用户名: 密码: 验证码:
高纬度冻土区土质路堑边坡冻融失稳机理及植物护坡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近100年来,全球气候变化进程不断加快,从而引发许多工程地质问题。在黑龙江省,随着高等级公路建设快速发展,公路路堑边坡失稳现象不断出现。寻求与路域生态环境建设相结合的合理的边坡防护方式、方法,完善土质路堑边坡防护理论与防护方法,成为寒区公路建设亟待解决的问题。在我国东北高纬度季节冻土地区,土质路堑边坡浅层水温条件变化剧烈,直接影响边坡稳定。护坡植物根系吸水和蒸腾作用,能够调节坡面浅层土体含水率;同时,根系深入土中,与土壤形成复合体,改变了坡面浅层土体力学参数,进而对边坡稳定系数产生影响。另外,从植物生理特性和地域环境适应性角度,采用多种方法研究,选择抗逆性强、又能有效护坡、美化路与环境的护坡植物,也是本文内容之一
     本文依托黑龙江省科技攻关项目《东北季节冻土地区高等级公路土质路堑边坡植物防护体系研究》(GZ07C401)、国际滑坡研究计划项目《Research on vegetation protection system for highway soil slope in seasonal frozen regions》(IPL-132)、黑龙江省交通厅重点科技项目《高等级公路植物稳定边坡与绿化研究》确定选题,并开展相关研究工作。
     通过对同三高速公路佳木斯至哈尔滨段路堑边坡病害调查,选择确定研究区和试验研究路段;通过现场取样和室内实验,得到边坡土体容重、密度、渗透系数、颗粒组成、界限含水率等基本物理指标;通过室内三轴实验,得出素土和含根土体粘聚力、内摩擦角、变形模量随密度、含水率、冻融次数的变化规律。结果表明:未冻融无根土体和含根土体粘聚力、内摩擦角、变形模量均随土体密度增加而增大;土体含水率小于最佳含水率时,粘聚力随含水率增加而增大,土体含水率大于最佳含水率时,粘聚力随含水率增加而减小;土体内摩擦角随含水率增加而减小;土体变形模量随含水率增加而减小。经历冻融过程的无根土体、含根土体的力学参数变化与未经历冻融无根土体规律相近,但在不同状态下各参数变化幅度不同;通过对胡枝子、紫穗槐、草皮护坡边坡土体含水率沿深度变化数据,结合植物生理学、气象学、土壤物理学理论,得出护坡植物根系在边坡土体中的分布规律及植物根系和冻融共同作用下边坡土体中水分迁移和分布规律。结果表明:采用灌木植物护坡,通过植物根系吸水和叶面蒸腾,可有效降低边坡土体浅层含水率,胡枝子、紫穗槐根系对局坡面以下1OOcm范围内土体含水率有显著影响;通过对胡枝子、紫穗槐和沙棘的根系形态分析,结合素土、紫穗槐、胡枝子根系复合土现场直剪试验,揭示植物根系固土护坡的力学机理。结果表明:在距坡面60cm范围内,选定护坡灌木根系复合土抗剪强度是无根系土抗剪强度2倍左右;通过春融期边坡土体轻型贯入试验,结合边坡土体温度测量数据,得到土体温度场和强度场分布,结合土力学理论和土体力学指标室内三轴试验结果,得到土体抗剪强度与含水率变化关系;运用土壤物理学、传热学理论,结合对研究路段边坡土体温度、含水率变化监测数据分析,得出冻融过程中不同滑坡植物覆盖条件下、不同深度边坡土体含水率随温度变化规律。结果表明:在土体冻结过程中,未冻水分会向冻结区迁移,在冻结区局部分凝成冰。在春融期,冻结土体从坡面和土体冻结层以下两个方向开始融化,坡面浅层土体融化水分不能及时下渗导致春融期坡面浅层土体含水率迅速升高;通过基于有效应力法的春融期季节冻土地区土质路堑边坡稳定安全系数公式推导,进一步分析了土体物理、力学参数和边坡几何参数对边坡稳定性的影响;通过基于强度折减有限元模拟计算,求得不同覆盖条件下监测断面最不利季节边坡稳定安全系数。结果表明:在春融期,采用草皮护坡,监测断面边坡均处于临界失稳状态,采用胡枝子护坡,监测断面边坡处于稳定状态;通过边坡土体饱和不排水环剪试验和残余强度环剪试验,研究边坡滑动过程中土体力学参数变化规律。结果表明:边坡土体表观摩擦角为22.2。,残余强度下表观摩擦角为7.6。;结合研究区滑坡实例分析,验证了分析方法的正确性和分析结果的准确性;基于遥感数据和气象数据,通过对植被指数与气象因子关系的研究,分别建立气温、降水量和日照等气象因子与植被指数的数学关系模型,反演气象因子,结合地形高程数据和植物生长特性,建立紫穗槐、胡枝子和沙棘等植物生长适应性的评价指标体系,并进行空间适应性评价。结果表明:选定护坡植物在黑龙江省具有良好生长适应条件。
For nearly100years, the process of global climate changing continues to accelerate, which cause many engineering geological problems. In Heilongjiang Province, With the rapid development of highway construction, the instability of cutting slope continue to emerge. It is urgent problems to be solved to seek reasonable method of slope protection which could combinate with the ecological environment of the road region, and to give a clear answer on the theory and practice.
