用户名: 密码: 验证码:
顺丁橡胶基磁流变弹性体的研制及其阻尼性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变弹性体是一种磁敏智能材料,它主要由微米级的软磁性颗粒和高分子聚合物弹性基体组成。在外磁场的作用下,颗粒在基体内形成链状结构或者复杂的三维结构,其流变性能或机械性能在外界磁场的作用下发生连续、快速、可逆的变化。这些独特的性能使其受到众多的关注,并且在减振、降噪等领域具有广泛的应用前景。
     在磁流变弹性体领域,以往的研究热点主要集中在模量方面,然而对工程应用有重要影响的阻尼性能却一直未得到应有的关注。对于自调谐式吸振器,低阻尼的磁流变弹性体会增强其吸振效果;而对于隔振器,当激励频率处于系统的不同频段时,则需要阻尼可调的磁流变弹性体才能够使其达到良好的隔振效果,即要求磁流变弹性体的阻尼具有可控性。但是,目前磁流变弹性体中普遍存在阻尼过大、阻尼可控性能较差等问题。因此,为了使磁流变弹性体器械获得理想的减振效果,研究磁流变弹性体的阻尼性能是非常具有实用价值和科学意义的。
     针对上述问题,本文选择性能优良的顺丁橡胶作为基体,系统地研究了顺丁橡胶基磁流变弹性体的制备方法及力学性能。以研制出实用型的磁流变弹性体为目标,对材料的界面和基体进行了设计和改良,实现了磁流变弹性体阻尼性能的优化和调控。具体内容如下:
     1.基于界面对材料性能有十分显著的影响,本文对磁流变弹性体的界面摩擦阻尼性能进行了研究。利用不同粒径的羰基铁粉制备出具有不同界面特性的样品,研究了不同磁场及应变条件下磁流变弹性体的阻尼性能。首次提出磁流变弹性体的界面摩擦阻尼主要来自自由橡胶和磁性颗粒之间的界面滑移。该研究结果对进一步建立磁流变弹性体内部界面的理论模型具有一定的指导作用。
     2.为了优化磁流变弹性体的阻尼性能,研制出具有低阻尼的材料,本文对磁流变弹性体的界面和基体进行了优化和设计。首先选择马来酸酐作为相容剂来改善两相间较差的界面状况。研究发现马来酸酐的添加可以有效地增强颗粒与基体之间的相容性,在降低磁流变弹性体损耗因子的同时,还增强了其储能模量和拉伸强度,但是磁流变效应却有所下降。此外,磁流变弹性体的基体材料也是其阻尼的来源之一,采用石墨烯纳米片作为基体的增强相,制备出了不同石墨烯纳米片含量的磁流变弹性体,并对其损耗因子、模量、拉伸强度及热扩散率等性能进行了测试和分析。系统地研究了在不同应变、磁场及温度下石墨烯纳米片对阻尼性能的影响,发现石墨烯纳米片通过阻碍基体分子链的运动,有效地降低了磁流变弹性体的阻尼。上述两种方法(改善界面状况和增强基体)为降低磁流变弹性体阻尼提供了理想的方案,对实际应用中的磁流变弹性体吸振器有着非常重要的意义。
     3.本文对磁流变弹性体的阻尼可控性能展开了一系列的相关研究。系统研究了基体的交联密度对磁流变弹性体阻尼可控性能的影响。发现基体的交联密度可直接影响阻尼的可控性能。当基体的交联密度较低时,增塑剂和频率对阻尼可控性能的影响非常显著。此外,低的基体交联密度使磁致模量和磁流变效应也得到了增强。针对上述现象,首次提出颗粒重排是实现磁流变弹性体阻尼可控的关键因素。基于以上提出的阻尼可控机理,研究了温控材料对阻尼可控性能的影响。以聚己内酯作为一种温度可控元素添加到顺丁橡胶基体中,研制出了一种新型的阻尼可控的磁流变弹性体。发现通过改变聚己内酯的含量、温度以及外加磁场,可有效控制磁流变弹性体的阻尼性能。实现磁流变弹性体的阻尼可控对工程器械(如隔振器)的性能有着极其重要的影响,上述研究结果将有望极大地促进磁流变弹性体在该领域的应用。
Magnetorheological elastomers (MREs) are a kind of magneto-sensitive materials, which are composed of microsized soft magnetic particles and low-permeability elastomers materials. During the preparation, the particles form an anisotropic ordered pre-configuration such as chains or more complex three-dimensional structures under applying a magnetic field. It is noted that the rheo logical or mechanical properties can be changed continuously, rapidly and reversibly by an external magnetic field. Based on these unique characteristics, MREs have attracted increasing attention and have been considered for a wide range of applications in vibration reduction and noise reduction, etc.
