用户名: 密码: 验证码:
哈尔滨周边泥炭型水库水—气界面CO_2通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从2008-2010年利用静态箱—气相色谱法对我国北方泥炭型水库生态系统水-气界面CO2通量进行全面观测。实验选取哈尔滨周边泥河和西泉眼两座典型的东北大型水库为主要研究对象。通过对水库春、夏、秋三季(平均200天)无冰期水-气界而CO2通量进行测定以研究其变化特征,对影响CO2通量的环境因子进行分析,重点讨论了水生植物对CO2通量的影响。由于水库每天进行渔业捕捞作业,鱼类的数量及其分布很难定量测定,所以本研究没有讨论水生动物对CO2通量的影响,在此特别说明。
     通过大量的数据分析,我们发现:
     (1)水库水-气界面C02通量时间变化规律明显
     通过对泥河水库和西泉眼水库三季(春、夏、秋季)水—气界面CO2通量变化的研究发现,水库生态系统总体上为大气CO2的源。CO2通量时间变化明显。从季节角度看,泥河水库基本变化趋势为:夏季756.42±54.58(mg m-2d-1)>春季714.16±83.45(mg m-2d-1)>秋季600.67±77.14(mg m-2d-1)。西泉眼水库与泥河水库略有不同,其变化规律为春季787.42±43.03(mg m-2d-1)>秋季409.24±13.64(mg m-2d-1)>夏季255.21±28.2(mg m-2d-1)。
     从昼夜角度看,西泉眼水库的昼夜变化与泥河水库相似,即水库的CO2通量日间小于夜间。尤其是6、7月份非常明显,昼夜间差额比高达121%。一般CO2通量的极小值出现在午后13:00,CO2通量的极大值出现在21:00或1:00左右。
     (2)水库水-气界面CO2通量存在空间异质性特征
     通过分析,我们发现水库CO2通量存在一定的空间异质性,泥河水库各研究点CO2通量大小依次为出水口>库心区>入水口。西泉眼水库各试验点的CO2通量大小依次为A>C>D>B。水库水位和消落带的变化以及水生植物的种类和分布成为影响CO2通量空间变化的主要因素。
     (3)水库水-气界面CO2通量的影响因子复杂
     水-气界面CO2通量变化的涉及影响因子较多,主要分为三大类,首先是生物因子主要指水生植物对碳通量的影响,通过叶绿素与碳通量的负相关性可以得到有效的印证。二是气候条件因子:包括风速、温度和天气情况,其中,温度对CO2通量的影响最为显著,呈明显的负相关性,风速与碳通量呈正相关。三是水体理化因子:包括DOC、水位、碱度、TP、TN和pH等;
     (4)北方水库水-气界面CO2通量的估算及对比
     本文对泥河水库和西泉眼水库CO2通量年排放量进行估算,二者全年碳排放量分别为1.01Gt a-1和1.08Gt a-1(G=1×109g),相差不大。通过对西泉眼水库和泥河水库碳通量的细节对比发现,水库的理化特性、地理位置、营养化水平和水生植物的类型等因子会对水库的CO2通量造成影响。通过与不同纬度、地区水库生态系统碳通量研究结果对比发现,北方泥炭型水库C02总体排放量并没有想像中的高,其排放量较高寒地区以及贫营养型水体要高,但是明显低于热带及亚热带水体碳排放水平,两个水库的通量值接近于湖泊生态系统C02通量。
     (5)对水库生态系统温室气体减排措施的建议
     通过研究我们明确了水库CO2通量的排放特征及影响水库CO2通量的主要因了,针对研究地水库的情况提出以下建议:
     ①加强对上游及库区水质的控制;
     ②优化水库植被的种类和结构;
     ③重视水库渔业碳汇的作用。
The static chamber/gas chromatography was used to conduct a comprehensive observation on CO2flux across water-air interface in northern peat-type reservoir ecosystem. Our research chose two large reservoirs Nihe and Xiquanyan as the main subject in Harbin, Heilongjiang province. According to the observation conducing in ice-free season (spring, summer, autumn) with average200days, we studied the spatial and temporal variation of CO2flux and discussed deeply on the environmental factors affecting CO2flux. We hope the results will give some data support for the regular research of CO2flux in reservoir ecosystem and its contribution to global climate change.
