用户名: 密码: 验证码:
碳微球/聚合物体系的构建及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,尺寸大小(从纳米级到微米级)和结构不同的球形碳材料已经通过不同的方法制备出来,丰富了碳材料的研究领域。碳微球(Carbon microspheres, CMSs)直径在100nm~1μm之间,且有独特的结构和优异的物化性能,如化学稳定性、热稳定性、优良的导电和导热性等;功能化的CMSs还具有某些特殊的催化、磁学、电学和光学性能,主要应用于增强复合材料、锂离子电池电极材料、催化剂载体、吸附材料、光伏材料、响应性材料、生物医疗材料等方面,是一种具有开发潜力和应用前景的碳材料。
     本论文主要在CMSs表面修饰的基础上,通过接枝不同的聚合物,制备自组装碳膜、表面二苯并噻吩(DBT)分子印迹吸附材料和聚合物太阳能电池本体异质结薄膜材料,通过形貌、结构和性能的表征与分析,发现针对不同的聚合物,不同工艺条件下合成的CMSs/聚合物复合材料可应用于光子晶体、油品的深度脱硫和太阳能电池领域。
     主要的研究结果如下:
     1.酸化CMSs自组装碳膜。通过对酸化CMSs溶液体系进行pH值调节以及成膜自组装,发现碱性溶液中CMSs的分散性较好,并且在pH=13的悬浮液中通过垂直沉积法在载玻片上自组装制得了排列致密的薄膜,样品在自然光的照射下,呈现出了一定强度的反射光,颜色较为均匀,表明所得自组装膜具有较好的均匀性,可用于光子晶体。
     2. CMSs表面分子印迹聚合物(MIP/CMSs)的合成和吸附性能。通过对CMSs表面进行硅烷化修饰、接枝和聚合,以2-乙烯基吡啶(2-VP)为单体,合成了针对DBT专一吸附的MIP/CMSs。
     (1)讨论了硅烷偶联剂KH-570对CMSs的修饰效果,发现65℃下,0.3g酸化CMSs中加入1mL的KH-570,反应溶剂60mL(乙醇:水=3:1),硅烷化反应时间为2h时,CMSs表面接枝上KH-570,且CMSs表面包覆层均匀,颗粒之间分散性良好,KH-570接枝率为11%;以2-VP为单体合成了MIP/CMSs并评价其吸附效果。
     (2)以DBT为模板分子、2-乙烯基吡啶(2-VP)为单体、偶氮二异丁腈(AIBN)为引发剂、乙二醇二甲基丙烯酸酯(EDMA)为交联剂,在CMSs表面制得了表面分子印迹材料(MIP/CMSs)。吸附动力学曲线表明MIP/CMSs对DBT的吸附量达到24.6mg/g。尽管以单体2-VP合成的MIP/CMSs对DBT吸附量偏低,但竞争吸附实验表明,本实验合成的MIP/CMSs对DBT的吸附性能明显优于与其结构相似的苯并噻吩。
     3.多孔CMSs (PCMSs)表面分子印迹聚合物的合成和吸附性能。PCMSs与光滑CMSs相比,比表面积大,反应活性强,改用PCMSs作为基质,提高了接枝的反应活性,增强了表面印迹材料的脱硫能力,并省去表面酸化的步骤,简化了制备工艺。所以,利用水热合成法制备PCMSs,并在其表面接枝α-甲基丙烯酸(MAA)得到针对DBT专一吸附的分子印迹聚合物(MIP/PCMSs)。
     (1)水热合成PCMSs,当反应时间为28h,葡萄糖浓度为0.25mol/L时得到的PCMSs形貌均一,粒径约为160nm左右,其生长过程表面已经富含活性官能团,比表面积达到468.3m2/g以上,可作为分子印迹材料的良好基质。
     (2)分别探讨了MIP/PCMSs制备过程中KH-570及MAA的影响,并在最优参数基础上以DBT为模板分子、MAA为单体、AIBN为引发剂、EDMA为交联剂,在PCMSs表面制得了DBT表面分子印迹材料。吸附结果表明MIP/PCMSs对DBT的饱和吸附量达到376mg/g,是课题组前期合成的MIP/CMSs最大吸附量(109.5mg/g)的3.4倍,非印迹材料(NIP/PCMSs)对DBT的饱和吸附量为240mg/g, MIP/PCMSs对DBT具有良好的识别能力,且吸附过程符合准二级反应动力学方程;在选择性实验中,MIP/PCMSs对于BT的饱和吸附量为244mg/g,表明印迹聚合物对DBT具有良好的选择性。
     4.聚3-己基噻吩:CMSs (P3HT:CMSs)复合膜的合成及其光伏性能。首先考察CMSs能级结构和光电性能的关系,然后以P3HT:CMSs本体异质结复合膜的制备为目的,在对CMSs表面酸化修饰(A-CMSs)的基础上,进一步用1,6-己二胺和十二胺进行胺化优化参数分别得到(H-CMSs和D-CMSs),提高其分散性和能级匹配性;最后制得三种P3HT:CMSs复合膜,考察共混体积比、旋涂条件和退火处理的影响。通过结构表征和光电性能测试,得出如下结果:
     (1)对三种修饰的CMSs (A-CMSs, H-CMSs和D-CMSs)进行电化学循环伏安(CV)分析,得出它们与P3HT的能级差大于激子结合能(0.3eV),可作为电池受体材料;对于LUMO能级,D-CMSs> H-CMSs> A-CMSs。
     (2)薄膜材料经退火后,在可见光区吸收区域变宽且发生红移,结晶性能提高,开路电压(Vo。)、短路电流和能量转换效率(PCE)明显提高。
     (3)相对而言,所制备的P3HT:D-CMSs本体异质结复合膜形貌良好,可见光区吸收性好,激子分离率高;基于薄膜退火后的光伏器件,测得电池的性能:P3HT:D-CMSs>P3HT:H-CMSs>P3HT:A-CMSs聚合物电池,P3HT:H-CMSs复合膜的光伏器件与P3HT:A-CMSs相比,Voc由0.690V提高到0.730V, PCE提高约25%,P3HT:D-CMSs与P3HT:H-CMSs复合膜电池相比,Voc进一步提高,PCE提高约100%。总之,对CMSs进行胺化修饰不仅能提高其分散性,改变复合膜的形貌,同时能改善电池的能级结构从而提高开路电压。胺化和退火均有利于提高器件的能量转换效率。
Recently, spherical carbon materials with specific size (from nanoscale to micron level) and unique structure have been synthesized by various methods, enriching the research fields of carbon materials. Carbon microspheres (CMSs), with diameters between100nm-1μm, have unusual structures and excellent physical/chemical properties, such as chemical durability, thermal stability and extraordinary thermal conductivity, which are valuable for enhancing composite materials, electrode material for lithium ion battery, catalyst supports, photovoltaic materials, responsive materials and biomedical materials.