     Tremendous efforts have been devoted to the modulus of MREs in the past ten years, while the damping properties which are very important in practical application have not attracted considerable attention. For MRE-based vibration absorbers, low damping will contribute to the vibration reduction. Furthermore, for MRE-based vibration isolators, the tunable damping is preferred for vibration reduction effect when the excitation signal is located in different resonance frequency bands of the system. However, the high and uncontrollable damping is detrimental to some applications of MREs. Therefore, to develop high-efficiency MRE-based vibration reduction devices, it is very practical and important to study the damping properties.
     To overcome the above-mentioned problems, cis-polybutadiene rubber (BR) was used as matrix. The corresponding fabrication processes were studied to prepare BR based MREs and their mechanical properties were also investigated. In order to optimize the damping properties and obtain the practical MREs, the interface and the matrix of MREs were designed and improved. Details are described as following:
     1. The effect of interface between the two phases on the mechanical performances of the material is very important. In this study, the interfacial friction damping properties of MREs were investigated experimentally by using two kinds of carbonyl iron particles. The damping properties of MREs were measured under different magnetic fields and different shear strain amplitudes. The results demonstrated that the interfacial friction damping mainly comes from the frictional sliding at the interfaces between the free rubber and the particles, which is guidable for establishing interfacial model of MREs.
     2. The interface and elastic matrix need to be improved to obtain the MREs with low damping. Maleic anhydride (MA) was selected as the compatibilizer to modify the interfaces of MREs. The experimental results indicated that the compatibility between the magnetic particles and rubber matrix was enhanced with the increase of MA. The enhancement of the bond between two phases led to different mechanical properties:the reduction of the loss factor, the increase of shear storage modulus, the enhancement of the tensile strength, and the reduction of the MR effect. In MREs, the matrix also plays a very significant role in damping properties. The graphite nanoplatelet (GNP) was selected as the reinforced component in the BR based MREs and their damping properties were investigated. MREs with different contents of GNP were prepared and the mechanical performances including loss factor, modulus, tensile strength and thermal diffusivity were measured. The effect of GNP on the damping properties under different shear strain amplitudes, magnetic fields and temperatures was studied. The results indicated that the flaky GNP could obstruct the sliding friction between the matrix molecular chains. The reinforcement of the matrix resulted in the reduction of loss factor. Consequently, the above methods were hopeful to optimize and reduce the damping of MREs, and helpful for practical application in MRE vibration absorbers.
     3. The controllable damping properties of MREs have also been investigated. The effect of crosslink density of the matrix on the controllable damping properties was firstly studied. The experimental results showed that the crosslink density of the matrix influenced the controllable damping properties of MREs directly. When the crosslink density of the matrix was low, the effect of plasticizer and frequency on the magneto-induced change of loss factor was remarkable. In addition, by reducing crosslink density, the magneto-induced modulus and the relative MR effect increased. A mechanism for the magneto-induced change of loss factor was proposed and the analysis implied that the rearrangement of particles played an important role in controlling the damping properties of MREs. Based on the mechanism of controllable damping properties, the polycaprolactone (PCL) was selected as the temperature-controllable component in the BR matrix and a novel kind of MREs with controllable damping properties was developed. The experimental results showed that the damping properties of the MREs can be controlled by varying the PCL weight ratio, the temperature, and the magnetic field. In practical applications, the effect of MREs with controllable damping properties on the properties of MREs based devices (MRE vibration isolators) is very important. These results will lead them to be widely applied in practical applications.
引文
[1]Yanagida H. Intellignt materials-an new frontier [J]. Angewandte Chemie,1998,100(10): 1443-1446.
    [2]Rabinow J. Magnetic fluid clutch [J]. Technical News Bulletin,1948,32(4):54-60.
    [3]Rabinow J. The magnetic fluid clutch [J]. AIEE Transactions,1948,67(2):1308-1315.
    [4]Carlson J D. What makes a good MR fluid [J]. Journal of Intelligent Material Systems and Structures,2002,13(7-8):431-435.
    [5]Jolly M R, Bender J W, Carlson J D. Properties and applications of commercial magnetorheological fluids [J]. Journal of Intelligent Material Systems and Structures,1999, 10(1):5-13.
    [6]Carlson J D, Catanzarite D M, StClair K A. Commercial magneto-rheological fluid devices [J]. International Journal of Modern Physics B,1996,10(23-24):2857-2865.
