用户名: 密码: 验证码:
植被发育斜坡的稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑坡、泥石流等地质灾害在世界范围内广泛存在,对人民的生命财产安全造成不可忽视的影响。斜坡在重力、水文条件、地震力、人类活动、地质营力等因素的作用下不断发生变化,使斜坡内部原有的应力状态发生改变,导致斜坡土体发生不同形式的变形与破坏。
     本文综合植被斜坡水文、降雨入渗、蒸腾、截留、植被类型、植被根系、地形坡度等因素对斜坡稳定的贡献进行定量分析。在了解和掌握植被斜坡变形及破坏发生、发展规律的基础上,研究植被对斜坡稳定的作用机理与特性;研究降雨在斜坡非饱和带中的渗透过程及机理,充分认识植物及其根系与斜坡之间的作用机理;研究植被斜坡在降雨量达到一定值(临界降雨量)时,植被与水-岩、岩土体相互作用下斜坡的极限平衡状态;分析植被对斜坡稳定的贡献及作用。因此,本文主要围绕以下几方面进行研究:
     (1)研究非饱和带土中的植被根系、有机质土对水渗透性的影响,分析水在土中的渗透路径与特性。在非饱和带中土壤的颗粒、团粒结构与植物根系、虫子分泌物及微生物的相互作用,有的表现出亲水性,而有的则表现为是憎水性,这将导致水在土中的流动路径不一致,使亲水性团粒中汇集较多的水,而憎水性团粒中即使土体较干燥也不会有过多的水分渗入,从而使斜坡土体中的含水量不一致。
     (2)借助于扫描电子显微镜(SEM)技术,分析土的团粒结构及孔隙结构。从SEM图中可以看出:斜坡地表附近的土壤结构十分疏松,含有大量腐质的枯枝落叶、植被根系及有机质的团粒结构,可见相互连通且形状各异、向不同方向延伸的裂缝与孔洞;地表以下3-8cm位置可见大量的团粒结构,团粒之间形成一些不规则、形状各异的孔洞,有的孔洞有连通的趋势,发展成网状结构通道,并可见腐质中空的根孔,根孔外侧与土体之间有明显的缝隙,土层结构较表层土质致密;8cm以下土层也见大量的团粒结构,团粒结构周围也出现大量相互连通的孔洞,并见树根及草根腐烂后形成较大的通道,土质较上一层密实。
     (3)观察植被根系在土中的分布形式、范围、深度及植被根系在斜坡岩土体中的有效作用深度;分析植被根系在水的作用下对斜坡稳定的作用;研究在降雨条件下植被与斜坡岩土体的作用机理及特性,植被根系与水-岩、岩土体的相互作用及特性。在一定降雨条件下,如果降雨入渗量达到了一定的程度,虽然植被根系可以在一定深度范围内固坡,但是植被的根系达到斜坡体潜在滑动面的量数不多,并且植被根系与岩土体之间的作用力已减弱,植被对于斜坡体而言是使斜坡体下滑的一个分力,植株越高其自重越大,植被的自重增加了斜坡体的荷重,并向斜坡传递风的动力荷载,在风载与植被自重的作用下,植被的存在只能加剧斜坡体的滑动,增加斜坡体的不稳定性。
     (4)研究植被斜坡降雨期间的蒸散发与截留方式,监测与计算降雨期间的蒸发量与植被截留量,分析植被对斜坡水文的影响。分析降雨条件下水循环的基本规律,及植被斜坡的孔隙水压力、孔隙率、渗透系数等因素对坡面径流和渗流的影响,植被通过截留作用降低了到达地面的降雨强度和有效雨量,使其击打坡面的机会大大降低,减小了击溅侵蚀强度,对控制侵蚀和保护坡面有重要意义。
     (5)研究降雨在非饱和带中的入渗过程与机理,降雨湿润前锋几何形态与迁移过程。降雨期间,雨水渗入土体并在非饱和带重新分配,分配过程取决于土体的水分条件、水压力、与非饱和渗透性。降雨刚开始的时候土体具有极高的渗透能力,降雨将全部渗入土中;随着降雨入渗过程的持续进行,土体的渗透能力逐渐减弱,直到入渗率达到一个稳定值为止。当降雨入渗使土体饱和推进湿润锋时,如果降雨强度大于土的渗透系数,大量的地表水进入土体,地下水位将会上升,水的推进将导致地表附近的土壤吸力减少,含水量增大,土的强度降低,重度增大,从而使滑面上的剪应力增大。随着降雨时间的延长,降雨入渗量逐渐增多,孔隙水压力逐渐上升,边坡的稳定系数逐渐减小。在长期渗透作用下,地表发生失稳是因为存在正的孔隙水压力或负的孔隙压力以及吸力减少。当雨水入渗通过不饱和区域时,湿润前锋附近的斜坡表面在长期降雨作用下可能导致失稳,这种失稳通常是平行于坡面的浅层破坏。
     (6)建立相应的斜坡水文稳定模型,结合现场勘察、监测数据以及斜坡岩土体主要特性、地形地貌、降雨强度与降雨持续时间、地下水位等因素,计算稳定系数小于1的潜在滑动斜坡单元数量与各斜坡单元的临界降雨量,在DEM的基础上对斜坡稳定进行可视化分析与预测。斜坡失稳与降雨量大小有关,但同时也与降雨持续时间及过程有关。一种情况是降雨量极大但持续时间较短,一部分雨水未来得及转化成地下水而流走,产生坡面径流,这一部分雨水对滑坡的贡献不大,不一定产生滑坡;另一种情况是降雨量虽然不大,但持续时间较长,降雨强度小于土体的入渗能力时,雨水能充分的渗入到土体中,一定时间内总的渗入量较大,可能会产生滑坡。降雨强度与历时决定降水渗入量的大小,对斜坡稳定的影响较大。计算结果表明:位于楚勐公路路基下方的斜坡单元在降雨量为0~50mm/d范围内已连成片,该位置可能产生整体滑动;而斜坡其他单元未连成片,由于斜坡单元土体之间的相互牵制作用不会产生大面积的滑动,但局部单元会产生面表剥落等现象。潜在滑坡单元数量随降雨量的增大呈上升趋势,较陡地形产生滑坡的可能性较大。
     (7)在考虑蒸散发量与截留量、降雨入渗的作用下,运用降雨阈值模型模拟斜坡单元在不同降雨条件下产生潜在滑坡单元的位置与现场滑动位置基本一致,吻合率达80%以上。说明运用降雨阈值模型预测模拟斜坡产生潜在滑动时所需临界降雨量与进行斜坡稳定性分析是可行的。监测到的地表及地下位移滞后于降雨时间,各监测钻孔的地下水位随降雨持续时间的增加呈上升的趋势,并且水位上升时间滞后于降雨时间。
     最后,对本文研究成果进行总结。由于产生滑坡与泥石流的斜坡多为植被斜坡,研究植被斜坡在降雨条件下的稳定性具有一定的现实意义,为预测、预防滑坡、泥石流等自然灾害提供相应的理论依据。
Landslide, Debris flow and other geological disasters was widespread in the world, that the impact for the safety of people's life and property can't be ignored. The effect of gravity, hydrological condition, earthquake force, human activities, geologic forces and other factors that slope is changed constantly, so that the slope body original stress state is changed, leading to different forms of soil deformation and failure.