     This dissertation mainly investigated the surface modification of CMSs and their applications. Self-assembled carbon films, molecularly imprinted adsorbents and bulk-heterojunction films for polymer solar cells were fabricated by grafting various polymers. These as-synthesized materials were applied in photonic crystal, solar cells and deep desulfurization from oils.
     The main results are as follows:
     1. Self-assembly of carbon films from acidified CMSs. The effects of pH values on the CMSs dispersion and self-assembled films with were discussed. The CMSs film with more ordered and denser structure was obtained using NaOH as solvent under pH=13at deposition temperature of50℃. The sample showed a good reflection to light with uniform color, which indicated the formation of uniform CMSs film and laid a foundation for photonic crystal.
     2. The synthesis of molecularly imprinted polymers on the CMSs (MIP/CMSs) and their adsorption property. The MIP/CMSs were prepared using2-vinyl pyridine (2-VP) as monomer and dibenzothiophene (DBT) as template through modifying CMSs surfaces by silanization, grafting and polymeration. Their adsorption to DBT was also investigated.
     (1) The discussion of silanization process by KH-570. The optimum parameters were:1.0mL of KH-570to0.3g of oxidized CMSs, reaction time of2h at65℃, pH≈5, ethanol=45mL, water=15mL. The dispersion of the silanized CMSs in ethanol was improved and grafting ratio of KH-570reached11%, contributing to the enhanced compatibility of CMSs with various monomers.
     (2) MIP/CMSs were prepared on the surface of CMSs using DBT as template,2-VP as the functional monomer, chloroform as solvent, azobisisobutyronitrile (AIBN) as initiator and ethylene glycol dimethacrylate (EDMA) as crosslinking agent. The adsorption capacity of DBT on MIP/CMSs was24.6mg/g, higher than that of non-imprinted polymers. Though the adsorption ability was a little lower, the MIP/CMSs using2-VP as monomer exhibited better selectivity towards DBT than similarly structured benzothiophene, as proved by competitive experiment.
     3. The preparation of porous carbon microspheres (PCMSs) surface molecularly imprinted material (MIP/PCMSs) using methacrylic acid (MAA) as monomer and their adsorption property. PCMSs were synthesized by hydrothermal synthesis method and they showed larger surface area and higher reactivity than the CMSs synthesized by CVD method, which would enhance the desulfurization capability of the MIP/PCMSs.
     (1) PCMSs with the diameter of160nm and a specific surface area of468.3m2/g were synthesized by hydrothermal method at180℃combined with an annealing process using aqueous glucose solution as raw materials. The optimum parameters were:0.250mol/L glucose solution with reaction time of28h at180℃. The as-obtained PCMSs were abundant in oxygen-containing functional groups on the surfaces, which promoted the surface activation, improved the grafting reactivity and overcame the difficulty of surface modification in the process of MIP/PCMSs preparation.
     (2) The influence of KH-570and MAA in the coupling and grafting processes were discussed. Based on the optimized parameters, MIP/PCMSs were prepared using DBT as template, chloroform as solvent, AIBN as initiator and EDMA as crosslinking agent. The adsorption results show that the adsorption capacity of DBT on MIP/PCMSs was376mg/g,3.4times that our previous results (109.5mg/g), also higher than that of non-imprinted polymers (240mg/g); the recognition factor was1.57and the adsorption equilibrium time was3h at25℃. The pseudo second order kinetic model provided better correlation for the kinetic adsorption of DBT onto MIP/PCMSs. Selective adsorption experiments suggest that MIP/PCMSs had better selective recognition for DBT and selectivity factor was1.55.
     4. The synthesis of poly (3-hexylthiophene):CMSs (P3HT:CMSs) composite films as the electron acceptor for polymer solar cells. The relation between energy level structure and photoelectric performance of CMSs was investigated. To prepare P3HT:CMSs bulk heterojunction, acidified and two kinds of aminated CMSs were obtained and three kinds of P3HT:CMSs composite films were prepared by blending and spin-coating using P3HT:A-CMSs (acidified CMSs), P3HT:H-CMSs (1,6-hexanediamine as aminating reagent) and P3HT:D-CMSs (dodecylamine as aminating reagent). The blending volume and conditions of spin-coating and annealing treatment were also investigated.