    [7]Phule P P, Ginder J M. Synthesis and properties of novel magnetorheological fluids having improved stability and redispersibility [J]. International Journal of Modern Physics B,1999, 13(14-16):2019-2027.
    [8]Ginder J M. Behavior of magnetorheological fluids [J]. MRS Bulletin,1998,23(8):26-29.
    [9]Ginder J M, Davis L C, Elie L D. Rheology of magnetorheological fluids:models and measurements [J]. International Journal of Modern Physics B,1996,10(23-24):3293-3303.
    [10]Tao R, Jiang Q. Structural transitions of an electrorheological and magnetorheological fluid [J]. Physical Review E,1998,57(5):5761-5765.
    [11]Tao R Super-strong magnetorheological fluids [J]. Journal of Physics-Condensed Material, 2001,13(50):979-999.
    [12]Jung H J, Spencer B F, Lee I W. Control of seismically excited cable-stayed bridge employing magnetorheological fluid dampers [J]. Journal of Structural Engineering-ASCE,2003,129(7): 873-883.
    [13]Dyke S J, Spencer B F, Sain M K, et al. An experimental study of MR dampers for seismic protection [J]. Smart Materials and Structures,1998,7(5):693-703.
    [14]Shkel Y M, Klingenberg D J. Magnetorheology and magnetostriction of isolated chains of nonlinear magnetizable spheres [J]. Journal of Rheology,2001,45(2): 351-368.
    [15]Bossis G, Khuzir P, Lacis S, et al. Yield behavior of magnetorheological suspensions [J]. Journal of Magnetism and Magnetic Materials,2003,258(SI):456-458.
    [16]Lemaire E, Bossis G. Yield stress and wall effects in magnetic colloidal suspensions [J]. Journal of Physics D-Applied Physics,1991,24(8):1473-1477.
    [17]Promislow J, Gast A. Magnetorheological fluid structure in a pulsed magnetic field [J]. Langmuir,1996,12(17):4095-4102.
    [18]Promislow J, Gast A. Low-energy suspension structure of a magnetorheological fluid [J]. 1997,56(1):643-652.
    [19]Mohebi M, Jamasbi N, Liu J. Simulation of the formation of non-equilibrium structures in magnetorheological fluids subject to an external magnetic field [J]. Physical Review E,1996, 54(5):5407-5413.
    [20]von Pfeil K, Graham M D, Klingenberg D J, et al. Structure evolution in electrorheological and magnetorheological suspensions from a continuum perspective [J]. Journal of Applied Physics,2003,93(9):5769-5779.
    [21]方生,张培强.旋转磁场作用下磁流变液颗粒运动及结构演化的模拟[J].化学物理学报,2001,14(5):562-566.
    [22]Guo C Y, Gong X L, Xuan S H, et al. Compression behaviors of magnetorheological fluids under nonuniform magnetic field [J]. Rheol Acta,2013,52(2):165-176.
    [23]Kordonsky W I. Elements and devices based on magnetorheological effect [J]. Journal of intelligent Material Systems and Structures,1993,4(1):65-69.
    [24]Kordonsky W I. Magnetorheological effect as a base of new devices and technologies [J]. Journal of Magnetism and Magnetic Materials,1993,122(3):395-398.
    [25]Kordonsky W I. Magnetorheological fluids and their applications [J]. Materials Technology, 1993,8(11):240-242.
    [26]Kordonsky W I, Gorodkin S R, Kolomentsev A V, et al. Magnetorheological valve and devices incorporating magnetorheological elements:U.S. Patent 5,353,839[P].1994.
    [27]Kordonsky W I, Gorodkin S R, Kolomentsev A V, et al. Magnetorheological valve and devices incorporating magnetorheological elements:U.S. Patent 5,452,745[P].1995.
    [28]Kordonsky W I, Demchuk S A. Additional magnetic dispersed phase improves the MR-fluid properties [J]. Journal of intelligent material systems and structures,1996,7(5):522-525.
    [29]周刚毅,金昀,向勇等.磁场作用下磁流变液结构演化的实验研究[J].实验力学,2000,15(2):233-239.
    [30]瞿伟廉,樊友川.磁流变液阻尼器的磁路有限元分析与优化设计方法[J].华中科技大学学报(城市科学版),2006,23(3):1-4.
    [31]金昀,张培强,汪小华等.磁流变液剪切屈服应力的数值计算[J].中国科学技术大学学报,2001,31(2):168-173.
    [32]李金海,关新春,刘敏等.斜拉索磁流变液阻尼器半主动振动控制系统的设计与应用[J]. 功能材料,2006,5(37):827-830.