     By a large number of data analysis, we found that:
     (1) The diurnal variation of CO2flux across water-air interface in reservoirs is obvious
     According to the research, reservoir ecosystem was overall the source of atmospheric CO2. Diurnal variation of CO2flux is obvious. From seasonal perspective, the basic trend of Nihe Reservoir was:Summer756.42±54.58(mg m-2d-1)> Spring714.16±83.45(mg m-2d-1)> autumn600.67±77.14(mg m-2d-1). With a slightly difference the Xiquanyan Reservoir'trend was:Spring787.42±43.03(mg m-2d-1)> autumn409.24±13.64(mg m-2d-1)> Summer255.21±28.2(mg m-2d-1). While from the perspective of diurnal variation, the two reservoirs were similar:the CO2flux of day was less than that of night. Especially in June and July the difference was obvious with high rate of121%between day and night. The minimum value of CO2flux generally showed up at13:00in the afternoon, and maxima value appeared at21:00or1:00.
     (2) The feature of spatial heterogeneity was found in CO2flux across water-air interface in reservoirs.
     According to analysis, we found that there was certain spatial heterogeneity of CO2flux in the reservoirs. The CO2flux of sampling spots in Nihe was the water outlet> reservoir center> water inlet successively. The CO2flux of Xiquanyan was A>C>D> B. The main factors affecting the spatial variation of CO2flux were the change of reservoir level and fluctuating zone, and distribution of aquatic plant and species composition, respectively.
     (3) The factors impact CO2flux across water-air interface of the reservoir is complex
     CO2fluxes across water-air interface involving more impact factor which is divided into three categories,①climatic condition factors including wind speed, temperature and weather conditions, in which the influence of temperature on CO2flux is the most notable with significant negative correlation. It was positively correlated between wind speed and carbon flux.②water physical and chemical factors including DOC, water level, alkalinity, TP, TN and pH, etc.③biological factors mainly refers to the impact of aquatic plants on carbon fluxes, the negative correlation between chlorophyll and carbon fluxes can be effective confirmed. Moreover, impact factors on temporal and spatial variations of carbon flux were different.
     (4) CO2flux estimate of peat-type reservoirs and comparison with different areas
     The estimate was made on CO2flux emissions from the two reservoirs, Nihe and Xiquanyan. The result showed that annual carbon emissions of two reservoirs was similar with value of1.01Gt a-1and1.08Gt a-1(G=1×109g), respectively. By contrast to the details of the carbon fluxes of two reservoirs, we found that physicochemical characteristics of the reservoir, location, water eutrophication and type of aquatic plants were important factors impacting CO2fluxes. Comparing with the results of reservoirs from different latitudes and regions, total CO2emissions of northern peat-type reservoirs was not significant as some scholars expected. It was higher than the ones in cold areas and oligotrophic water. But significantly lower than the ones in tropical and subtropical areas. Accually, the CO2emissions of two reservoirs were close to nature lakes.
     (5) Suggestions for reducing emissions of the greenhouse gas from reservoir ecosystem
     ①strengthen the control of water quality from upstream of reservoir;
     ②optimize the type and structure of the vegetation in the reservoir;
     ③values the importance role of fisheries carbon sinks in reservoir.
引文
[l]宋涛,三江平原生态系统CO2通量的长期观测研究,南京信息工程大学博士论文.2007,1-2
    [2]吕东珂.泥河水库水-气界面CO2通量研究.东北林业大学硕士论文.2009.1-10,28-32.
    [3]Keeling C D and Whorf T P, Wahlen M, van der Plicht J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980.Nature,1995,375:666-670
    [4]Prentice I C, Farquhar G D et al. The Intergovernmental Panel on Climate Change (IPCC).Third Assessment Report.Houghton J T, Yihui D, (Eds) Cambridge University Press, Cambridge.2001, 113-321
    [5]李海涛,沈文清,刘琪璟,于贵瑞.湿地生态系统的碳循环研究进展.江西科学.2003,21(9):160-167
    [6]黄璞祎.扎龙湿地C02和CH4通量研究.东北林业大学博士论文.2010:1-22
    [7]段晓男,王效科等.湿地生态系统固碳潜力研究进展.生态环境200615(5):1091-1095.
    [8]于贵瑞主编.全球变化与陆地生态系统碳循环和碳蓄积.北京:气象出版社,2003:44-47;255~288
    [9]陈泮勤.地球系统碳循环.北京:科学出版社,2004:26-37;131-141;293-304
    [10]严国安,刘永定.水生生态系统的碳循环及对大气C02的汇.生态学报,2001,21(5):827-833.