     (1) For the three modified CMSs (A-CMSs, H-CMSs and D-CMSs), cyclic voltammetry measurements proved the energy level difference of donor and acceptor was greater than binding energy of exciton (0.3eV), thus it is probable to use the CMSs as acceptor. The sequence of LUMO energy level was D-CMSs>H-CMSs>A-CMSs.
     (2) Visible region absorption of the P3HT:CMSs composite films was broadened and a red-shift was observed after annealing. Meanwhile, the improved crystallization degree of film led to significant improvement of charge mobility, the open circuit voltage (Voc), short circuit current density (Jsc) and power conversion efficiency (PCE).
     (3) P3HT:D-CMSs composite films had optimum morphology and optical performance. After annealing, the sequence of performance of cells was P3HT:D-CMSs> P3HT:H-CMSs> P3HT:A-CMSs. Compared with P3HT:A-CMSs, the Voc of P3HT:H-CMSs heterojunction increased from0.690V to0.730V, and the PCE increased by25%. P3HT:D-CMSs composite films showed higher Voc and PCE than P3HT:H-CMSs. In conclusion, amination process not only improved the dispersion of CMSs, but also enhanced the Voc of the solar cells. Amination process and annealing contributed to the improvement of the PCE of the devices.
引文
[1]Kroto H W, Heath J R, O'Brien S C, et al. Buckyminister-fullerenes [J]. Nature,1985,318: 162-163.
    [2]Kratschmer W, Lanb L D, Fostiropoulos K, et al. Solid C60:A new form of carbon [J]. Nature,1990,347:354-357.
    [3]Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [4]Ugarte D. Curling and closure of graphitic networks under electron-beam irradiation [J]. Nature,1992,359:707-709.
    [5]Xu B S, Tanka S I. Formation of giant onion-like fullerenes under AI nanoparticles by electron irradiation [J]. Acta Materialia,1998,46(15):5249-5257.
    [6]Yang Y Z, Liu X G, Xu B S. Fe-encapsulating carbon nano onion-like fullerenes from heavy oil residue [J]. Journal of Materials Research,2008,23(5):1-5.
    [7]Yang Y Z, Liu X G, Xu B S, et al. Preparation of vapor grown carbon fibers from deoiled asphalt [J]. Carbon,2006,44(9):1661-1664.
    [8]Yang Y Z, Liu X G, Jia H S, et al. How do vapor grown carbon nanofibers nucleate and grow from deoiled asphalt? [J]. Materials Chemistry and Physics,2011,126(1-2): 424-431.
    [9]许并社,杨永珍,张竹霞等.洋葱状富勒烯的研究进展[J].材料导报,2009,23(6):1-7.
    [10]刘雯,杨永珍,刘旭光等.液苯介质放电制备洋葱状富勒烯[J].新型炭材料,2007,22(1):84-87.
    [11]Serp P, Feurer R, Kalck P, et al. A chemical vapour deposition process for the production of carbon nanospheres [J]. Carbon,2001,39(4):621-626.
    [12]Xu L Q, Zhang W Q, Yang Q, et al. A novel route to hollow and solid carbon spheres [J]. Carbon,2005,43(5):1084-1114.
    [13]Jin Y Z, Gao C, Wen K H, et al. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons [J]. Carbon,2005,43(9): 1944-1953.
    [14]Deshmukh A A, Mhlanga S D, Coville N J. Carbon spheres [J]. Materials Science and Engineering R,2010,70(1-2):1-28.
    [15]杨永珍.重油残渣定向转化新型碳功能材料的研究[D].太原:太原理工大学,2007.
    [16]Yang Y Z, Liu X G, Zhan C Y, et al. Controllable synthesis and modification of carbon micro-spheres from deoiled asphalt [J]. Journal of Physics and Chemistry of Solids, 2010,71(3):235-241.
    [17]马名杰,张爱芸.碳膜制备及应用研究发展[J].河南理工大学学报:自然科学版,2008,27(6):696-700.
    [18]杨永珍,刘伟峰,郭明聪等.MnO2/碳微球复合材料的制备及其电化学性能[J].复合材料学报,2011,28(4):149-155.
    [19]金琳.钉/碳微球复合材料的制备及电化学性能的研究[D].太原:太原理工大学,2010.
    [20]金琳,刘旭光,杨永珍等.碳微球负载钌纳米颗粒复合材料的化学镀制备[J].材料导报,2010,24(16):21-24.
    [21]Wang Y G, Egashira M, Ishida S, et al. Microstructure of mesocarbon microbeads prepared from synthetic isotropic naphthalene pitch in the presence of carbon black [J]. Carbon,1999,37(2):307-314.
    [22]Kodama M, Fujiura T, Ikawa E, et al. Characterization of mesocarbon microbeads prepared by emulsion method [J]. Carbon,1991,29(1):43-49.
    [23]Lu Y G, Ling L C, Oh S, et al. Preparation of carbon microbeads from pitch and resin by suspension [J]. New Carbon Materials,2001,16(3):1-5.
    [24]Miao J Y, Dennis W H, Chang C C, et al. Uniform carbon spheres of high purity prepared on kaolin by CCVD [J]. Diamond and Related Materials,2003,12(8): 1368-1372.