    [33]仇中军,张飞虎,董申.光学玻璃研抛用磁流变液的研究光学技术[J].2002,28(6):497-499.
    [34]温洪昌,廖昌荣,严小锐.磁流变液阻尼器的电流驱动器设计与实验测试[J].电子测量技术,2008,31(7):52-55.
    [35]唐欣,凌虹,胡克鳌.磁流变液沉降稳定性研究现状与趋势[J].磁性材料及器件,2004,35(3):5-10.
    [36]易成建,彭向和,李海涛.静磁场下磁流变液微结构形态稳定性分析[J].功能材料,2008,12(39):1961-1964.
    [37]程海斌,王金铭,马会茹等.有机分子修饰铁粒子表面改善水基磁流变液的抗氧化性和稳定性[J],物理化学学报,2008,24(10):1869-1874.
    [38]黄橙,周岱,马骏.基于磁流变液阻尼杆件的空间网壳风振半主动控制[J].上海交通大学学报,2008,42(6):961-965.
    [39]Tomasz G, Zielinski, Michal Rak. Acoustic absorption of foams coated with MR fluid under the influence of magnetic field [J]. Journal of Intelligent Material Systems and Structures, 2010,21(2):125-131.
    [40]Carlson J D, Jolly M R. MR fluid, foam and elastomer devices [J]. Mechatronics,2000, 10(4-5):555-569.
    [41]Maranville C W, Ginder J M. Small-strain dynamic mechanical behavior of magnetorheological fluids entrained in foams [J]. International Journal of Applied Electromagnetics and Mechanics,2005,22(1-2):25-38.
    [42]Shiga T, Okada A, Kurauchi T. Magnetroviscoelastic behavior of composite gels [J]. Journal of Applied Polymer Science,1995,58(4):787-792.
    [43]Fuchs A, Xin M, Gordaninejad F, et al. Development and characterization of hydrocarbon polyol polyurethane and silicone magnetorheological polymeric gels [J]. Journal of Applied Polymer Science,2004,92(2):1176-1182.
    [44]Fuchs A, Hu B, Gordaninejad F, et al. Synthesis and characterization of magnetorheological polyimide gels [J]. Journal of Applied Polymer Science,2005,98(6):2402-2413.
    [45]Hu B, Fuchs A, Huseyin S, et al. Supramolecular magnetorheological polymer gels [J]. Journal of Applied Polymer Science,2006,100(3):2464-2479.
    [46]de Vicente J, Lopez-Lopez M T, Gonzalez-Caballero F. Rheological study of the stabilization of magnetizable colloidal suspensions by addition of silica nanoparticles [J]. Journal of Rheology,2003,47(5):1093-1109.
    [47]Lopez-Lopez M T.de Vicente J, Gonzalez-Caballero F. Stability of magnetizable colloidal suspensions by addition of oleic acid and silica nanoparticles [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2005,264(1-3):75-81.
    [48]叶兴柱,龚兴龙,江万权等.新型磁流变胶的流变性能[J].机械工程材料,2008,32(7):21-23.
    [49]An H N, Picken S J, Mendes E. Enhanced hardening of soft self-assembled copolymer gels under homogeneous magnetic fields [J]. Soft Matter,2010,6(18):4497-4503.
    [50]Xu Y G, Gong X L, Xuan S H, et al. A high-performance magnetorheological material: preparation, characterization and magnetic-mechanic coupling properties [J]. Soft Matter, 2011,7(11):5246-5254.
    [51]Bellan C, Bossis G. Field dependence of viscoelastic properties of elastomers [J]. International Journal of Modern Physics B,2002,16(17-18):2447-2453.
    [52]Demchuk S A, Kuz'min V A. Viscoelastic properties of magnetorheological elastomers in the regime of dynamic deformation [J]. Journal of Engineering Physics and Thermophysics, 2002,75(2):396-400.
    [53]Lokander M, Stenberg B. Improving the magnetorheological effect in isotropic magnetorheological rubber materials [J]. Polymer Testing,2003,22(6):677-680.
    [54]Lokander M, Stenberg B. Performance of isotropic magnetorheological rubber materials [J]. Polymer Testing,2003,22(3):245-251.
    [55]Farshad M, Benine A. Magnetoactive elastomer composites [J]. Polymer Testing,2004,23(3): 347-353.
    [56]Abramchuk S S, Grishin D A, Kramarenko E Yu, et al. Effect of a homogeneous magnetic field on the mechanical behavior of soft magnetic elastomers under compression [J]. Polymer Science Series A,2006,48(2):138-145.