     This paper carries on the quantitative analysis for slope stability, combining the factors such as vegetation slope hydrology, rainfall infiltration, evaporation, interception, vegetation types, vegetation roots, topography&slope. Based on understanding and mastering of vegetation slope deformation and failure law of development, the effect mechanism and characteristics of vegetation to slope stability are studied, the penetration process and mechanism that rainfall on slope unsaturated zone are studied, the mechanism between the plant and its roots and slope are fully understand, the limit equilibrium state of slope under vegetation and water-rock, rock and soil interaction when vegetation slope in rainfall reaches a value (critical rainfall) are studied, the contribution and effect for vegetation to the slope stability are analyzed. Therefore, this paper focuses on the following:
     (1) The effect of vegetation roots and organic soil in unsaturated zone for the water permeability is studied, the water's infiltration path and characteristics in the soil is analyzed. It's interactions of the soil particles, granular structure with the vegetation root, worm's secretions, and microbial in the unsaturated zone, some exhibit hydrophilic, while others appear to be hydrophobic. This will lead to the flow path is inconsistent in the soil, making hydrophilic aggregate together more water, and hydrophobic aggregates won't have too much moisture penetration even the soil is dry, so that the water content is not consistent of the slope.
     (2) Applied scanning electron microscope (SEM) technology, analysis of soil aggregate structure and pore structure. From the graph of SEM:the soil structure near the surface of slope is very loose, containing a large number of litter, vegetation roots and organic aggregate structure, there are a lot of the fractures and pores that connectivity and variable shape, extending into different directions. Below the surface of3-8cm showed a large amount of aggregate structure, between the aggregate yielding some irregular, in different shapes of the pores space, some with trend of development, form a mesh structure channel, and visible detritus hollow bore of the root, between the lateralof root and soil have obvious gap, compared the surface soil, it's structure to be densified. Below the surface8cm also have a large number of aggregate structures, around the aggregate structure emergence a large number of interconnected pores, and have some roots and large channel that the root rot formation, root hole and the soil have obvious gap, compared the upper layer of soil is dense.
     (3) Observation of the distribution form, scope, depth and effective interaction depth of vegetation roots in the soil. Under the action of water, the effect of vegetation roots to slope stability is analyzed. Under the condition of rainfall, the mechanism and characteristics of the vegetation and the rock-soil of slope, the interaction and characteristics of vegetation roots and water-rock, rock-soil are studied. Under certain rainfall conditions, if the rainfall infiltration reached a certain level, although the vegetation roots can be reinforcement the slope in a certain depth range of slope, the number of vegetation roots to the potential sliding surface of slope is less, the interaction between vegetation roots and soil has weakened, vegetation is a sliding force that made slope slid, the higher of the plant that it's self-weight is the greater, which increased the slope body load, and transfer the wind load to slope, under the action of wind load and plant self-weight, vegetation exists only exacerbated the slope sliding, increase the slope instability.
     (4) Evapotranspiration and interception of the vegetation slope during rainfall are studied, monitoring and calculating the evaporation and interception of vegetation during the rainfall, the effect of vegetation for slope hydrological is analyzed, the basic law of rainfall water cycle is analyzed, and the effect of the runoff and infiltrate of the factor, such as pore water pressure, porosity, permeability coefficient and other factors of vegetation slope are analyzed. The effect of vegetation interception reduces rainfall intensity and effective rainfall that reach the surface, the hit chance and the splash erosion to slope is reduced greatly, that is important to the erosion control and protection of slope.
     (5) The rainfall infiltration process and mechanism, wetting front geometry and migration process in the unsaturated zone are studied. During the rainfall, rainfall infiltration and redistribution in unsaturated soil, the redistribution process depends on the soil moisture, water pressure, and unsaturated permeability. At the beginning of rainfall, soil with high penetration ability and all the rainfall infiltration into soil. With the process continues, the soil infiltration capacity decreased gradually, until the infiltration rate to reach a stable value. As the soil is saturated with the rainfall infiltration then promote wetting front, if rainfall intensity is higher than the soil hydraulic conductivity that lead to large amount of rainfall into the soil, underground water level will rise, the soil suction is reduced, increasing water content, the strength of the soil is reduced, increasing unit weight of soil, so that increasing the shear stress of slide surface. Along with rainfall time that rainfall infiltration is increasing gradually, the pore water pressure is rising gradually, the slope stability coefficient is decreasing gradually. In the long term infiltration, surface instability is due to the presence of the positive pore water pressure or negative pore pressure and suction to reduce. When the rain infiltration through the unsaturated zone, the surface of the slope near wetting front could lead to instability in the long-term rainfall, which is usually parallel to the slope.
     (6) To establish the corresponding slope hydrological stability model, Combining with field investigation and monitoring data, and the main features of the slope rock-soil mass, topography&geomorphology, rainfall intensity and duration, underground water level and other factors, the stability coefficient is less than1of the potential sliding slope unit number and the critical rainfall for the slope unit are calculated, Based on digital elevation model (DEM) could realize the visual analysis and prediction of slope stability. Slope instability in relation to rainfall, also in relation with the rainfall duration and the processes. In a situation that rainfall great but short duration, a part of the rainwater could not translate into groundwater flow, produce surface runoff, which on landslide contributed little, not necessarily a landslide. Another situation is that rainfall is small, but longer duration, rainfall intensity is lower than the soil infiltration capacity, rainwater can full infiltration into soil, within a certain period of time the total penetration is larger, may be produce landslide. Rainfall intensity and duration decided to rainfall infiltration quantity, which influence the slope stability. The calculation results show that the slope unit which located in the Chu-Meng highway beneath subgrade in the rainfall range of0-50mm/d has become a whole, the location may be integral sliding, While other unit of the slope is not connected, due to the mutual restraint effect between the soil of slope unit, does not have a large area of the slide, but local unit generates the surface spalling phenomenon. Potential landslide unit number with amount of rainfall assumes the trend of escalation, steep terrain landslide probability.