    [25]Mehraban Z, Farzaneh F, Dadmehr V. Catalytic chemical vapour deposition synthesis of carbon spheres [J]. Materials Letters,2009,63(20):1653-1655.
    [26]李杞秀.化学气相沉积法由煤气制备炭纳米材料的研究[D].大连:大连理工大学,2006.
    [27]Xu L Q, Zhang W Q, Yang Q, et al. A novel route to hollow and solid carbon spheres [J]. Carbon,2005,43(5):1090-1092.
    [28]Shen J M, Li J Y, Huang Z, et al. A simple route for the synthesis of coral-like accretion of hollow carbon microspheres with thin walls [J]. Carbon,2006,44(11):2171-2177.
    [29]Luo T, Gao L S, Qian Y T, et al. Olivary particles:unique carbon microstructure synthesized by catalytic pyrolysis of acetone [J]. Journal of Chemical Physics B,2005, 109(32):15272-15277.
    [30]Yoon S B, Kim J Y, Kim J H, et al. Template synthesis of nanostructured silica with hollow core and mesoporous shell structures [J]. Current Applied Physics,2006,6(6): 1059-1063.
    [31]Li F B, Huang J, Zou J, et al. Preparation and characterization of porous carbon beads and their application in dispersing small metal crystallites [J]. Carbon,2002,40(15): 2871-2877.
    [32]Tamai H, Sumi T, Yasuda H. Preparation and characteristics of fine hollow carbon particles [J]. Journal of Colloid and Interface Science,1996,177(2):325-328.
    [33]Ding Y, Xia X H. Facile synthesis of hollow carbon nanospheres from hollow chitosan nanospheres [J]. Journal of Nanoscience and Nanotechnology,2006,6(4):1101-1106.
    [34]Esumi K, Eshima S, Murakami Y, et al. Preparation of hollow carbon-microbeads from water-in-oil emulsion using amphiphilic carbonaceous material [J]. Colloids and Surfaces A,1996,108(1):113-116.
    [35]Hu G, Ma D, Cheng M J, et al. Direct synthesis of uniform hollow carbon spheres by a self-assembly template approach [J]. Chemical Communications 2002, (17):1948-1949.
    [36]张春一.脱油沥青基气相生长碳微球的制备、改性及吸附性能研究[D].山西:太原理工大学,2008.
    [37]刘红艳.沥青基气相生长碳材料的表面修饰[D].山西:太原理工大学,2009.
    [38]杨永珍,韩艳星,李莎等.碳微球的离子化表面修饰[J].化工学报,2010,61(10):2662-2666.
    [39]李莎.碳微球表面二苯并噻吩分子印迹聚合材料制备过程优化及吸附性能初探[D].太原:太原理工大学,2011.
    [40]李莎,杨永珍,段菲菲等.紫外光辐照氧化碳微球[J].中国材料进展,201 1,30(11):58-62.
    [41]郭兴梅.富勒烯类碳材料低温制备、表面改性及在聚合物基体中的分散性研究[D].太原:太原理工大学,2010,106-125.
    [42]Guo X M, Yang Y Z, Liu X G. Preparation and characterization of vinyl-functionalized carbon spheres by allylamine [J]. Applied Surface Science.2011,257(15):6672-6677.
    [43]刘伟峰,韩艳星,郭明聪等.光引发碳微球表面接枝聚甲基丙烯酸[J].微纳电子技术,2010,47(8):475-479.
    [44]郭明聪,杨永珍,李莎等.聚甲基丙烯酸接枝炭微球[J].炭素技术,2010,29(3):1-4.
    [45]Guo X M, Liu X G, Xu B S, et al. Synthesis and characterization of carbon sphere-silica core-shell structure and hollow silica spheres [J]. Colloid Surface A:Physicochem Eng Aspects,2009,345(1-3):141-146.
    [46]刘冰,王德平,黄文品等.核壳结构磁性复合纳米粒的制备及研究进展[J].材料导报,2007,21(05):1 85-188.
    [47]韩艳星.功能化碳微球自组装膜的研究[D].太原:太原理工大学,2011,19-65.
    [48]Yang Y Z, Song J J, Han Y X, et al. Self assembly of SiO2-encapsulated carbon microsphere composites [J]. Appl Surf Sci,2011,257(16):7326-7329.
    [49]杨秀键,施朝淑,许小亮.纳米ZnO的研究及其进展[J].无机材料学报,2003,18(1):1-10.
    [50]Yang M H, Liang T, Peng Y C, et al. Synthesis and characterization of a nanocomplex of ZnO nanoparticles attached to carbon nanotubes [J]. Acta Physico-chimica Sinica,2007, 23(2):145-151.
    [51]Liu Y C, Qiu X P, Huang Y Q, et al. Influence of preparation process of MEA with mesocarbon microbeads supported PtRu catalysts on methanol electrooxidation [J]. J Appl Electrochem,2002,32(11):1279-1285.
    [52]Liu Y, Qiu X, Huang Y. Methanol electro-oxidation on mesocarbon microbead supported Pt catalysts [J], Carbon,2002,40(13):2375-2380.
    [53]Xu B S, Guo J J, Jia H S, et al. Electrocatalytic properties of platinum on hard carbon spherules derived from deoiled asphalt for methanol oxidation [J]. Catalysis Today, 2007,125(3-4):169.
    [54]罗秋苹.脱油沥青基气相生长碳微球的改性研究[D].太原:太原理工大学,2009.