    [57]Woods B K S, Wereley N, Hoffmaster R, et al. Manufacture of bulk magnetorheological elastomers using vacuum assisted resin transfer molding [J]. International Journal of Modern Physics B,2007,21(28-29):5010-5017.
    [58]Boczkowska A, Awietjan S F, Wroblewski R. Microstructure-property relationships of urethane magnetorheological elastomers [J]. Smart Materials and Structure,2007,16(5): 1924-1930.
    [59]von Lockette P R, Lofland S E, Koo J-H, et al. Dynamic characterization of bimodal particle mixtures in silicone rubber magnetorheological materials [J]. Polymer Testing,2008,27(8): 931-935.
    [60]Bica I. Influence of the transverse magnetic field intensity upon the electric resistance of the magnetorheological elastomer containing graphite microparticles [J]. Materials Letters,2009, 63(26):2230-2232.
    [61]Fuchs A, Sutrisno J, Gordaninejad F, et al. Surface polymerization of iron particles for magnetorheological elastomers [J]. Journal of Applied Polymer Science,2010,117(2): 934-942.
    [62]Kaleta J, Krolewicz M, Lewandowski D. Magnetomechanical properties of anisotropic and isotropic magnetorheological composites with thermoplastic elastomer matrices [J]. Smart Materials and Structure,2011,20(8):085006.
    [63]Alberdi-Muniain A, Gil-Negretel N, Kari L. Influence of carbon black and plasticisers on dynamic properties of isotropic magnetosensitive natural rubber [J]. Plastics, Rubber and Composites,2012,14(7):310-317.
    [64]Gong X L, Zhang X Z, Zhang P Q. Study of mechanical behavior and microstructure of magnetorheological elastomers [J]. International Journal of Modern Physics B,2005,19(7-9): 1304-1310.
    [65]Gong X L, Zhang X Z, Zhang P Q. Fabrication and characterization of isotropic magnetorheological elastomers [J]. Polymer Testing,2005,24(5):669-676.
    [66]Zhang X Z, Peng S L, Wen W J, et al. Analysis and fabrication of patterned magnetorheological elastomers [J]. Smart Materials and Structure,2008,17(4):045001.
    [67]Hu Y, Wang Y L, Gong X L, et al. New magnetorheological elastomers based on polyurethane/si-rubber hybrid [J]. Polymer Testing,2005,24(3):324-329.
    [68]Hu Y, Wang Y L, Gong X Q, et al. Magnetorheological elastomers based on polyurethane/si-rubber hybrid [J]. International Journal of Modern Physics B,2005,19(7-9): 1114-1120.
    [69]Wang Y L, Hu Y, Chen L, et al. Effects of rubber/magnetic particle interactions on the performance of magnetorheological elastomers [J]. Polymer Testing,2006,25(2):262-267.
    [70]Jiang W Q, Yao J J, Gong X L, et al. Enhancement in magnetorheological effect of magnetorheological elastomers by surface modification of iron particles [J]. Chinese Journal of Chemical Physics,2008,21(1):87-92.
    [71]Gong X L, Chen L, Li J F. Study of utilizable mangetorheological elastomers [J]. International Journal of Modern Physics B,2007,21(28-29):4875-4882.
    [72]Chen L, Gong X L, Jiang W Q, et al. Investigation on magnetorheological elastomers based on natural Rubber [J]. Journal of Materials science,2007,42(14):5483-5489.
    [73]Chen L, Gong X L, Li W H. Effect of carbon black on the mechanical performances of magnetorheological elastomers [J]. Polymer Testing,2008,27(3):340-345.
    [74]Li J F, Gong X L, Zhu H, et al. Influence of particle coating on dynamic mechanical behaviors of magnetorheological elastomers [J]. Polymer Testing,2009,28(3):331-337.
    [75]Li J F, Gong X L, Xu Z B, et al. The effect of pre-structure process on magnetorheological elastomer performance [J]. International Journal of Materials Research,2008,99(12): 1358-1364.
    [76]李剑锋,龚兴龙,张先舟等.硅橡胶基磁流变弹性体的研制[J].功能材料,2006,37(6):1003-1005,1012.
    [77]Zhang W, Gong X L, Jiang W Q, et al. An investigation of the durability of anisotropic magnetorheological elastomers based on mixed rubber. Smart Materials and Structures [J]. 2010,19(8):085008.
    [78]Zhang W, Gong X L, Xuan S H, et al. High-performance hybrid magnetorheological materials: Preparation and mechanical properties [J]. Industrial and Engineering Chemistry Research,2010,49(24):12471-12476.