     (7) Considering the evapotranspiration, interception, and the effect of rainfall infiltration, under different rainfall conditions simulation the slope potential landslide unit by the rainfall threshold model, the simulation fits the real slope instability cases very well, the anastomosis rate with the actual landslide position more than80%.It is feasible that predictive simulation the required critical rainfall when the slope generating potential sliding and slope stability analysis by rainfall threshold model. Monitoring to the surface and underground displacement lag the duration of rainfall, with the rainfall duration increasing, the groundwater level of the monitoring borehole is rising, and the groundwater level rise time lags the rainfall time.
     Finally, summarizes the research results. Due to the slope that generates landslide and debris flow most is the vegetation slope, vegetation slope stability under rainfall condition is studied that has the certain practical significance, for the prediction, prevention landslide, debris flow and other natural disasters to provide the corresponding theoretical basis.
引文
[1]李峰,郭院成.降雨入渗对边坡稳定性作用机制分析,人民黄河,2007,29(6):44-48
    [2]河北省气象局.雨季警惕滑坡[EB/OL]. (2006-06-06). http://www.weather.he.cninfo.net.
    [3]张培文.降雨条件下饱和-非饱和土径流渗流祸合数值模拟研究:[博士学位论文].大连:大连理工大学,2002
    [4]Finlay P J, Fell R, Maguire P K. The relationship between the probability of landslide occurrence and rainfall, Can. Geoteeh,1997,34,811-824
    [5]Ng C W, Shi Q. A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage, Computers and Geotechanics,1998,22(1):1-28
    [6]包承纲,詹良通.非饱和土性状及其与工程问题的联系,岩土工程学报,2006,28(6):129-136
    [7]I. Alcantara-Ayala. Hazard assessment of rainfall-induced landsliding in Mexico. Geomorphology,2004, 61:19-40
    [8]Chigira M. Geologic factors contributing to landslide generation in a pyroclastic area:August 1998 Nishigo Village, Japan. Geomorphology,2002,46(1/2):117-128
    [9]周跃,Watts D欧美坡面生态工程原理及应用的发展现状,土壤侵蚀与水土保持学报,1999,5(1):79-85
    [10]周跃Effects of the Yunnan Pine(Pinusyunnanensis French) on Soil Erosion Control and Soil reinforcement in the HutiaoxiaGorge, South west China:[博士学位论文]University of Hull,1997
    [11]徐则民,黄润秋,唐正光,等.植被护坡的局限性及其对深层滑坡孕育的贡献,岩石力学与工程学报,2005,24(3):438-450
    [12]谢守益,张年学,许兵,等.长江三峡库区典型滑坡降雨诱发的概率分析,工程地质学报,1995,6(2):60-69
    [13]林孝松.滑坡与降雨研究,地质灾害与环境保护,2001,12(3):1-7
    [14]杨顺泉,灾发性地质灾害防灾预警系统方案研究,中国地质灾害与防治学报,2002,13(2):110
    [15]谢剑明,刘礼领,殷坤龙,等.浙江省滑坡灾害预警预报的降雨阀值研究,地质科技情报,2003,22(4):101-105
    [16]魏丽.暴雨型滑坡灾害形成机理及预测方法研究:[博士学位论文].南京:南京信息工程大学,2005
    [17]陈丽霞,殷坤龙,刘礼领,等.江西省滑坡与降雨的关系研究,岩土力学,2008,29(4):1114-1120
    [18]马佰衡,朱小龙,高明辉.河北省降雨型崩塌滑坡地质灾害特征分析,河北地质,2009,(3):25-27
    [19]林鸿州,于玉贞,李广信,等.降雨特性对土质边坡失稳的影响,岩石力学与工程学报,2009,28(1):198-204
    [20]杨姗姗,邓华锋,黄坚,等.滑坡灾害与降雨关系研究,人民黄河,2010,32(8):128-131
    [21]李长江,麻土华,李炜,等.滑坡频度-降雨量的分形关系,中国地质灾害与防治学报,2010,21(1):87-93
    [22]李长江,麻土华,孙乐玲,等.基于分形的滑坡易发程度区划方法,中国地质灾害与防治学报,2010,21(2):17-24
    [23]Brand E W, Premchitt J, Philipson H B. Relantionship between rainfall and landslides in Hong Kong, In:Proceedings of the Fourth International Symposium on Landslides. Canada,1984
    [24]Coe J A, Godt J W, Baum R L, et al. Landslide susceptibility from topography in Guatemala. Landslides: Evaluation and Stabilization,2004, (1):69-78
    [25]Gabet E J, Burbank D W, Putkonen J K, et al. Rainfall thresholds for landsliding in the Himalayas of Nepal. Geomorphology,2004,63:131-143
    [26]CAINE N, The rainfall intensity-duration control of shallow landslides and debris flows, Geogr. Ann, 1980,62A(1-2):23-27
    [27]Guzzetti F, Peruccacci S, Rossi M. Rainfall thresholds for the initiation of landslides in central and southern Europe, Meteorol Atmos Phys,2007
    [28]徐则民.植被与斜坡非饱和带大空隙,地学前缘,2007,14(6):134-142
    [29]张家发,张伟,朱国胜,等.三峡工程永久船闸高斜坡降雨入渗实验研究.岩石力学与工程学报,1999,18(2):137-141
    [30]张有天,周维垣.岩石高斜坡的变形与稳定.北京:中国水利水电出版社.1999
    [31]陈善雄,陈守义.考虑降雨的非饱和斜坡稳定性分析方法,岩土力学,2001,22(4):447-450
    [32]姚海林,郑少河,李文斌,等.降雨入渗对非饱和膨胀土斜坡稳定性影响的参数研究,岩石力学与工程学报,2002,21(7):1034-1039
    [33]包承纲.南水北调中线工程膨胀土渠道斜坡的稳定问题及防治对策,人民长江,2003,34(5):2-6
    [34]王旭升,常宏,谭建民.斜坡地下水渗透力计算与稳定性分析.水文地质工程地质,2003,(2):41-45
    [35]汪益敏,陈页开,韩大建,等.降雨入渗对边坡稳定影响的实例分析,岩石力学与工程学报,2004.23(6):920-924
    [36]孙红月.含碎石粘性土滑坡的成因机理与防治对策:[博士学位论文].杭州:浙江大学,2005
    [37]黄光明,降雨入渗对非饱和土斜坡稳定性的影响,中国煤田地质,2005,17(B06),78-79,88
    [38]李守升,植被护坡水运移及浅层边坡稳定性分析:[硕士学位论文].成都:西南交通大学,2009
    [39]黄伟,杨仕教,曾晟.降雨入渗对土质边坡稳定性的影晌分析,科技情报开发与经济,2006,16(5):174-175
    [40]周中,傅鹤林,刘宝琛,等.堆积层斜坡人工降雨致滑的原位监测试验研究,中国铁道科学,2006,27(4):11-16
    [41]陈晓清,崔鹏,冯自立,等.滑坡转化泥石流起动的人工降雨试验研究,岩石力学与工程学报,2006,25(1):106-116
    [42]刘忠玉,马崇武.降雨入渗条件下无限边坡的稳定性分析,郑州大学学报(工学版),2007,28(3):24-27