    [55]许并社,罗秋苹,杨永珍等.银/碳微球复合材料的制备和表征[J].中国材料进展,2009,28(2):35-38.
    [56]Tang S, Tang Y, Vongehr S, et al. Nanoporous carbon spheres and their application in dispersing silver nanoparticles [J]. Applied Surface Science,2009,255(11):6011-6016.
    [57]Qiu J S, Li Y F, Wang Y P, et al. A novel form of carbon micro-balls from coal [J]. Carbon,2003,41(4):767-772.
    [58]金琳,刘旭光,杨永珍等.CMBs负载钉纳米颗粒复合材料的化学镀制备[J].材料导报,2010,24(16):21-24.
    [59]金琳.钌/碳微球复合材料的制备及电化学性能的研究[D].太原:太原理工大学,2010.
    [60]Ang L M, Hor T S, Xu G Q. Electroless plating of metals onto carbon nanotubes activated by a single step activation method [J]. Chemistry of Materials,1999,11: 115-116.
    [61]陈贵如,徐才录,毛宗强.碳纳米管上的沉积铂[J].科学通报,1999,44:1154-1157.
    [62]Kong F Z, Zhuang X B, Xiong W Q. Continuous Ni layer on multiwall carbon nanotubes by an electroless plating method [J]. Surface and Coating Technology,2002,155: 33-36.
    [63]程立强,刘应亮,张静娴等.球形碳材料的研究进展[J].化学进展,2006,18(10):1298-1304.
    [64]Wang Q, Li H, Chen L Q, et al. Novel spherical microporous carbon as anode material for Li-ion batteries [J]. Solid State Ionics,2002, (152-153):43-50.
    [65]Lee K T, Jung Y S, Oh S M. Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries [J]. Journal of America Chemistry Society, 2003,125(19):5652-5653.
    [66]Jin Y Z, Kim Y J, Gao C, et al. High temperature annealing effects on carbon spheres and their applications as anode materials in Li-ion secondary battery [J]. Carbon,2006, 44(4):724-729.
    [67]Auer E, Freund A, Pietsch J, et al. Carbons as supports for industrial precious metal catalysts [J]. Applied Catalysis A:General,1998,173(2):259-271.
    [68]Kang Z C, Wang Z L. Chemical activities of graphitic carbon spheres [J] Journal of Molecular Catalysis A-Chemical,1997,118(2):215-222.
    [69]Burda C, Chen X, Narayanan R, et al. The chemistry and properties of nanocrystals of different shapes [J]. Chemical Reviews,2005,105(4):1025-1102.
    [70]Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications [J]. Chemical Reviews,2008,108(6):2064-2110.
    [71]Daniel M C, Astruc D.for a recent review on gold nanoparticles [J]. Chemical Reviews, 2004,104(1):293-346.
    [72]Son S J, Bai X, Lee S B. Inorganic hollow nanoparticles and nanotubes in nanomedicine Part 1. Drug/gene delivery applications [J]. Drug Discovery Today,2007,12(15-16): 650-656.
    [73]Mizuno N, Kamata K. Catalytic oxidation of hydrocarbons with hydrogen peroxide by vanadium-based polyoxometalates [J]. Coordination Chemistry Reviews,2011, 255(19-20):2358-2370.
    [74]Pathak S, Greci M T, R C Kwong, et al. Synthesis and applications of palladium-coated poly(vinylpyridine) nanospheres [J]. Chemistry of Materials,2000,12(7):1985-1989.
    [75]Mondal K C, Cele L M, Witcomb M J, et al. Carbon microsphere supported Pd catalyst for the hydrogenation of ethylene [J]. Catalysis Communications,2008,9(4):494-498.
    [76]Yang R Z, Qiu X P, Zhang H R, et al. Monodispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol [J]. Carbon,2005,43(1):11-16.
    [77]Rincon M E, Trujillo-Camacho M E, Cuentas-Gallegos A K,et.al. Sol-gel titanium oxides sensitized by nanometric carbon blacks:Comparison with the optoelectronic and photocatalytic properties of physical mixtures [J]. Catalysis Today,2005, (107-108): 606-611.
    [78]Rincon M E, Trujillo-Camacho M E, Cuentas-Gallego A K, et al. Surface characterization of nanostructured TiO2 and carbon blacks composites by dye adsorption and photoelectrochemical studies [J]. Applied Catalysis B:Environmental,2006, 69(1-2):65-74.
    [79]Morawski A W, Kalenczuk R, Inagaki M. Adsorption of trihalmethanes (THMs) onto carbon spheres [J]. Desalination,2000,130(2):107-112.
    [80]Tanaike O, Fukuoka M, Inagaki M. Adsorption properties of air-oxidized carbon sphere derived from phenol resin [J]. Synthetic Metals,2002,125(2):255-257.
    [81]Yang Y Z, Liu X G, Guo M C, et al. Molecularly imprinted polymer on carbon microsphere surfaces for adsorbing dibenzothiophene [J]. Colloids and Surfaces A,2011, 377(1-3):379-385.
    [82]Papaioannou E H, Liakopoulou-Kyriakides M, Papi R M, et al. Molecularly imprinted polymers for cholecystokinin C-Terminal pentapeptide recognition [J]. Macromolecular Chemistry and Physics,2007,208:2621-2627.
    [83]王妍,荆涛,包学伟等.本体聚合法制备2-氯酚分子印迹聚合物及其性能评价[J].分析科学学报,2008,24(5):531-534.