    [79]Davis L C. Model of magnetorheological elastomers [J]. Journal of Applied Physics,1999, 85(6):3348-3351.
    [80]Jolly M R, Carlson J D, Munoz B C, et al. The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix [J]. Journal of Intelligent Material Systems and Structures,1996,7(6):613-622.
    [81]Zhou G Y. Shear properties of a magnetorheological elastomer [J]. Smart Materials and Structures,2003,12(1):139-146.
    [82]Ginder J M, Nichols M E, Elie L D, et al. Magnetorheological elastomers:properties and applications [C].1999 Symposium on Smart Structures and Materials. International Society for Optics and Photonics,1999:131-138.
    [83]Peter B, Leif K. Amplitude and frequency dependence of magneto-sensitive rubber in a wide frequency range [J], Polymer Testing,2005,24(5):656-662.
    [84]方生,龚兴龙,张先舟等.磁流变弹性体力学性能的测试与分析[J].中国科学技术大学学报,2004,34(4):456-463.
    [85]张先舟,博士学位论文:磁流变弹性体的研制及其机理研究[D].合肥:中国科学技术大学,2005.
    [86]Li J F, Gong X L. Dynamic damping property of magnetorheological elastomer [J]. Journal of Central South University of Technology,2008,15(s1):261-265.
    [87]Sun T L, Gong X L, Jiang W Q, et al. Study on the damping properties of magnetorheological elastomers based on cis-polybutadiene rubber [J]. Polymer Testing,2008,27(4):520-526.
    [88]Zhang W, Gong X L, Xuan S H, et al. Temperature-dependent mechanical properties and model of magnetorheological elastomers [J]. Industrial and Engineering Chemistry Research, 2011,50(11):6704-6712.
    [89]Coquelle E, Bossis G Mullins effect in elastomers filled with particles aligned by a magnetic field [J]. International Journal of Solids and Structures,2006,43(25-26):7659-7672.
    [90]Shen Y, Golnaraghi M F, Heppler G R. Experimental research and modeling of magnetorheological elastomers [J]. Journal of Intelligent Material Systems and Structures, 2004,15(1):27-35.
    [91]孙桃林,硕士学位论文:顺丁橡胶基磁流变弹性体的力学性能研究[D].合肥:中国科学技术大学,2009.
    [92]Varga Z, Filipcsei G, Zrinyi M. Magnetic field sensitive functional elastomers with tuneable elastic modulus [J]. Polymer,2006,47(1):227-233.
    [93]Kallio M, Lindroos T, Aalto S, et al. Dynamic compression testing of a tunable spring element consisting of a magnetorheological elastomer [J]. Smart Materials and Structures, 2007,16(2):506-514.
    [94]Koo J-H, Khan F, Jang D-D, et al. Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings [J]. Smart Materials and Structures,2010,19(11):117002.
    [95]Liao G J, Gong X L, Xuan S H, et al. Magnetic-field-induced normal force of magnetorheological elastomer under compression status [J]. Industrial and Engineering Chemistry Research,2012,51(8):3322-3328.
    [96]Bossis G, Abbo C, Cutillas S, et al. Electroactive and electrostructured elastomers [J]. International Journal of Modern Physics B,2001,15(6-7):564-573.
    [97]Kchit N, Bossis G. Piezoresistivity of magnetorheological elastomers [J]. Journal of Physics: Condensed Matter,2008,20(20):204136.
    [98]Kchit N, Lancon P, Bossis G. Thermoresistance and giant magnetoresistance of magnetorheological elastomers [J]. Journal of Physics D-Applied Physics,2009,42(10): 105506.
    [99]Kchit N, Bossis G. Electrical resistivity mechanism in magnetorheological elastomer [J]. Journal of Physics D-Applied Physics,2009,42(10): 105505.
    [100]Tian T F, Li W H, Deng Y M. Sensing capabilities of graphite based MR elastomers [J]. Smart Materials and Structures,2011,20(2):025022.
    [101]Bednarek S. The giant magnetostriction in ferromagnetic composites within an elastomer matrix [J]. Apply Physics A:Materials Science and Processing,1999,68(1):63-67.
    [102]Ginder J M, Clark S M, Schlotter W F, et al. Magnetostrictive phenomena in magnetorheological elastomers [J]. International Journal of Modern Physics B,2002, 16(17-18):2412-2418.
    [103]Guan X C, Dong X F, Ou J P. Magnetostrictive effect of magnetorheological elastomer [J]. Journal of Magnetism and Magnetic Materials,2008,320(3-4):158-163.