     In high-latitude seasonal frozen areas of Northeast China, water temperatures in shallow slope change largely, which could impact on slope stability directly. Root absorbent and transpiration of slope protection plant not only could be able to adjust the moisture of shallow slope but also could improve the mechanical parameters of the soil for the reason of its roots penetrating into the soil and forming root-soil complex. In addition, from the respects of physiology and adaptability in geographical environment, using kinds of methods, selecting protection plants which both has strong resistance, also can protect beautify the slope is also one of content in this article.
     Relying on the research project of Heilongjiang provincial Science and Technology Department (GZ07C401), the Key project of Heilongjiang provincial Transportation Department "Highway Slope Stability and Greening by Vegetation in Cold Regions", and the project of International Program on Landslides" Research on vegetation protection system for highway soil slope in seasonal frozen regions"(IPL-132), this article determined its topics, and began to carry out research work.
     Through the survey of instability cutting slope along the Tongsan Highway from Jiamusi to Harbin, study area and study section was selected. Through on-site sampling and laboratory experiments, the basic physical indicators of the soil, such as density, permeability coefficient, particle composition were obtained. Through triaxial test, for soil and root-soil, the variation of the cohesion, internal friction angle, deformation modulus varing with density, moisture, freezing-thawing cycles was got. The results show that:Both for unfrozen soil and for unfrozen root-soil, their cohesion, internal friction angle, deformation modulus are all increased with the increase of soil density; when soil moisture is smaller than optimum moisture, the cohesion is increased with the increase of soil moisture; when soil moisture is bigger than optimum moisture, the cohesion is decreased with the increase of soil moisture; The internal friction angle and the deformation modulus of the soil is decreased with the increase of soil moisture; After freezing-thawing cycles, both for the soil and root-soil, their mechanics parameters is similar with unfrozen soil, just not have the same changing size. For three kinds of plant:turf, Lespedeza, Amorpha, through the data analysis of the moisture in different depth, using the theory of plant physiology, meteorology, soil physics, both the distribution of root system in cutting slope and the law of moisture migration and distribution under the joint action of plant roots and freeze-thaw was got. The results show that:Through absorbent root and leaf transpiration, shrubby plants (lespedeza, Amorpha)on the slope can effectively reduce the shallow moisture of the slope, especially for the soil boby within the scope of100cm below the surfface. Through shape analysis of root combining with site direct shear tests of root-soil, the mechanical mechanism of plant roots protecting the slope was got. The results show that:shear strength of root-soil within60cm is about2times of shear strength of the soil. Through light penetration testing, combined with temperature measurement data, field distribution of slope body's temperature and shear strength were got, combining with soil mechanics theory and triaxial test results, the relationship between the shear strength and soil moisture was got. Using the the theory of soil physics, heat transfer, combining with the monitoring data of slope body's temperature and moisture, in diferrent plant cover condition and different slope depth, the law of moisture distribution changing with the temperature was got. The results show that:During the soil freezing process, unfrozen water will migrate to a frozen zone, and part of them become into ice. During the spring melt period, frozen soil layer began to melt from two directions:the surrface and deep unfrozen soil, the melt water in shallow slope can not penetrate in time, result in the moisture in the shallow layer is very hight. Through the derivation of slope's safety factor, which is based on the effective stress, the impact of physical, mechanical and geometry parameters on slope stability was analized furtherly. Based on strength Less finite element, the safety factor under different coverage conditions and in the most unfavorable season was got. The results show that:In the melting period of spring, if the turf served as protecting slope plant, two monitoring sections of the slope are all in critical state of instability state, if Lespedeza served as protecting slope plant, they are in stable state Through saturated undrained ring shear test and residual strength ring shear test, the variation of physical parameters in sliding process was studied. The results show that:view friction angle of the slope body is22.2°, view friction angle of the slope body in residual strength is7.6°. Combining with landslide case analysis, correctness of the analysis method and analysis results was verified. Based on remote sensing data and meteorological data, through the study of relationship between vegetation indices and meteorological factors, mathematical model between vegetation index and temperature, precipitation and sunshine was built, then meteorological factors was anti-derivated.Combinning with the terrain elevation data and plant growth characteristics, for Amorpha, Lespedeza and sea buckthorn, evaluation system of plant adaptive growth was established, and conduct space adaptability evaluation. The results show that:in Heilongjiang Province. the selected plants have good growth adaptation.
