y. Ohtsuka, Nitrogen release during high temperature pyrolysis of coals and catalytic role of calcium in N2 formation. Fuel,2002.81(18): 2335-2342.
    [82]Z. H. Wang, J. H. Zhou, Z. C. Wen, J. Z. Liu, and K. Cen, Effect of mineral matter on NO reduction in coal reburning process. Energy & Fuels,2007.21(4): 2038-2043.
    [83]常丽萍,赵娅鸿,煤中固有矿物质在热解过程中对氮释放的影响.煤炭转化,2005.28(2):36-38.
    [84]Z. Wu and Y. Ohtsuka, Key Factors for Formation of N2 from Low-Rank Coals during Fixed Bed Pyrolysis:Pyrolysis Conditions and Inherent Minerals. Energy & Fuels,1997.11(4):902-908.
    [85]Z. Wu and Y. Ohtsuka, Nitrogen Distribution in a Fixed Bed Pyrolysis of Coals with Different Ranks:Formation and Source of N2. Energy & Fuels,1997.11(2): 477-482.
    [86]N. Tsubouchi, Y. Ohshima, C. Xu, and Y. Ohtsuka, Enhancement of N2 Formation from the Nitrogen in Carbon and Coal by Calcium. Energy & Fuels,2000.15(1): 158-162.
    [87]Y. Ohtsuka, C. Xu, D. Kong, and N. Tsubouchi, Decomposition of ammonia with iron and calcium catalysts supported on coal chars. Fuel,2004.83(6):685-692.
    [88]G. J. Zijlma, A. D. Jensen, J. E. Johnsson, and C. M. Van den Bleek, NH3 oxidation catalysed by calcined limestone-a kinetic study. Fuel,2002.81(14):1871-1881.
    [89]S. Schafer and B. Bonn, Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidised combustion. Part II:heterogeneous reactions involving limestone. Fuel,2002.81(13):1641-1646.
    [90]T. Watanabe, Y. Ohtsuka, and Y. Nishiyama, Nitrogen removal and carbonization of polyacrylonitrile with ultrafine metal particles at low temperatures. Carbon, 1994.32(2):329-334.
    [91]M.J.H. Snow, J.P. Longwell, and A.F. Sarofim, Direct sulfation of calcium carbonate. Industrial & Engineering Chemistry Research,1988.27(2):268-273.
    [92]H. Liu, S. Katagiri, U. Kaneko, and K. Okazaki, Sulfation behavior of limestone underhigh CO2 concentration in O2/CO2 coal combustion. Fuel,2000.79(8): 945-953.
    [93]A. B. Fuertes, G. Velasco, M. J. Fernandez, and T. Alvarez, Analysis of the direct sulfation of calcium carbonate. Thermochimica Acta,1994.242(15):161-172.
    [94]H. Liu and K. Okazaki, Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx in O2/CO2 coal combustion with heat recirculation. Fuel,2003. 82(11):1427-1436.
    [95]H. Liu, S. Katagiri, and K. Okazaki, Drastic SOx Removal and Influences of Various Factors in O2/CO2 Pulverized Coal Combustion System. Energy & Fuels, 2001.15(2):403-412.
    [96]吕当振,O2/CO2燃烧方式下煤中S析出行为及其与Ca相互作用机制研究.华中科技大学,2010.博士论文.
    [97]何宏舟,邹峥,俞建洪,苏建民,洪方明,循环流化床锅炉燃烧福建无烟煤炉内脱硫对锅炉热效率及烟气中NOx排放的影响.电站系统工程,2003.19(5):4-8.
    [98]张东平,池涌,严建华,李香排,曹玉春,岑可法,燃煤流化床钙基脱硫剂对NO转变率的影响及机理.环境科学,2003.24(1):143-146.
    [99]. N. Tsubouchi and Y. Ohtsuka, Formation of N2 during pyrolysis of Ca-loaded coals. Fuel,2002.81(11-12):1423-1431.
    [100]S. Y. Lin, M. Harada, Y. Suzuki, and H. Hatano, Comparison of pyrolysis products between Coal, Coal/CaO, and Coal/Ca(OH)2 materials. Energy & Fuels,2003. 17(3):602-607.
    [101]. Z. B. Zhao, W. Li, J. S. Qui, and B. Q. Li, Effect of Na, Ca and Fe on the evolution of nitrogen species during pyrolysis and combustion of model chars. Fuel,2003. 82(15-17):1839-1844.