    [84]Gao B J, Wang J, An F Q, et al. Molecular imprinted material prepared by novel surface imprinting technique for selective adsorption of pirimicarb [J]. Polymer,2008,49: 1230-1238.
    [85]Lee E, Park D W, Lee J O, D.S. et al. Molecularly imprinted polymers immobilized on carbon nanotube [J], Colloids and Surfaces A,2008,313-314:202-206.
    [86]Zhang M S, Huang J R, Yu P, et al. Preparation and characteristics of protein molecularly imprinted membranes on the surface of multiwalled carbon nanotubes [J]. Talanta,2010,81(1-2):162-166.
    [87]Yoshida M, Hatate Y, Uezu K et al. Chiral-recognition polymer prepared by surface molecular imprinting technique [J]. Colloids and Surfaces A,2000,169:259-269.
    [88]Joshi V P, Kulkarni M G, Mashelkar R A. Enhancing adsorptive separations by molecularly imprinted polymers:Role of imprinting techniques and system parameters [J]. Chemical Engineering Science,2000,55:1509-1522.
    [89]尹俊发,杨更亮,张轶华等.原位聚合那格列奈分子印迹手性固定相的分子识别特性研究[J].化学学报,2004,62(19):1922-1926.
    [90]杜振霞.表面分子印迹聚合物的制备及表征[D].北京:北京化工大学,2006.
    [91]Choong C L, Bendall J S, Milne W I. Carbon nanotube array:A new MIP platform [J]. Biosens Bioelectron,2009,25(3):652-6.
    [92]Lee H Y, Kim B S. Grafting of molecularly imprinted polymers on iniferter-modified carbon nanotube [J]. Biosens Bioelectron,2009,25(3):587-91.
    [93]邹丽娜,郑咏梅,施宏丰等.光子晶体的研究新进展及应用[J].半导体光电,2006,27(3):231-235.
    [94]何有军,李永舫.聚合物太阳电池光伏材料[J].化学进展,2009,21(11):2303-2318.
    [95]Lenes M, Wetzelaer G J A H, Kooistra F B, et al. Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells [J]. Advanced Materials, 2008,20(11):2116-2119.
    [96]He Y J, Chen H Y, Hou J H, et al. Indene-C60 Bisadduct:A new acceptor for high-performance polymer solar cells [J]. Journal of America Chemistry Society,2010, 132(4):1377-1382.
    [97]Yu G, Gao J, Hummelen J C, et al. Polymer photovolataic cells:Enhanced efficiencies via a network of internal donor-acceptor heterojunctions [J]. Science,1995,270(5243): 1789.
    [98]Zhu H W, Wei J Q, Wang K L, et al. Applications of carbon materials in photovoltaic solar cells [J]. Solar Energy Materials and Solar Cells.2009,93(9):1461-1470.
    [99]Hunter C N, Check M H, Hagger C H, et al. Tribological properties of carbon nanopearls synthesized by nickel-catalyzed chemical vapor deposition [J]. Tribology Letters,2008, 30(3):169-176.
    [100]Levesque A, Binh V T, Semet V, et al. Monodisperse carbon nanopearls in a foam-like arrangement:a new carbon nano-compound for cold cathodes [J]. Thin Solid Films, 2004, (464-465):308-314.
    [101]Liu Z X, Park J N, Abdi S H R, et al. Nano-sized carbon hollow spheres for abatement of ethylene [J]. Topics in Catalysis,2006,39(3-4):221-226.
    [102]Yang Q, Wang L, Xiang W, et al. Preparation of core-shell carbon black nanoparticles and their crystallization-induced orientation [J]. European Polymer Journal,2007,43(5): 1718-1723.
    [1]Xu B S. Prospects and research progress in nano onion-like fullerenes [J]. New Carbon Materials,2008,23(4):289-301.
    [2]Yang Y Z, Liu X G, Guo X M, et al. Synthesis of nano onion-like fullerenes by chemical vapor deposition using an iron catalyst supported on sodium chloride [J]. Journal of Nanoparticle Research,2011,13(5):1979-1986.
    [3]Yang Y Z, Liu X G, Jia H S, et al. How do vapor grown carbon nanofibers nucleate and grow from deoiled asphalt? [J]. Materials Chemistry and Physics,2011,126(1-2): 424-431.
    [4]Serp P, Feurer R, Kalck P, et al. A chemical vapor deposition process for the production of carbon nanospheres [J]. Carbon,2001,39(4):621-626.
    [5]Deshmukh A A, Mhlanga S D, Coville N J. Carbon spheres [J], Materials Science and Engineering,2010,70(1-2):1-28.
    [6]Yang Y Z, Liu X G, Zhang C Y, et al. Controllable synthesis and modification of carbon micro-spheres from deoiled asphalt [J]. Journal of Physics and Chemistry of Solids,2010, 71(3):235-241.
    [7]刘旭光,郭明聪,杨永珍等.高锰酸钾对炭微球表面的改性[J].新型碳材料,2010,25(2):103-108.
    [8]郭明聪,杨永珍,李莎等.聚甲基丙烯酸接枝碳微球[J].炭素技术,2010,29(3):1-4.
    [9]杨永珍,韩艳星,李莎等.碳微球的离子化表面修饰[J].化工学报,2010,61(10):2662-2666.
    [10]徐秀娟.导电性纳米颗粒的分散与应用[D].上海:华东理工大学化学与分子工程学院,2011.