    [11]Downing J P, Meybeck M et al. Land and water interface zones.Water Air and Soil Pollution, 1993,70:123-137
    [12]Dean W E. The carbon cycle and biogeochemical dynamics in lake sediments. Journal of Paleolimnology.1998,21:375-394
    [13]Cole, J.J., Caraco, N.F., Kling, G.W., et al. Carbon-dioxide supersaturation in the surface waters of lakes. Science,1994,265:1568-1570
    [14]Marberly S C. Diel, episodic and seasonal changes in pH concentrantions of inorganic carbon in a productive lake.Freshwater Biology.1996,35(3):579-598
    [15]Walsh J J, Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen.Nature.1991,350:53-55
    [16]Rudd J W M, Harris R, et al, Are hydroelectric reservoirs significant sources of greenhouse gases? Ambio,1993,22:246-248
    [17]Duchemin E, Lucotte M, CAnuel R. Comprison of static chamber and thinboundary layer equation methods for measuring greenhouse gas emissions from large water bodies. Environmental Science and Technology,1999,33:350-357
    [18]Duchenmin E. Hydroelectricity and greenhouse gases:Emission evaluation and identification of the biogeochemical processes responsible for their production. PhD dissertation.University of Quebec at Montreal, Canada.2000
    [19]Keller C A, et al. Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir. Enviornmental Science and Technology,1997,31:1334-1344
    [20]Kelly M and Stallard R F. Methane emissions by bubbling from Gatun Lake, Panama.Journal of Geophysical Rearch.1994,99:8307-8319
    [21]Schellhase H U,Macisaac E A et al. Carbon budget estimates for reservoirs on the Columbia River in British Columbia.The Environmental Professional.1997,19:48-57
    [22]Hellsten S K, Martikainen P et al. Measuremed Greenhouse Gas Emisssions from Two Hydropower Reservoirs in Northern Finland.Montreal (Quebec):Hydro-Quebec Headquarters. 1996.
    [23]Smith L K, Lewes W M. Seasonality ofmethane emissions from five lakes and associated wetlands of the Colorado Rockies.Global Biogeochemical Cycles.1992,6:323-338
    [24]Matavienko B, Sikar E,et al. Gas release from a reservoir in the filling stage.Veranlundgen of International Vereinigung teoretische and Angewandte limnologie.2000.
    [25]Tavares de Lima I B, et al. Methane production, transport and emissions in Amazon hydroelectric plants. Veranlundgen of International Vereinigung teoretische and Angewandte limnologie.2000.
    [26]Fearnside P M.Hydroelectric Dams in the Brazilian Amazon as Sources of Greenhouse Gases. Environmental Conservation,1995,22(1):7-19
    [27]陈进.黄薇.水库温室气体排放问题初探.长江科学学院学报.2008,25(6):1-5
    [28]Galy-Lacaux C, Delmas R, et al. Gaseous emissions and oxygen consumption in hydroelectric dams:A case study in French Guyana.Global Biogeochemical Cycles.1997,11:471-483
    [29]L.P. Rosa, R. Schaeffer. Are hydroelectric dams in the Brazilian Amazon significant sources of greenhouse gases? Environmental conservation.1996,23(1):2-6.
    [30]Aurelio M, Santos D, et al. Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants. Energy policy,2006,34:481-488
    [31]Huttunen, J. T., T. S. Vaisanen, et al. Fluxes of CH4, CO2, and N2O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland." Global Biogeochemical Cycles.2002,16(1):1-17.
    [32]Meybeck M. Rvierine transport of atmospheric carbon:sources,global typology and budget. Water,Air and Soil Pollut.1993,70:443-462
    [33]Wetzel R G. Limnology, second edition.Cambridge University Press, London,1983.
    [34]Mattsson T, Kortelainen P, David M B.1998.Dissoved organic carbon fractons in Finnish and Marine (USA) lakes. Environment International,24:521-525
    [35]陈小燕,戴会超等.水库温室气体排放过程中若干问题的研究.水电能源科学2009,2(5):37-39.