    [43]周家文,徐卫亚,邓俊晔,等.降雨入渗条件下边坡的稳定性分析,水利学报,2008,39(9):1066~1073
    [44]高俊丽.降雨入渗对裂隙岩质边坡稳定性研究,西部探矿工程,2008,(9):4-6
    [45]郝志新,郑景云,葛全胜,等.黄河中下游与江淮流域的降水量和入渗深度关系分析,自然科学进展,2008,18(6):662~667
    [46]孙海洋,张轶乐.降雨入渗对边坡稳定的分析.常州工学院学报,2008,21:89-92
    [47]张卢明,何敏,郑明新,等.降雨入渗对滑坡渗流场和稳定性的影响分析.铁道工程学报,2009,(7):15-19
    [48]郭抗美,王超,纪洪广.基于降雨入渗深度反演的某黄土滑坡机理研究,湖南科技大学学报(自然科学版),2009,24(3):56-60
    [49]周志超,李向全,蒋良文,等.滇西典型土质滑坡饱和-非饱和渗流稳定性研究,湖南科技大学学报(自然科学版),2010,25(1):55-61
    [50]刘育田,刘俊新.地表径流与地下渗流耦合的斜坡降雨入渗研究,路基工程,201 0,(3):80-82
    [51]王建新,王恩志,王思敬.降雨入渗条件下交河故城土质崖体渗流场计算及稳定性分析,水文地质工程地质,2010,37(3):36-42
    [52]海龙,梁冰.考虑降雨入渗条件的土体边坡稳定性分析,水资源与水工程学报,2010,21(4):46-50
    [53]周丽,汪洋,杜娟.库水位下降和降雨影响下李家湾滑坡的稳定性计算,安全与环境工程,2010,17(3):5-9
    [54]刘俊新,刘育田,胡启军.非饱和地表径流-渗流和流固体耦合条件下降雨入渗对路堤边坡稳定性研究,岩土力学,2010,31(3):903-910
    [55]Lumb P B. Slope failures in Hong Kong. Q J Eng Geol Hydrogeol,1975,8(1):31-65
    [56]Fourie A B, Owe D R, Blight G E. The effect of infiltration on the stability of the slopes of a dry ash dump. Geotechnique,1999,49(1):1-13
    [57]Fredlund D G, Morgenstern NR, Widger R A. The shear strength of unsaturated soils. Can Geotech J, 1978,15(3):313-321
    [58]Fredlund D G. Slope Stability Analysis incorporating the effect of soil suction. Anderson M G, Richards. Slope Stability, New York:Wiley.1987:113-144
    [59]Sammori T, Tsubouama Y. Parametric study on slope stability with numerical simulation in consideration of seepage process. In:Proc.6th International Symposium on Landslides.Christchurch:Balkema publishers,1991
    [60]Fredlund D G, Rahardjo H. Soil mechanics for unsaturated soils, New York:Wiley,1993
    [61]Shimada K, Fu J H, Nishimura S M T. Stability of unsaturated slopes considering changes of matric suction, Unsaturated Soils,1995(1); 93-299
    [62]Sun Y N. A Study on stability analysis of shallow layer slope due to raining permeation, Unsaturated Soils,1995(1); 315-320
    [63]Alonso E. Effect of rain infiltration on the stability of slopes. In:Proc.1995 1st International Conference on Unsaturated Soils. Pairs:Balkema publishers,1995
    [64]Rahardjo H, Lee T T, Leong E C, Rezaur RB. Response of a residual soil slope to rainfall, Can Geotech J, 2005,42:340-351
    [65]Kenneth Gavin, Jianfeng Xue. A simple method to analyze infiltration into unsaturated soil slopes, Computers and Geotechnics,2008,35:223-230
    [66]Sung Eun Cho. Infiltration analysis to evaluate the surficial stability of two-layered slopes considering rainfall characteristics, Engineering Geology,2009,105:32-43
    [67]Tu X B, Kwong A K L, Dai F C, et al. Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall-induced landslides, Engineering Geology,2009,105:134-150
    [68]Corrado Corradini, Renato Morbidelli, Alessia Flammini, et al. A parameterized model for local infiltration in two-layered soils with a more permeable upper layer, Journal of Hydrology,2011,396: 221-232
    [69]Lee Min Lee, Azman Kassim, Nurly Gofar. Performances of two instrumented laboratory models for the study of rainfall infiltration into unsaturated soils, Engineering Geology,2011,117:78-89
    [70]查轩,唐克丽,张科利,等.植被对土壤特性及土壤侵蚀的影响研究,水土保持学报,1992,6(2):52-58
    [71]王协康,方铎.植被措施控制水土流失机理及其效益研究,四川大学学报(工程科学版),2000,32(2):13-16
    [72]吴钦孝,陈云明,刘向东,等.森林保持水土机理及功能调空技术.北京:科学出版社,2005
    [73]Rietkerk M, Boerlijst M C, van langevelde F, et al. Self-organization of vegetation inarid ecosystems, Am Nat,2002,160:524-530
    [74]Morgan R R C, Rickson R J. Slope Stabilization and Erosion Control A Bioengineering Approach. E & E N Spon, London,1995.274
    [75]Osman N, Barakbah S S. Parameters to predict slope stability-Soil water and root profiles.ECOLOGICAL ENGINEEING,2006, (28):90-95
    [76]Box T W. Relationships between plants and soils of 4 ranges plant communities within south Texas. Ecol.,1961,42:794-810
    [77]Blackhum W E. Factors influencing infiltration and sediment production of semi-arid rangelands of Nevada, Water Resour.Res.,1975,11:929-937
    [78]Dunne T. Field studies of hill slope flow processes, In:Kirkby(editor), Hill slope Hydrology, John Wiley & Sons,1978,227-294
    [79]朱劲伟.小兴安岭红松阔叶林的水文效应,东北林学院学报,1982,(4):17-24
    [80]陈丽华,余新晓.晋西黄土地区水土保持林地土壤入渗性能的研究,北京林业大学学报,1995,17(1):42-47
    [81]郭忠升,吴钦孝,任锁堂.森林植被对土壤入渗速率的影响,陕西林业科技,1996,(3):27-31
    [82]汤川典子,恩田裕一.扁柏林下植被对土壤入流量的影响,水土保持科技情报,1996,(3):10-13
    [83]Ger Bergkamp. A hierarchical view of the interactions of runoff and infiltration with vegetation and microtopography in semiarid shrublands, Catena,1998,33:201-220
    [84]王忠科.植被盖度及地面坡度影响降雨入渗过程的试验研究,河北水利水电技术,1994,(4):63-64
    [85]周星魁,王忠科,蔡强.植被和坡度影响入渗过程的研究,山西水土保持科技,1996,(4):10-13
    [86]陈建刚,李启军,侯旭峰,等.妫水河流域不同植被覆盖条件下土壤入渗及模型的比较分析,中国水土保持科学,2004,2(3):22-26