    [104]Stepanov G V, Chertovich A V, Kramarenko E Yu. Magnetorheological and deformation properties of magnetically controlled elastomers with hard magnetic filler [J]. Journal of Magnetism and Magnetic Materials,2012,324(21): 3448-3451.
    [105]Watson J R. Method and apparatus for varying the stiffness of a suspension bushing: U.S. Patent 5,609,353[P].1997.
    [106]Ginder J M, Nichols M E, Elie L D, et al. Controllable-stiffness components based on magnetorheological elastomers [C]. SPIE's 7th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics,2000: 418-425.
    [107]Farshad M, Le Roux M. A new active noise abatement barrier system [J]. Polymer Testing, 2004,23(7): 855-860.
    [108]York D, Wang X J, Gordaninejad F. A new MR fluid-elastomer vibration isolator [J]. Journal of Intelligent Material Systems and Structures,2007,18(12):1221-1225.
    [109]Blom P, Kari L. Smart audio frequency energy flow control by magneto-sensitive rubber isolators [J]. Smart Materials and Structures,2008,17(1):015043.
    [110]Ginder J M, Schlotter W F, Nichols M E. Magnetorheological elastomers in tunable vibration absorbers [C]. SPIE's 8th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics,2001:103-110.
    [111]Deng H X, Gong X L, Wang L H. Development of an adaptive tuned vibration absorber with magnetorheological elastomer [J]. Smart Materials and Structures,2006,15(5):N111-N116.
    [112]Lerner A A, Cunefare K A. Performance of mre-based vibration absorbers [J]. Journal of Intelligent Material Systems and Structures,2008,19(5):551-563.
    [113]Abramchuk S, Kramarenko E, Grishin D, et al. Novel highly elastic magnetic materials for dampers and seals:part Ⅱ. Material behavior in a magnetic field [J], Polymers for Advanced Technologies,2007,18(7):513-518.
    [114]Sun H L, Zhang P Q, Gong X L, et al. A novel kind of active resonator absorber and the simulation on its control effort [J]. Journal of Sound and Vibration,2007,300 (1-2):117-125.
    [115]Hoang N, Zhang N, Du H. A dynamic absorber with a soft magnetorheological elastomer for powertrain vibration suppression [J]. Smart Materials and Structures,2009,18 (7): 074009.
    [116]Chen L, Gong X L, Li W H. Damping of magnetorheological elastomers [J]. Chinese Journal of Chemical Physics,2008,21(6):581-585.
    [117]聂恒凯.橡胶材料与配方[M].北京:化学工业出版社,2004.
    [118]Lemaire E, Meunier A, Bossis G, et al. Influence of the particle size on the rheology of magnetorheological fluids [J]. Journal of Rheology,1995,39(5):1011-1020.
    [119]Liu J, Flores G A, Sheng R. In-virtro investigation of blood embolization in cancer treatment using magnetorheological fluids [J]. Journal of Magnetism and Magnetic Materials,2001, 225(1-2):209-217.
    [120]Ginder J M, Davis L C. Shear stresses in magnetorheological fluids:Role of magnetic saturation [J]. Applied Physics Letters,1994,65(26):3410-3412.
    [121]de Vicente J, Bossis G, Lacis S, et al. Permeability measurements in cobalt ferrite and carbonyl iron powders and suspensions [J]. Journal of Magnetism and Magnetic Materials, 2002,251(1):100-108.
    [122]Bossis G, Lacis S, Meunier A, et al. Magnetorheological fluids [J]. Journal of Magnetism and Magnetic Materials.2002,252(1-3):224-228.
    [123]陈琳,博士学位论文:磁流变弹性体的研制及其力学行为的表征[D].合肥:中国科学技术大学,2009.
    [124]傅政.橡胶材料性能与设计应用[M].北京:化学工业出版社,2003.
    [125]Melle S, Martin J E. Chain model of a magnetorheological suspension in a rotating field [J]. Journal of Chemistry Physics,2003,118(21):9875-9881.
    [126]李剑锋,博士学位论文:硅橡胶基磁流变弹性体的研制及其优化设计[D].合肥:中国科学技术大学,2009.
    [127]过梅丽.高聚物与复合材料的动态热力学分析[M].北京:化学工业出版社,2002.
    [128]Chandra R, Singh S P, Gupta K. Damping studies in fiber-reinforced composites-a review [J]. Composite Structures.1999,46(1):41-51.
    [129]赵玉庭,姚希曾.复合材料基体与界面[M].上海:华东化工学院出版社,1991.