    [36]谢平,陈宜瑜.加强淡水生态系统中生物多样性的研究与保护.中国科学院院刊.1996,(4):276-281
    [37]A.特伦布莱等.水库水质与温室气体排放的关系.水利水电快报,2006,27(15):19-21
    [38]Tremblay A, Lambert M, Gagnon L. Do Hydroelectric Reservoirs Emit Greenhouse Gases? Environmental Management,2003,33 (S1):S509-S517
    [39]Duchemin E, Lucotte M, C Anuel R. First assessment of methane and carbon dioxide emissions from shallow and deep zones of boreal reservoirs upon ice break-up.Lakes & reservoirs,2006,11 (1):9-19
    [40]St. Louis V.L., Kelly C.A., Duchemin E., et al. Reservoir surfaces as sources of greenhouse gases to the atmosphere:a global estimate. Bioscience,2000,50:766-775
    [41]Catharina M., Ingvar S.Diurnal variation in methane emission in relation to thewater table, soil temperature, climate and vegetation cover in a Swedish acid mire. Biogeochemistry.1995,28:93-111
    [42]Rossano B, Enrica P, et al.Diurnal exchanges of CO2 and CH4 across the water-atmosphere interface in a water chestnut meadow. Aquatic Botany,2007,87:43-48
    [43]Gagnon,L,Joop F,Van de V. Greenhouse gas emissions from hydropower:The state of research in 1996.Energy Policy,1997,25:7-13
    [44]Huttunen J T, Seppo K et al. Mathane fluxes at sediment-water interface in some boreal lakes and reservoirs. Boreal Environment Research,2006,11:27-34
    [45]Eugeni B, BoazL. Dynamics of the carbon dioxide system in the Dead Sea.Geochemica et Comsochimica Acta,2001,65(3):355-368
    [46]江长生.川中丘陵区农田生态系统主要温室气体排放研究.中国科学院研究生院博士论文.2005:28-35
    [47]杜睿,吕达仁,王庚庆,万晓伟,孔琴心.静态箱法原位观测草原CO2通量的探讨.生态学报,2002,6(4):383-386
    [48]Wang Yuesi, Wang yinghong. Quick measurement of CH4,CO2and N2O emissions form a short-plant ecosystem. Advances in Atmospheric Sciences,2003,20 (5):842-844
    [49]郑循华,徐仲均,王跃思等.大气C02浓度升高影响稻田-大气C02净交换的静态暗箱法观测研究。应用生态学报,2002.,13(10):1240-1244
    [50]Denmead O T. Chamber systems for measuring nitrous oxide emission from soils in the field.Soil Sci Soc Am J,1979,43:86-95
    [51]Yim M H, Joo S J, Nakane K. Comparison of field methods for measuring soil respiration:astatic alkali absorption method and two dynamic closed chamber methods. Forest ecology and Management,2002,170:189-197
    [52]于洪贤.泥河水库底栖动物群落的研究.水利渔业,2001,21(5):36-38
    [53]于洪贤.泥河水库浮游植物数量变动及种群分布.东北林业大学学报,2001,29(4):25-28
    [54]陈金平,董崇智.泥河水库饵料生物和鱼产潜力的估算.黑龙江水产,1999,4:9-11
    [55]殷永力,王堪舜.泥河水库浮游生物资源调查报告.黑龙江水产,2006,5:39-41
    [56]李喆,姜作发,李池陶等.西泉眼水库冰下浮游动物种群结构的观测.水产学杂志.2006,19(1):62-67.
    [57]王建国.西泉眼水库浮游植物群落结构动态特征及其与水环境因子的关系分析.东北林业大学 硕士论文.2011,4:16-18
    [58]陈翠翠.西泉眼水库消落带植被特征与植物对水质修复技术研究东北林业大学硕士论文.2011.4:11-13
    [59]张颖,白羽军,王昕等西泉眼水库富营养化状态及浮游藻类群落分析哈尔滨商业大学学报(自然科学版)2003,23(5):523-525
    [60]Huttunen, J.T., Vaisanen, T.S., Heikkinen, M., et al. Exchange of CO2, CH4and N2O between the atmosphere and two northern boreal ponds with catchments dominated by peatlands or forests. Plant Soil,2002,242:137-146.
    [61]Jonsson, A., Karlsson, J., Jansson, M., Sources of carbon dioxide supersaturation in clearwater and humic lakes in Northern Sweden. Ecosystems,2003,6,224-235.