    [87]王丽,陈晓楠.植被覆盖对水土流失影响的研究,水土保持应用技术,2008,(2):12-14
    [88]朱冰冰,李占斌,李鹏,等.草本植被覆盖对坡面降雨径流侵蚀影响的试验研究,土壤学报,2010,47(3):401-407
    [89]王新平,李新荣,康尔泗,等.腾格里沙漠东南缘人工植被区降水入渗与再分配规律研究,生态学报,2003,23(6):1234-1241
    [90]程金花.长江三峡花岗岩区林地坡面优先流模型研究:[博士学位论文].北京:北京林业大学,2005
    [91]蒋必凤,董希斌.植被护坡水文机制模型的构建,森林工程,2007,23(5):56-59
    [92]张志才,陈喜.降雨入渗补给量计算的数值模拟方法,中国农村水利水电,2007,(12):1-8
    [93]刘利平.森林植被对地下水补给作用分析,山西水利,2008,70-72
    [94]伍斌.不同植被类型对降雨径流和泥沙的影响,亚热带水土保持,2008,20(4):19-21
    [95]张小娜,冯杰,邵伟.不同雨强下植被对坡地产汇流和溶质运移的影响,河海大学学报(自然科学版),2010,38(3):246-251
    [96]李贵玉,徐学选,王俊华,等.黄土丘陵区不同植被下土体入渗性能研究,水土保持研究,2007,14(3):27-30
    [97]霍小鹏,李贤伟,张健,等.川西亚高山不同植被类型土壤贮水与入渗性能试验.中国水土保持科学,2009,7(6):74-79
    [98]Casadei M, Dietrich W E, Miller N L. Testing a Model for Predicting the Timing and Location of Shallow Landslide Initiation in Soil-Mantled Landscapes. Earth Surface Processes and Landforms,2003,28: 925-950
    [99]Meisina C, Scarabelli S. A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils, Geomorphology,2003,87:207-223
    [100]Legorreta Paulin G, Bursik M. Logisnet:A tool for multimethod, multiple soil layers slope stability analysis, Computers & Geosciences,2009,35:1007-1016
    [101]Kang-Tsung Chang, Shou-Hao Chiang. An integrated model for predicting rainfall-induced landslides. Geomorphology,2009,105(3-4):366-373
    [102]Shou-Hao Chiang, Kang-Tsung Chang. Application of radar data to modeling rainfall-induced landslides. Geomorphology,2009,103(3):299-309
    [103]Marco Borga, Fabrizio Tonelli, Giancarlo dalla Fontana, et al. Evaluating the influence of forest roads on shallow landsliding. Ecological Modelling,2005,187:85-98
    [104]兰恒星,伍法权,周成虎,等.GIS支持下的降雨型滑坡危险性空间分析预测,科学通报,2003,48(5):507-512
    [105]兰恒星,周成虎,王苓涓,等.地理信息系统支持下的滑坡-水文耦合模型研究,岩石力学与工程学报,2003,22(8):1309-1314
    [106]武利,张万昌,张东,等.基于遥感与地理信息系统的分布式斜坡稳定性定量评估模型,地理科学,2004,24(4):458-464
    [107]殷昊,刘飞,杜立新,等.黄土高原区地形与植被分布规律对滑坡发生概率的影响,现代地质,2010,24(5):1016-1021
    [108]侍倩.植被对斜坡土体土力学参数影响的试验研究.岩土力学,2005,26(12):2027-2030
    [109]Chok Y H, Kaggwa W S, Jaksa M B, et al. Modelling the Effects of Vegetation on Stability of Slopes, In: Proceedings,9th Australia New Zealand Conference on Geomechanics, Auckland
    [110]Wu T H, McKinnell W P, Swanston D N. "Strength of tree roots and landslides on Prince of Wales Island, Alaska." Canadian Geotechnical Journal,1979,114, (12):19-33
    [111]侍倩,刘文娟,王敏强,等.植被对坡面防护作用的机理分析及定量估算,水土保持研究,2004,11(3):126-129
    [112]Ghidey F, Alberts E E. Plant root effects on soil erodibility, splash detachment, soil strength, and aggregates tability, Tran ASAE,1997,40(1):129-135
    [113]Gyssels G, Poesen J. The importance of plant root characteristics in controlling concentrated flow erosion rates, Earth Surface Proc Landforms,2003,28:371-384
    [114]Dan Malkinson, Lea Wittenberg. Scaling the effects of riparian vegetation on cross-sectional characteristics of ephemeral mountain streams-a case study of Nahal Oren, Mt. Carmel, Israel. Catena-01087,2006:1-8
    [115]吴彦,刘世全.植物根系对土壤抗侵蚀能力的影响,应用与微生物学报,1997,2(3):119-124
    [116]肖盛燮,周辉,凌天清.边坡防护工程中植物根系的加固机制与能力分析,岩石力学与工程报,2006,25(增1):2670-2674
    [117]Matteo Tosi. Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy), Geomorphology,2006:1-16
    [118]杨永红,刘淑珍,王成华.土壤含水量和植被对浅层滑坡土体抗剪强度的影响,灾害学.2006,21(2):50-54
    [119]程洪,颜传盛,李建庆,等.草本植物根系网的固土机制模式与力学试验研究,水土保持研究,2006,25(1):62-65
    [120]Harrisc, Dvism, Rea B. Geotechnical centrifuge modeling of mass movement processes associated with thawing permafrost soil, Landslides in Reaserch, Theory and Practice,2000,2:693-700
    [121]李伟莉,金昌杰,王安志,等.土壤大孔隙流研究进展,应用生态学报,2007,18(4):888-894
    [122]李伟莉,金昌杰,王安志,等.长白山北坡两种类型森林土壤的大孔隙特征,应用生态学报,2007,18(6):1213-1218
    [123]Singh P, Rameshwar K S, Thompson M L. Measurement and characterization of macropores by using AUTOCAM and automatic image analysis, Journal of Environmental Quality,1991.20:289-294
    [124]冯杰,郝振纯.土壤大孔隙流研究中分形几何的应用进展,水文地质j工程地质,2001,(3):9-13
    [125]Vermeul V R, Istok J D, Flint A L, et al. An improved method for quantifying soil macroporosity, Soil Science Society ofAmerica Journal,1993,57:809-816
    [126]张建丰,林性粹,王文焰.黄土的大孔隙特征和大孔隙流研究.水土保持学报,2003,17(4):168-171
    [127]Bouma J. Soil morphology and preferential flow along macropores. Agricultural Water Management, 1981,(3):235-250
    [128]Beven K, Germann P. Macropores and water flow in soils. Water Resour Res,1982,18(5):1311-1325
    [129]Heling C S, Gish T J. Physical and chemical processes affecting preferential flow//Gish T J, Shirmohammadi A. Preferential flow Proc Natl Symp, Chicago:IL Am Soc Agric Engr, St Joseph, MI,1991.77-86
    [130]牛健植,余新晓.优先流问题研究及其科学意义,中国水土保持科学.2005,3(3):110-116.