    [11]Zhu H W, Wei J Q, Wang K L, et al. Applications of carbon materials in photovoltaic solar cells [J]. Solar Energy Materials and Solar Cells.2009,93(9):1461-1470.
    [12]马名杰,张爱芸.碳膜制备及应用研究进展[J].河南理工大学学报:自然科学,2008,27(6):696-700.
    [13]Xu B S, Han P D, Liang J, et al. Theroretical investigation of reflectivity of fullerene-(C60, C70)/AIN multilayers in UV region [J]. Solid State Communications, 2005,133(6):353-356.
    [14]Han P D, Xu B S, Liang J, et al. Band gaps of two-mensional photonic crystal structure using fullerene films [J]. Physica E,2004,25(1):29-34.
    [15]Wei J, Daniel B D, William G C, et al. C6o-pentacene network formation by 2D co-crystallization [J]. Journal of American Chemical Society,2007,129:4366-4376.
    [16]Alvaro B, Emmanuel C, Serguei G, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres [J]. Nature, 2000,405:437-440.
    [17]Chee W W, Peter T R, Steven G J, et al. Strain-tunable silicon photonic band gap microcavities in optical waveguide [J]. Applied Physics Letters,2004,84(8):1242-1244.
    [18]张俊虎,杨柏.基于自组装胶体晶体构筑有序微结构[J].科学通报,2009,54(6):717-728.
    [19]高永芳.光子晶体及其自组装制备方法的进展[J].红外,2010,31(4):1-5.
    [20]Whitesides G M, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry:a chemical strategy for the synthesis of nanostructures [J]. Science,1991,254(5036): 1312-1319.
    [21]刘立营,王秀峰,吴艳霞等.改性二酸化硅微球的制备及其光子晶体自组装[J].硅酸盐通报,2008,27(6):1217-1229.
    [22]Piret F, Kwon Y U, Su B L. Silica colloidal crystals with uni-and multi-photonic bandgaps and controlled reflective properties [J]. Chemical Physics Letters,2009, 472(4-6):207-211
    [23]Zhang E Y, Wang C R. Fullerene self-assembly and supramolecular nanostructures [J]. Current Opinion in Colloid and Interface Science,2009,14:148-156.
    [24]杨永珍,刘伟峰,韩艳星等.功能化碳微球构建自组装膜[J].化工学报,2010,62(4):1020-1026.
    [25]Yu J R, Grossiord N, Koning C, et al. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution [J]. Carbon,2007,45:618-623.
    [1]胡廷平,张宴铭,郑立辉等.硅胶表面苯并噻吩分子印迹聚合物的分子识别与吸附性能[J].燃料化学学报,2010,38:722-729.
    [2]张宴铭.硅胶表面印迹脱硫材料的制备与性能表征[D].硕士学位,武汉工业学院,2010,6.
    [3]Xu P P, Xu W Z, Zhang X J, et al. Molecularly-imprinted material for dibenzothiophene recognition prepared by surface imprinting methods [J]. Adsorpt Sci Technol,2009,27: 975-987.
    [4]Xu P P, Xu W Z, Zhang X J, et al. A surface-imprinted polymer for removing dibenzothiophene from gasoline [J]. Microchimica Acta,2010,171:441-449.
    [5]Xu W Z, Zhou W, Xu P P, et al. A molecularly imprinted polymer based on TiO2 as a sacrificial support for selective recognition of dibenzothiophene [J]. Chem Eng J,2011, 172:191-198.
    [6]Xu W Z, Zhou W, Bian L H, et al. Preparation of molecularly imprinted polymer by surface imprinting technique and its performance for adsorption of dibenzothiophene [J]. J Sep Sci,2011,34:1746-1753.
    [7]Xu W Z, Zhou W, Huang W H, et al. Preparation and evaluation of a novel surface-imprinted polymer for selective adsorption of dibenzothiophene [J]. Microchim Acta,2010,171:441-449.
    [8]Yang W M, Liu L K, Zhou W, et al. Preparation and evaluation of hollow molecular imprinted polymer for adsorption of dibenzothiophene [J]. Applied Surface Science,2012, 258:6583-6589.
    [9]Yang Y Z, Liu X G, Guo M C, et al. Molecularly imprinted polymer on carbon microsphere surfaces for adsorbing dibenzothiophene [J]. Colloid Surface A,2011,377: 379-385.
    [10]Liu X G, Liu W F, Yang Y Z, et al. Preparation and characteristics of dibenzothiophene molecularly imprinted polymers on the surface of iniferter-modified carbon microspheres [C]. The Annual World Conference on Carbon, Krakow, Poland,2012.
    [11]Yang Y Z, Zhang Y, Li S, et al. Grafting molecularly imprinted poly (2-acrylamido-2-methylpropanesulfonic acid) onto the surface of carbon microspheres [J]. Applied Surface Science,2012,258:6441-6450.
    [12]郭明聪.碳微球表面二苯并噻吩分子印迹聚合材料的制备及性能[D].太原:太原理工大学,2011.
    [13]Liu Y C, Qiu X P, Huang Y Q, et al. Methanol electro-oxidation on mesocarbon microbead supported Pt catalysts [J]. Carbon,2002,40(13):2375-2380.
    [14]Wang Y G, Korai Y, Mochida I. Carbon disc of high density and strength prepared from synthetic pitch-derived mesocarbon microbeads [J]. Carbon,1999,37(7):1049-1057.