    [62]Tremblay, A., Lambert, M., Gagnon, L., Hydroelectric Reservoirs Emit Greenhouse Gases Environmental Management,2004,33 (Suppl 1),509-517.
    [63]Hope, D., Kratz, T.K., Riera, J.L., Relationship between pCO2 and dissolved organic carbon in northern Wisconsin lakes. Journal of Environmental Quality1996,25,1442-1445.
    [64]李香华,胡维平,杨龙元等.太湖梅梁湾冬季水-气界面二氧化碳通量日变化观测研究.生态学杂志,2005,24(12):1425-1429
    [65]Larmola T,Alm J,Juutinen S, et al.Ecosystem CO2 exchange and plant biomass in the littoral zone of a boreal eutrophic lake. Freshwater Biology 2003,48:1295-1310
    [66]马国红,杜兴华,段登选,孙栋等.盐碱地鱼池浮游植物与pH、总碱度、总硬度、含盐量的关系.齐鲁渔业,2001,18(5):36-39
    [67]Bolpagni, R., Bartoli, M., Viaroli, P. Nitrogen and phosphorous cycling in a oxbow lake dominated by Trapa nantans L. Verh. Int. Verein. Limnol.2006,29,1711-1714.
    [68]Hope, D., Kratz, T.K., Riera, J.L., Relationship between pCO2 and dissolved organic carbon in northern Wisconsin lakes. Journal of Environmental Quality 1996,25,1442-1445.
    [69]Riera, J.L., Schindler, J.E., Kratz, T.K., Seasonal dynamics of carbon dioxide and methane in two Clearwater lakes and two bog lakes in northern Wisconsin, USA. Canadian Journalof Fisheries and Aquatic Sciences 1999,56,265-274.
    [70]Del Giorgio, P.A., Cole, J.J., Caraco, N., Peter, R.H., Linking planktonic biomass and metabolism to net gas fluxes in northern temperate lakes. Ecology 1999,80,1422-1431.
    [71]Xing Yangping, Xie ping,et al. Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical Lake in China. Atmospheric Environment,2005,39:5532-5540
    [72]张发兵,胡维平,杨龙元.太湖春季水-气界面碳通量日变化观测研究.生态环境,2004,13(2):186-190.
    [73]Huttunen J T, Hammar T, et al.Potential springtime greenhouse gas emissions from a small southern boreal lake.Boral Environment Research,2004.9:421-427
    [74]王晓蓉.环境化学.南京:南京大学出版社,1993:18-23
    [75]金心,石广玉.生物泵在海洋碳循环中的作用.大气科学,2001,125(5):683-688.
    [76]陈永根,李香华.中国八大湖泊冬季水-气界面C02通量.生态环境2006,15(4):665-669
    [77]Wanninkhof R. Relationship between wind speed and gas exchange over the ocean. Geophy. Res. 1992,97:7373-7382.
    [78]Smith.S.D& E.P. Jones. Evidence forwind-Pumping of air-sea gas exchange based on direct measurements of CO2 fluxes. J. Geo Phys. Res.1985,90:869-875.
    [79]李钟玮,魏云慧,柳淼,陈言顺..干旱季节水库水质pH值增高原因探析.环境科学与管理,2007,32(2):80-82
    [80]James L P. The Role of Nutrient Loading and Eutrophication in Estuarine Ecology. Environmental Health Perspectives.2001,109:699-706
    [81]Cole J.J. Aquatic microbiology for ecosystem scientists:new and recycled paradigms in ecological microbiology. Ecosystems,1999,2:215-225.
    [82]Cole, J.J., Pace, M.L., Carpenter, S.R., et al. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnol. Oceanogr,2000,45:1718-1730.
    [83]王新明,盛国英.广州感潮河段底泥有机质特征.沉积学报.1997,15(2):232-235
    [84]范成新.太湖底泥蓄积量估算及分布特征探讨.上海环境科学.2000,19(2):72-75
    [85]Magenheimer, J.F., Moore, T.R., Chmura, G.L., Daoust, R.J., Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy, New Brunswick. Estuaries,1996,19,139-145.
    [86]Middelburg, J.J., Klaver, G., Nieuwenhuize, J., Wielemaker, A., Hass, W., Vlug, T., van der Nat, J.F.W.A., Organic matter mineralization in intertidal sediments along an estuarine gradient. Mar. Ecol-Prog. Ser.1996,132,157-168.