    [131]牛健植,余新晓,张志强.贡嘎山暗针叶林生态系统基于KDW运动-弥散波模型的优先流研究,生态学报,2007,27(9):3541-3554
    [132]祁生林,张洪江,何凡,等.长江三峡花岗岩林地坡面降雨渗流与水土流失关系研究.工程地质学报,2006,14(03):365-369
    [133]何凡,张洪江,程金花,等.长江三峡花岗岩坡面林地优先流与地表径流关系.水土保持学报,2005,19(2):9-12
    [134]牛健植,余新晓,张志强.优先流研究现状及发展趋势.生态学报,2006,26(1):231-242
    [135]程金花,张洪江,史玉虎,等.长江三峡花岗岩区林地优先流影响因子分析.水土保持学报,2006,20(5):28-33
    [136]张洪江,程云,史玉虎,等.长江三峡花岗岩坡面管流产流特性研究,水土保持学报,2001,15(1):5-8
    [137]Jones J A A. Pipeflow contributing areas and runoff response, Hydrological Processes,1997,11(1): 35-41
    [138]张洪江,程云,史玉虎,等.长江三峡花岗岩坡面林地土管特性及其对管流的影响,长江流域资源与环境,2002,12(1):55-60
    [139]Germann P, Beven K. Water flow in soil macropores. Ⅰ. An experimental approach. Journal of Soil Science,1981,32:1-13
    [140]Germann P, Beven K, Kinematic wave approximation to infiltration into soils with sorbing macropores, Water Resource Research,1985,21:990-996
    [141]Brakensiek D L, RaMs W J, Logsdon S E, et al. Fractal description of macroporosity, Soil Science Society of America Journal of Soil Science,1992,56:1721-1723
    [142]Kitahara Hikaru. The property of pipe flow in forest stand, Journal of JapanSoc. Hydrol.&WaterRes, 1992,5(1):15-25
    [143]Wilson G V, Jardine P M, Luxmoore R J. et al. Hydrology of a forested billslope during storm events, Geoderma,1990,46:119-138
    [144]Luxmoore R J, Jardine P M, W ilson G V. el al. Physical and chemical controls of preferred path flow through a forested hillslope, Geoderma.,1990,46:138-154
    [145]Aubertin G M, Nature and extend of macropores in forest soils and their in flu en ceo n subsurface waterm ovement.U.S.D.A, Forest Service Research Paper,1971
    [146]徐海量,宋郁东,王强,等.塔里木河中下游地区不同地下水位对植被的影响,植物生态学报2004,28(3):400-405
    [147]Lipiec J, Arvidsson J, Murer E. Renew of modelling crop growth, movement of water and chemicals in relation to topsoil and subsoil compaction, Soil and Tillage Research,2003,73(1/2):15-29
    [148]赵传燕,李守波,贾艳红,等.黑河下游地下水波动带地下水与植被动态耦合模拟,应用生态学报,2008,19(12):2687-269
    [149]乔云峰,王晓红,沈冰,等.和田绿洲地下水特征及其对生态植被的影响分析,长江科学院院报,2004,21(2):28-31
    [150]刘志明,李建中,张可能,等.公路边坡工程中的植物生态防护技术,地下空间与工程学报,2005,1(7):1025-1028
    [151]蒲智.植物措施在公路工程护坡中的应用,甘肃水利水电技术,2003,39(4).336-338
    [152]ZHANG Jun-bin, LIANG Da-qing, YE Xu-rong. Study on Vegetation Root Strength of Pioneer Plants for Forest Areas in Taiwan, Research of Soil and Water Conservation,2005,12(5):146-148
    [153]蒋文伟,余树全,周国模.安吉地区不同森林植物水源涵养功能的研究,江西农业大学学报(自然科学版),2002,24(25):635-639
    [154]李晓宏,高甲荣,张金瑞.密云水库区不同植被覆盖下土壤水分入渗试验,林业科技,2010,35(2):22-24
    [155]于俊伟,刘雪梅,甘露等.1998年贵州省属长江流域地区洪涝灾害与森林植物的关系,灾害学,1999,14(1):39-42
    [156]何东宁.青海东都地区森林涵养水源效能研究,植物生态学报与地植物学学报,1991,15(1):71-78
    [157]中野秀章[李云森译].森林水文学.北京:中国林业出版社,1983
    [158]刘志韬.山西管涔山林区森林对径流的影响,水土保持通报,1981,(4):56-61
    [159]周仰效.地下水-陆生植被系统研究评述,地学前缘,2010,17(6):21-30
    [160]孙宪春,金晓媚,万力.地下水对银川平原植被生长的影响,现代地质,2008,22(2):321-324
    [161]王威,苏小四,王小元.地下水开采下的植被生态风险评价—以鄂尔多斯乌兰淖地区为例,吉林大学学报(地球科学版),2010,40(6):1344-1352
    [162]张丽,董增川,黄晓玲.干旱区典型植物生长与地下水位关系的模型研究,中国沙漠,2004,24(1): 110-113
    [163]金晓媚,刘金韬.黑河下游地区地下水与植被生长的关系,水利水电科技进展,2009,29(1):1-4
    [164]金晓媚,万力,薛忠歧,等.基于遥感方法的银川盆地植被发育与地下水关系研究,干旱区资源与环境,2008,22(1):129-132
    [165]赵成义,王玉朝,李保国,等.内陆河流域植被变化与地下水运动的耦合关系,水利学报,2003,(12):59-65
    [166]杨泽元,王文科,黄金廷,等.陕北风沙滩地区生态安全地下水位埋深研究,西北农林科技大学学报(自然科学版),2006,34(8):67-74
    [167]郝兴明,陈亚宁,李卫红,等.塔里木河中下游荒漠河岸林植被对地下水埋深变化的响应,地理学报,2008,63(11):1123-1130
    [168]鄢朝勇,叶建军,韦书勇.植物对边坡浅层稳定的影响,水土保持研究,2007,14(1):24-28.