    [102]H. Agarwal, C. E. Romero, and H. G. Stenger, Comparing and interpreting laboratory results of Hg oxidation by a chlorine species. Fuel Processing Technology,2007.88(7):723-730.
    [103]R. N. Sliger, J. C. Kramlich, and N. M. Marinov, Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species. Fuel Processing Technology,2000.65:423-438.
    [104]常丽萍,谢克昌,李春柱,煤热解过程中NH3和HCN的释放.第九届全国化学 工艺学术年会论文集2005.
    [105]谭厚章.廖晓伟.赵科,徐通模,惠世恩,车得福.傅立叶红外光谱法对煤中毗咯型氮的热解规律研究.动力工程,2004.24(1):121-124.
    [106]Y. Ohtsuka and E. Furimsky, Effect of Ultrafine Iron and Mineral Matter on Conversion of Nitrogen and Carbon During Pyrolysis and Gasification of Coal. Energy & Fuels.1995.9(1):141-147.
    [107]P. Glarborg. M.U. Alzueta, K. Dam-Johansen. and J.A. Miller, Kinetic Modeling of Hydrocarbon/Nitric Oxide Interactions in a Flow Reactor. Combustion and Flame. 1998.115(1-2):1-27.
    [108]P. Dagaut. P. Glarborg. and M.U. Alzueta. The oxidation of hydrogen cyanide and related chemistry Progress in Energy and Combustion Science,2008.34(1):1-46.
    [109]Y. Xiao. P. Zhou, and W. Zhang. An investigation into catalysts to improve low temperature performance in the selective catalytic reduction of NO with NH3 Journal of Marine Engineering and Technology.2009(14):19-26.
    [110].苏亚欣,Benson B.Gathitu, Fe2O3控制再燃脱硝中间产物HCN.环境科学学报,2011.31(6):1181-1186.
    [111]H. Mori. K. Asami, and Y. Ohtsuka. Role of Iron Catalyst in Fate of Fuel Nitrogen during Coal Pyrolysis. Energy & Fuels.1996.10(4):1022-1027.
    [112]H. Z. Tan, X. B. Wang. Y. Q. Niu, H. Y. Liu, C. L. Wang, and T. M. Xu. Studies of interaction mechanism between iron and HCN. Asian Journal of Chemistry 2010.22(5):4017-4025.
    [113]A. N. Hayhurst and Y. Ninomiya, Kinetics of the conversion of NO to N2 during the oxidation of iron particles by NO in a hot fluidised bed. Chemical Engineering Science,1998.53(8):1481-1489.
    [114]V. V. Lissianski. P. M. Maly, V. M. Zamansky. and W. C. Gardiner, Utilization of iron additives for advanced control of NOx emissions from stationary combustion sources. Industrial & Engineering Chemistry Research.2001.40(15):3287-3293.
    [115]B. Gradon and J. Lasek, Investigations of the reduction of NO to N2 by reaction with Fe. Fuel,2010.89(11):3505-3509.
    [116]S. Singer, L. Chen, and A. F. Ghoniem, The influence of gasification reactions on char consumption under oxy-combustion conditions:Effects of particle trajectory and conversion. Proceedings of the Combustion Institute,2013.34:3471-3478.
    [117]J. Brix, L. G. Navascues, J. B. Nielsen, P. L. Bonnek, H. E. Larsen, S. Clausen, P. Glarborg, and A. D. Jensen, Oxy-fuel combustion of millimeter-sized coal char: Particle temperatures and NO formation. Fuel,2013.106:72-78.
    [118]C. A. Wang, Y. B. Du, and D. F. Che, Investigation on the NO Reduction with Coal Char and High Concentration CO during Oxy-fuel Combustion. Energy & Fuels, 2012.26(12):7367-7377.
    [119]B. Wang, L. S. Sun, S. Su, J. Xiang, S. Hu, and H. Fei, Char Structural Evolution during Pyrolysis and Its Influence on Combustion Reactivity in Air and Oxy-Fuel Conditions. Energy & Fuels,2012.26(3):1565-1574.
    [120]J. Saastamoinen and A. Tourunen, Model for Char Combustion, Particle Size Distribution, and Inventory in Air and Oxy-fuel Combustion in Fluidized Beds. Energy & Fuels,2012.26(1):407-416.