    [87]Arneth A, Kurbatova J, et al.Comparative ecosystem-atmosphere exchange of energyand mass in a European Russian and a centralSiberian bog Ⅱ. Interseasonal and interannualvariability of CO2 fluxes.Tellus,2002,54B:514-530
    [88]Nouchi, I., Mariko, S., Aoki, K., Mechanism of methane transport from rhizosphere to the atmosphere through rice plants. Plant Physiol.1990,94,59-66.
    [89]Dannenberg, S., Conrad, R., Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry,1999,45,53-71.
    [90]王晓蓉.环境化学.南京:南京大学出版社,1993:18-23
    [91]Hirota M,Senga Y,et al.Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan. Chemosphere,2007,68:597-603
    [92]Moore, T.R., Dalva, M., The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. J. Soil Sci.1993,44,651-664.
    [93]Abril G, Gu6rin F, Riehard S, et al. Carbon Dioxide and Methane Emissions and the Carbon Budget of a 10-year old Tropical Reservoir(Petit Saut French Guiana).Global Biogeoehemieal Cycles.2005,19(4):1-16
    [94]吕迎春,刘丛强,王仕禄等.贵州喀斯特水库红枫湖,百花湖C02分压季节变化研究.环境科学.2007,28(12):2674-2681
    [95]BoyerE. W., Hornberger G. M., Bencala K. E. and McKnight D. M. Effects of asynchronous snowmelt on flushing of dissolved organic carbon:a mixing model approach Hydrol. Process. 2000,14:3291-3308
    [96]Fre'de'ric Gue'rin, Gwenae"l Abril, Sandrine Richard,etc. Methane and carbon dioxide emissions from tropical reservoirs:Significance of downstream rivers Geophysical research letters.2006, 33:L21407
    [97]Teodoru C. R. Prairie Y. T., and del Giorgio P. A. Spatial Heterogeneity of Surface CO2 Fluxes in a Newly Created Eastmain-1 Reservoir in Northern Quebec, Canada. Ecosystems.2011,14:28-46
    [98]Xiaonan Duan, Xiaoke Wang, Yujing Mu. Seasonal and diurnal variations in methane emissions from Wuliangsu Lake in arid regions of China. Atmospheric Environment.2005,39:4479-4487
    [99]胡春华,周文斌,王毛兰,魏志巍.鄱阳湖氮磷营养盐变化特征及潜在性富营养化评价.湖泊科学.2010,22(5):723-728
    [100]林婉莲,刘鑫洲.武汉东湖浮游植物各种成份分析与沉淀物中浮游植物活体碳、氮、磷的测定.水生生物学报,1985,9(4):359-364
    [101]Song Changchun, Yan Baixing, Wang Yuesi. Fluxes of carbon dioxide and methane from swamp and impact factors in Sanjiang Plain, China. Chinese Science Bulletin 2003,48 (24): 2749-2753
    [102]孙立强,田卫,马广庆.新立城水库营养盐动态及富营养化特征分析.中国科学院研究生院学报.2011,28(6):728-733
    [103]St. Louis V.L., Kelly C.A., Duchemin E., et al. Reservoir surfaces as sources of greenhouse gases to the atmosphere:a global estimate. Bioscience,2000,50:766-775.
    [104]Huttunen, J.T., Vaisanen, T.S., Hellsten, S.K., et al. Fluxes of CH4, CO2, and N2O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland. Global Biogeochem Cycles,2002,16(1):3-17.
    [105]Striegl R G, Michmerhuizen C M. Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnol.Oceanogr,1998,43:1519-1529
    [106]Cole, J.J., Caraco, N.F. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol. Oceanogr,1998,43:647-656.
    [107]Cole, J.J., Pace, M.L., Carpenter, S.R., et al. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnol. Oceanogr,2000,45:1718-1730.
    [108]Casper p,Maberly S C,Hall G H,et al.Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry,2000,49:1-19
    [109]汪朝辉,杜清运,赵登忠.水布垭水库CO2排放通量时空特征及其与环境因子的响应研究.水力发电学报.2012,32(2):146-151
    [110]Frederic Guerin, Gwenael Abril, Dominique Serca, et al. Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. Journal of Marine Systems,2007,66:161-172.
    [111]唐启升.碳汇渔业与又好又快发展现代渔业.江西水产科技,2011(2):5-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700