    [130]胡福增,陈国荣,杜永娟.材料表界面[M].上海:华东理工大学出版社,2001.
    [131]顾书英,任杰.聚合物基复合材料[M].北京:化学工业出版社,2007.
    [132]Boczkowska A, Awietjan S F, Wroblewski R. Microstructure-property relationships of urethane magnetorheological elastomers [J]. Smart Materials and Structures,2007,16(5): 1924-1930.
    [133]John M J, Anandjiwala R D. Chemical modification of flax reinforced polypropylene composites [J]. Composites Part A:Applied Science and Manufacturing,2009,40(4): 442-448.
    [134]Sae-oui P, Sirisinha C, Thepsuwan U, et al. Roles of silane coupling agents on properties of silica-filled polychloroprene [J]. European Polymer Journal,2006,42(3):479-486.
    [135]Sabaa M W, Younan A F, Mohsen R M, et al. Maleic anhydride grafted rubbers for metallic surfaces lamination [J]. Journal of Applied Polymer Science,2008,108(2):850-857.
    [136]Zhang X Z, Gong X L, Zhang P Q, et al. Existence of bound-rubber in magnetorheological elastomers and its influence on material properties [J]. Chinese Journal of Chemical Physics, 2007,20(2):173-179.
    [137]Leblanc J L. Rubber-filler interactions and rheological properties in filled compounds [J]. Progress in Polymer Science,2002,27(4):627-687.
    [138]Raza M A, Westwood A V K, Stirling C. Effect of processing technique on the transport and mechanical properties of graphite nanoplatelet/rubbery epoxy composites for thermal interface applications [J]. Materials Chemistry and Physics,2012,132(1):63-73.
    [139]Path T, Li Y J. Nanocomposites based on polystyrene-b-poly (ethylene-r-butylene)-b-polystyrene and exfoliated graphite nanoplates: Effect of nanoplatelet loading on morphology and mechanical properties [J]. Composites Part A:Applied Science and Manufacturing,2011,42(12):1995-2002.
    [140]Xu P, Loomis J, Panchapakesan B. Photo-thermal polymerization of nanotube/polymer composites:Effects of load transfer and mechanical strength [J]. Applied Physics Letters, 2012,100(13):131907.
    [141]Bandyopadhyay A, Valavala P K, Clancy T C, et al. Molecular modeling of crosslinked epoxy polymers:The effect of crosslink density on thermomechanical properties [J]. Polymer, 2011,52(11):2445-2452.
    [142]Bengtsson M, Oksman K. The use of silane technology in crosslinking polyethylene/wood flour composites [J]. Composites Part A: Applied Science and Manufacturing,2006,37(5): 752-765.
    [143]Behl M, Ridder U, Feng Y K, et al. Shape-memory capability of binary multiblock copolymer blends with hard and switching domains provided by different components [J]. Soft Matter,2009,5(3):676-684.
    [144]Cao F N, Jana S C. Nanoclay-tethered shape memory polyurethane nanocomposites [J]. Polymer,2007,48(13):3790-3800.
    [145]Tong X M, Zhang X W, Ye L, et al. Synthesis and characterization of block copolymers comprising a polyrotaxane middle block flanked by two brush-like PCL blocks [J]. Soft Matter,2009,5(9):1848-1855.
    [146]Luo X F, Lauber K E, Mather P T. A thermally responsive, rigid, and reversible adhesive [J]. Polymer,2010,51(5):1169-1175.
    [147]Luo X F, Ou R Q, Eberly D E, et al. A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion [J]. ACS Applied Materials and Interfaces,2009,1(3): 612-620.
    [148]Huang M H, Li S, Hutmacher D W, et al. Degradation characteristics of poly(epsilon-caprolactone)-based copolymers and blends [J]. Journal of Applied Polymer Science,2006,102(2):1681-1687.
    [149]Dai W F, Huang H, Du Z Z, et al. Synthesis, characterization and degradability of the novel aliphatic polyester bearing pendant N-isopropylamide functional groups [J]. Polymer Degradation and Stability,2008,93(12):2089-2095.
    [150]Kim J, Shin T K, Choi H J, et al. Miscibility of biodegradable synthetic aliphatic polyester and poly (epichlorohydrin) blends [J]. Polymer,1999,40(24):6873-6876.
    [151]Shin T K, Kim J, Choi H J, et al. Miscibility of biodegradable aliphatic polyester and poly (vinyl acetate) blends [J]. Journal of Applied Polymer Science,2000,77(6):1348-1352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700