    [121]E. S. Hecht, C. R. Shaddix, M. Geier, A. Molina, and B. S. Haynes, Effect of CO2 and steam gasification reactions on the oxy-combustion of pulverized coal char. Combustion and Flame,2012.159(11):3437-3447.
    [122]M. Geier, C. R. Shaddix, K. A. Davis, and H. S. Shim, On the use of single-film models to describe the oxy-fuel combustion of pulverized coal char. Applied Energy,2012.93:675-679.
    [123]S. R. Dhaneswar and S. V. Pisupati, Oxy-fuel combustion: The effect of coal rank and the role of char-CO2 reaction. Fuel Processing Technology,2012.102: 156-165.
    [124]J. Chen, B. Q. Dai, F. Low, and L. Zhang, XANES Investigation on Sulfur Evolution during Victorian Brown Coal Char Gasification in Oxy-Fuel Combustion Mode. Energy & Fuels,2012.26(8):4775-4782.
    [125]J. W. Zhang, S. Z. Sun, X. D. Hu, R. Sun, and Y. K. Qin, Modeling NO-Char Reaction at High Temperature. Energy & Fuels,2009.23:2376-2382.
    [126]S. Z. Sun, J. W. Zhang, X. D. Hu, S. H. Wu, J. C. Yang, Y. Wang, and Y. K. Qin, Studies of NO-Char Reaction Kinetics Obtained from Drop-Tube Furnace and Thermogravimetric Experiments. Energy & Fuels,2009.23(1):74-80.
    [127]S. Z. Sun, J. W. Zhang, X. D. Hu, P. H. Qiu, J. Qian, and Y. K. Qin, Kinetic analysis of NO-Char reaction. Korean Journal of Chemical Engineering,2009. 26(2):554-559.
    [128]S. B. Wang, V. Slovak, and B. S. Haynes, Kinetic studies of graphon and coal-char reaction with NO and O2:direct non-linear regression from TG curves. Fuel Processing Technology,2005.86(6):651-660.
    [129]C. Schonenbeck, R. Gadiou, and D. Schwartz, A kinetic study of the high temperature NO-char reaction. Fuel,2004.83(4-5):443-450.
    [130]P. Garcia, J. F. Espinal, C. S. M. de Lecea, and F. Mondragon, Experimental characterization and molecular simulation of nitrogen complexes formed upon NO-char reaction at 270 degrees C in the presence of H2O and O2. Carbon,2004. 42(8-9):1507-1515.
    [131]H. Chang, B. Q. Li, W. Li, and H. K. Chen, The influence of mineral matters in coal on NO-char reaction in the presence of SO2. Fuel,2004.83(6):679-683.
    [132]B. J. Zhong, H. S. Zhang, and W. B. Fu, Catalytic effect of KOH on the reaction of NO with char. Combustion and Flame,2003.132(3):364-373.
    [133]H. Orikasa, K. Matsuoka, T. Kyotani, and A. Tomita, HCN and N2 formation mechanism during NO/CHAR reaction. Proceedings of the Combustion Institute, 2002.29:2283-2289.
    [134]A. Montoya, T. N. Truong, and A. F. Sarofim, Application of density functional theory to the study of the reaction of NO with char-bound nitrogen during combustion. Journal of Physical Chemistry A,2000.104(36):8409-8417.
    [135]B. J. Zhong and H. Tang, Catalytic NO reduction at high temperature by de-ashed chars with catalysts. Combustion and Flame,2007.149(1-2):234-243.
    [136]Z. B. Zhao, W. Li, and B. Q. Li, Catalytic reduction of NO by coal chars loaded with Ca and Fe in various atmospheres. Fuel,2002.81(11-12):1559-1564.
    [137]X. Y. Liu, M. H. Xu, J. P. Si, Y. Gu, C. Xiong, and H. Yao, Effect of Sodium on the Structure and Reactivity of the Chars Formed under N2 and CO2 Atmospheres. Energy & Fuels,2012.26(1):185-192.
    [138]斯俊平,刘小伟,熊超,乔瑜,徐明厚,O2/CO2燃烧方式下Na元素对煤焦物化结构的影响.工程热物理学报,2012.33(9):1612-1614.
    [139]X.W. Liu, M.H. Xu, D.X. Yu, X.P. Gao, Q. Cao, and Y.M. Cai, Effect of combustion parameters on the emission and chemical composition of particulate matter during coal combustion. Energy & Fuels,2007.21(1):157-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700