    [15]Alcantara R, Fernandez M J, Lavela P, et al. Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells [J]. Carbon,2000,38(7):1031-1041.
    [16]吕永根,凌立成,刘朗等.中间相炭微球的活化[J].煤炭转化,1999,22(2):66-70.
    [1]Yang Y Z, Liu X G, Guo M C, et al. Molecularly imprinted polymer on carbon microsphere surfaces for adsorbing dibenzothiophene [J]. Colloid Surface A,2011,377: 379-385.
    [2]郭明聪.碳微球表面二苯并噻吩分子印迹聚合材料的制备及性能[D].山西:太原理工大学,2010.
    [3]Yang Y Z, Zhang Y, Li S, et al. Grafting molecularly imprinted poly (2-acrylamido-2-methylpropanesulfonic acid) onto the surface of carbon microspheres [J]. Applied Surface Science,2012,258:6441-6450.
    [4]李莎.碳微球表面二苯并噻吩分子印迹聚合材料制备过程优化及吸附性能初探[D].太原:太原理工大学,2011.
    [5]李护彬.碳材料中孔控制技术[J].炭素,2002,(4):30-38.
    [6]Liang X Z, Zeng M F, Qi C Z. One-step synthesis of carbon functionalized with sulfuric acid groups using hydrothermal carbonization [J]. Carbon,2010,48:1844-1848.
    [7]陈勇平.利用多糖制备无机纳米材料及其性能研究[D].南京:南京航空航天大学,2007.
    [8]张香兰,陈清如,徐德平等.炭材料孔结构及负载催化剂对其脱硫性能影响(I):钙元素的催化造中孔能力研究[J].煤炭转化,2004,27(4):87-90.
    [9]贺福.碳(炭)材料与超级电容器[J].高科技纤维与应用,2005,30(3):13-19.
    [10]Xiao F S, Ordered mesoporous silica-based materials templated from fluorocarbon-hydrocarbon surfactant mixtures and semi. Fluorinated surfactants [J]. Current Opinion in Colloid & Interface Science,2005,10(3-4):94-101.
    [11]Molina-Sabio M, Rodriguez-Reinoso F. Role of chemical activation in the development of carbon porosity [J]. Colloids and Surfaces A:Physicochem Eng, Aspects,2004, 241(1-3):15-25.
    [12]徐志达,陈冰,陈燕萍等.活性炭纤维用于汽油脱硫醇的研究:I.静态吸附[J].石油炼制与化工,1999,30(9):12-14.
    [1]Hoke E T, Vandewal K, Bartelt J A, et al. Recombination in polymer:fullerene solar with open-circuit voltages approaching and exceeding 1.0 V [J]. Advanced Energy Materials, 2013,3(2):220-230.
    [2]Balamurugan J, Thangamuthu R, Pandurangan A, et al. Facile fabrication of dye-sensitized solar cells utilizing carbon nanotubes grown over 2D hexagonal bimetallic ordered mesoporous materials [J]. Journal of Power Sources,2013,225:364-373.
    [3]Liu G H, Li X, Wang H, et al. An efficient thiolate/disulfide redox couple based dye-sensitized solar cell with a grapheme modified mesoscopic carbon counter electrode [J]. Carbon,2013,53:11-18.
    [4]韩艳星.功能化碳微球自组装膜的研究[D].山西:太原理工大学,2011.
    [5]李莎,段菲菲,杨永珍等.硅烷偶联剂对碳微球的表面化学修饰[J].功能材料,2011,42(1):25-29.
    [6]李永舫.聚合物太阳能电池高效共轭聚合物给体和富勒烯受体光伏材料[J].高分子通报.2011,(10):33-49.
    [7]Subbiah J, Amb C M., Irfan I, et al. High-efficiency inverted polymer solar cells with double interlayer [J]. Applied Materials and Interfaces,2012:4(2),866-870.
    [8]Shrotriya V, Ouyang J Y, Ricky J, et al. Absorption spectra modification in poly (3-hexylthiophene):methanofullerene blend thin films [J]. Chemical physics letters,2005, 411(1-3),138-143.
    [9]於黄忠.不同比例的P3HT与PCBM共混体系光电池性能分析[J],高分子材料科学与工程,2009,25(10):57-59.
    [10]岳根田,吴季怀,肖尧明等.基于PCBM/P3HT异质结的柔性染料敏化太阳能电池[J].科学通报,2010,55(9):835-840.
    [11]Kim H, So W W, Moon S J. The importance of post-annealing process in the device performance of poly (3-hexylthiophene):Methanofullerene polymer solar cell [J]. Solar Energy Materials and Solar Cells,2007,91(7):581-587
    [12]McNeill C R, Halls J J M, Wilson R, et al. Efficient polythiophene/polyfluorene copolymer bulk heterojunction photovoltaic devices:device physics and annealing effects [J]. Advanced Functional Materials,2008,18 (16):2309-2321.
    [13]於黄忠,彭俊彪.热处理对P3HT与PCBM共混体系光电性能的影响[J].物理化学学报,2008,24(5):905-908.
    [14]黎强,刘朝阳,刘雷静等.可溶液加工的D-A-D型有机小分子烷基链效应及光电效应[J].高等学校化学学报,2012,33(1):182-187.
    [15]李春敏,阚玉和,徐莹莹等.推/拉电子取代基对PCBM结构及光谱性质影响的理论研究[J].高等学校化学学报,2012,33(3):591-597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700