    [169]邓卫东,周群华,严秋荣.植物根系固坡作用的试验与计算,中国公路学报,2007,20(5):7-12.
    [170]张云伟,刘跃明,周跃.云南松侧根摩擦型根土粘合键的破坏机制及模型,山地学报,2002,20(5):628-631
    [171]封金财,王建华.乔木根系固坡作用机理的研究进展,铁道建筑,2004,(3):29-31
    [172]朱清科,陈丽华,张东升,等.贡嘎山森林生态系统极系固土力学机制研究,北京林业大学学报,2002,24(4):64-67
    [173]李绍才,孙海龙,杨志荣,等.护坡植物根系与岩体相互作用的力学特性,岩石力学与工程学报,2006,25(10):2051-2057
    [174]刘向东,吴钦孝,赵鸿雁.森林植物垂直截留作用与水土保持,水土保持研究,1994,1(3):8-13
    [175]王佑民.我国林冠降水再分配研究综述,西北林学院学报,2000,15(3):1-7
    [176]余新晓.森林植物减弱降雨侵蚀能量的数理分析,水土保持学报,1988,2(2)
    [177]Coppin N J, Richards I G. Use of Vegetation in Civil Engineering, Butterworths, London.1990
    [178]James C. Bathurst, C. Isabella Bovolo, Felipe Cisneros, Modelling the effect of forest cover on shallow landslides at the river basin scale, Ecological Engineering,2010,36:317-327
    [179]卢敦华,王星华.植被根系系统加固破碎岩坡的作用机理分析,科技导报,2007,25(23):55-58
    [180]Dring. Fransesco, Ferraiolo. Application of inert materials in bioengineering. Proceedings of the First Asia Pacifi Conference on Ground and Water, Bioengineering Erosio Control and Slope Stabilization, 1999,18-53
    [181]封金财,王建华.植物根的存在对边坡稳定性的作用,华东交通大学学报,2003,20(5):42-45
    [182]Faruk Ocakoglu, Candan Gokceoglu, Murat Ercanoglu. Dynamics of a complex mass movement triggered by heavy rainfall:acase study from NW Turkey, Geomorphology,2002,42:329-341
    [183]魏丽,单九生,朱星球.植被覆盖对暴雨型滑坡影响的初步分析,气象与减灾研究,2006,29(1):29-33
    [184]秦耀东,任理,王济.土壤中大孔隙流研究进展与现状,水科学进展,2000,11(2):203-207
    [185]查轩,唐克丽,张科利,等.植物对土壤特性及土壤侵蚀的影响研究,水土保持学报,1992,6(2):52-58
    [186]郭玉龙,渗流与应力耦合作用对边坡稳定性影响的研究:[硕士学位论文].武汉:武汉理工大学,2005.
    [187]杨永兵,施斌,杨卫东,等.边坡治理中的植物固坡法.水文地质工程地质,2002,(1):64-67
    [188]Gray D H, Sotir B. Biotechnical and Soil Bioengineering Slope Stabilization-a Practical Guide for Erosion Control, New York:John Wiley and Sons, Inc.,1996,6-8.
    [189]Penman H L. Natural evaporation from open water, bare soil,and grass, Proc Roy sec A,1948,193: 120-145
    [190]Monteith J L. Environment Control of Plant Growth(L.T.Evans,ed.), Academic Press, New York,1963, 95-112
    [191]朱仲元.干旱半干旱地区天然植被蒸散发模型与植被需水量研究:[博士学位论文].呼和浩特:内 蒙古农业大学,2005
    [192]王安志,裴铁璠.森林蒸散测算方法研究进展与展望,应用生态学报,2001,12(6):933-937
    [193]Zhou M C., Ishidaira H, Hapuarachchi H P, et al. Estimating potential evapotranspiration using Shuttleworth-Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin, Journal of Hydrology,2006,327:151-173
    [194]Iritz Z, Lindroth A, Heikinheimo M, et al. Test of a modified Shuttleworth-Wallace estimate of borea forest evaporation, Agricultural and Forest Meteorology,1999,98-99:605-619
    [195]Task Committee on Standardization of Reference Evapotranspiration of the Environmental and Watei Resources Institute, the ASCE Standardized Reference Evapotranspiration Equation, ASCE-EWRI Tasi Committee Report, January,2005
    [196]Richard G.Allen,Member,ASEC.Assessing Integrity of Weather Data for Reference Evapotranspiration Estiation, JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING,1996:97-106
    [197]Edward P. Glenn, Alfredo R. Huete, Pamela L. Nagler, et al.Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes:What Vegetation Indices Can and Cannot Tell Us About the Landscape, Sensors 2008,8,2136-2160.
    [198]Alexandris S, Kerkides P, Liakatas A. Daily reference evapotranspiration estimates by the "Copais" approach, Agricultural Water Management,2006,82:371-386
    [199]Alexandris S, Kerkides P. New empirical formula for hourly estimations of reference evapotranspiration, Agricultural Water Management,2003,60:157-180
    [200]范世香,高雁,程银才.林冠对降雨截留能力的研究,地理科学,2007,27(2):200-204
    [201]Muzylo A, Llorens P, Valente, F et al. A review of rainfall interception modeling, Journal o1 Hydrology,2009,370:191-206
    [202]谢春华,关文彬,吴建安,等.贡嘎山暗针叶林生态系统林冠截留特征研究,北京林业大学学报,2002,24(4):68-71
    [203]温远光,刘世荣.我国主要森林生态系统类型降水截留规律的数量分析.林业科学,1995,31(4):289-298
    [204]刘向东,吴钦孝,赵鸿雁.黄土丘陵区人工油松林和山杨林林冠截留作用的研究.水土保持通报,1991,11(2):4-7
    [205]马雪华.森林水文学.北京:中国林业出版社,1993.70-73
    [206]王正非,朱廷曜,朱劲伟,等.森林气象学.北京:中国林业出版社,1985
    [207]巩合德,张一平,刘玉洪,等.哀牢山常绿阔叶林林冠的截留特征,浙江林学院学报,2008,25(4):469-474
    [208]黄进,张家洋,张金池,等.北亚热带次生毛竹林冠生态水文效应及其影响因素分析,水土保持通报,2009,29(1):23-27
    [209]郭雨华,韩煜,李嘉,等.大通退耕地植物群落植冠层截留性能和枯落物容水性能研究,西北林学院学报,2009,24(5):50-53
    [210]季冬,关文彬,谢春华.贡嘎山暗针叶林生态系统枯落物截留特征研究,林业调查规划,2007,32(1);111-116
    [211]常宗强,王金叶,常学向.祁连山水源涵养林枯枝落叶层水文生态功能,西北林学院学报,2001,16(增):8-13
    [212]顾培倩,葛熙升,李德福.谈枯枝落叶层的测定.林业勘查设计,2001,(4):43
    [213]殷有,周永斌,崔建国,等.林冠截留模型,辽宁林业科技,2001,5:10-12
    [214]王馨,张一平,刘文杰.Gash模型在热带季节雨林林冠截留研究中的应用,生态学报,2006,26(3):722-729
    [215]Rutier A J, Kershaw K A, Robins P C, et al. A predictive model of rainfall interception in forests. I. Derivation of the model from observations in a plantation of Corsican pine, Agricultural and Forest Meteorology,1971,9:367-384
    [216]Shuguang Liu.A new model for the prediction of rainfall interception in forest canopies. Ecological Modelling,1997,99:151-159
    [217]Gash J. An analytical model of rainfall interception by forest, Qllafterly Journal Of the Royal Meteorological Society,1979,105:43-55
    [218]Gash J, Lloyd C, Lachaud G. Estimating sparse forest rainfall interception with an analytical model, Journal of Hydrology,1995,170:79-86
    [219]张卓文,杨志海,张志永,等.三峡库区莲峡河小流域马尾松林冠降雨截留模拟研究,华中农业大学学报,2006,25(3):318-322
    [220]刘曙光.树冠截留模型,西北林学院学报,1990,5(3):50-56
    [221]齐登红,靳孟贵,刘延锋.降水入渗补给过程中优先流的确定,地球科学-中国地质大学学报,2007,32(3):420-424
    [222]Pradel D, Raad G. Effect of permeability on surficial stability of homogeneous slopes. Journal Geotechnical Engineering ASCE,1993,119 (2),315-332
    [223]Brakensiek D L. Empirical and simplified models of the infiltration process, Report for the USDA-ARS infiltration research planning workshop, St. Louis, MO; 1977.
    [224]Mein R G, Larson C L. Modeling infiltration during a steady rain, Water Resour Res 1973,9(2):384-94
    [225]银晓鹏.降雨条件下的边坡渗流数值模拟及稳定性分析:[硕士学位论文].兰州:兰州理工大学,2008
    [226]常珂,齐登红.降水入渗补给地下水过程分析,湖南环境生物职业技术学院学报,2009,15(1):8-11
    [227]王大纯,张人权,史毅虹,等.水文地质学基础.北京:地质出版社,1995
    [228]赵同应,朱凌云,卫丽萍,等.旱地土壤水渗透深度预测模型研究,干旱地区农业研究,2006,24(4):68-71
    [229]Ribolzi O, Patin J, Bresson L M, et al. Impact of slope gradient on soil surface features and infiltration on steep slopes in northern Laos, Geomorphology,2011,127:53-63
    [230]石生新.高强度人工降雨条件下影响入渗速率因素的试验研究,水土保持通报,1992,12(2):49-54
    [231]Fox D M, Bryan R B, Price AG. The influence of slope angle on final infiltration rate for interrill conditions, Geoderma,1997,80:181-194
    [232]Cheng Q, Ma W, Cai Q. The relative importance of soil crust and slope angle in runoff and soil loss:a case study in the hilly areas of the Loess Plateau, North China. GeoJournal,2008,71:117-125
    [233]Childs E C. An Introduction to the Physical Bases of Soil Water Phenomena, JohnWiley, NewYork, 1969
    [234]Swartzendruber D. Derivation of a two-term infiltration equation from the Green-Ampt model, Journal of Hydrology,2000,236:247-251
    [235]Green W H, Ampt G A. Studies of soil physics, part Ⅰ-the flow of air and water through soils. J. Agric. Sci.1911,4:1-24
    [236]马娟娟,孙西欢,郭向红.基于Green-Ampt模型的变水头积水入渗模型建立及其参数求解,水利学报,2010,41(1):61-67
    [237]Mein R G, Larson C L. Modeling infiltration during a steady rain, Water Resources Research,1973,9(2): 384-394
    [238]Corradini C, Melone F, Smith R E. Modeling local infiltration for a two layered soil under complex rainfall patterns, J. Hydrol.2000237,58-73
    [239]靳德武,牛富俊,陈志新,等.不同渗流条件下无限斜坡稳定性分析方法探讨,地质灾害与环境保护,2003,14(4):63-67
    [240]Paolo Tarolli, Marco Borga, Giancarlo Dalla Fontana. Analysing the influence of upslope bedrock outcrops on shallow landsliding, Geomorphology,2008, (93):186-200
    [241]Legorreta P G, Bursik M L. A Tool for multimethod, multiple soil layers slope stability analysis, Computers and Geosciences,2009,35(5):1007-1016
    [242]Pack R T, Tarboton D G, Goodwin C N. The SINMAP approach to terrain stability mapping. In: proceedings of 8th Congress of the International Association of Engineering Geology, Canada,1998
    [243]Hammond C, Hall D, Miller S, et al. Level I Stability Analysis (LISA) documentation for version 2.0. General Technical Report INT-285. Ogden, UT:U.S. Department of Agriculture, Forest Service, Intermountain Research Station.1992,190
    [244]Deb S K, El-Kadi A I, Susceptibility assessment of shallow landslides on Oahu, Hawaii, under extreme-rainfall events, Geomorphology,2009,108, (3-4):219-233
    [245]Rosso R, Rulli M C, Vannucchi G A Physically Based Model for the Hydrologic Control on Shallow Landsliding, Water Resources Research,2006,42:1-16
    [246]Claessens L, Knap'en A, Kitutu M G, et al. Modelling landslide hazard, soil redistribution and sediment yield of landslides on the Ugandan footslopes of Mount Elgon[J]. Geomorphology,2007,90:23-35
    [247]Skempton, A W, DeLory F A. Stability of Natural Slopes in London Clay, Proc. Int. Conf. Soil Mech. Found. Eng.,1957,4 (2):378-381
    [248]Montgomery D R, Dietrich W E. A Physically Based Model for the Topographic Control on Shallow Landsliding, Water Resour. Res.,1994,30:1153-1171
    [249]Pradel D, Raad G. Effect of permeability on surficial stability of homogeneous slopes. Journal of Geotechnical Engineering,1993,119(2):315-332

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700