引文
[1]齐吉琳,马巍.冻土的力学性质及研究现状[J].岩土力学.2010(01):133-143
    [2]齐吉琳,程国栋,Vermeer P A.冻融作用对土工程性质影响的研究现状[J].地球科学进展.2005(08):887-894
    [3]Sill R C, Skapski A S. Method for the Determination of the Surface Tension of Solids, from Their Melting Points in Thin Wedges[J]. The Journal of Chemical Physics.1956,24: 644
    [4]D. Everett. The Thermodynamics of Frost Damage to Porous Solids[J]. Transactions of the Faraday Society.1961,57:1541-1551
    [5]R. Miller. Freezing and Heaving of Saturated and Unsaturated Soils[J]. Highway Research Record.1972 (393):1-11
    [6]J.-M. Konrad, N.R. Morgenstern. A Mechanistic Theory of Ice Lens Formation in Fine-Grained Soils[J]. Canadian Geotechnical Journal.1980,17 (4):473-486
    [7]J.-M. Konrad, N.R. Morgenstern. The Segregation Potential of a Freezing Soil[J]. Canadian Geotechnical Journal.1981,18 (4):482-491
    [8]G. Watson, W. Slusarchuk, R. Rowley. Determination of Some Frozen and Thawed Properties of Permafrost Soils[J]. Canadian Geotechnical Journal.1973,10 (4):592-606
    [9]陈肖柏.祁连山木里地区冻土融化时的下沉与压缩特性[J].中国科学院兰州冰川冻土研究所集刊.北京:科学出版社,1981:97-103
    [10]吴紫汪,张家懿,王雅卿.冻土融化下沉性的初步研究[J].中国科学院兰州冻土研究所集刊.北京:科学出版社,1982:145-150
    [11]朱元林,张家懿.冻土的融化下沉[C]//中国地理学会冰川冻土学术会议论文集.北京:科学出版社,1982:145-150
    [12]张家懿.青藏高原多年冻土区细颗粒土的分类[C]//青藏冻土研究论文集.北京:科学出版社,1983:54-59
    [13]童长江.我国冻土融化压缩特性研究[J].冰川冻土.1989,10(3):327-331
    [14]何平,程国栋,杨成松.冻土融沉系数的评价方法[J].冰川冻土.2003,25(06):608-613
    [15]R. Gibson, G. England, M. Hussey. The Theory of One-Dimensional Consolidation of Saturated Clays[J]. Geotechnique,17 (3):261-273
    [16]N. Morgenstern, J. Nixon. One-Dimensional Consolidation of Thawing Soils[J]. Canadian Geotechnical Journal.1971,8 (4):558-565
    [17]N.R. Morgenstern, L.B. Smith. Thaw-Consolidation Tests on Remoulded Clays[J]. Canadian Geotechnical Journal.1973,10 (1):25-40
    [18]J. Nixon, N. Morgenstern. Thaw-Consolidation Tests on Undisturbed Fine-Grained Permafrost[J]. Canadian Geotechnical Journal.1974,11 (1):202-214
    [19]J.F. Sykes, W.C. Lennox, R.G Charlwood. Finite Element Permafrost Thaw Settlement Model[J]. Journal of the Geotechnical Engineering Division.1974,100 (11):1185-1201
    [20]J.P. Carter, J. Small, J. Booker. A Theory of Finite Elastic Consolidation[J]. International Journal of Solids and Structures.1977,13 (5):467-478
    [21]R.E. Gibson, R.L. Schiffman, K.W. Cargill. The Theory of One-Dimensional Consolidation of Saturated Clays. II. Finite Nonlinear Consolidation of Thick Homogeneous Layers[J]. Canadian Geotechnical Journal.1981,18 (2):280-293
    [22]A. Foriero, B. Ladanyi. Fem Assessment of Large-Strain Thaw Consolidation[J]. Journal of Geotechnical Engineering.1995,121 (2):126-138
    [23]P. Viklander. Permeability and Volume Changes in Till Due to Cyclic Freeze/Thaw[J]. Canadian Geotechnical Journal.1998,35 (3):471-477
    [24]E.J. CHAMBERLAIN. Physical Changes in Clays Due to Frost Action and Their Effect on Engineering Structures [C] Proceedings of the International Symposium on Frost in Geotechnical Engineering. Rotterdam, the Netherlands A. A. Balkema,1989:863-893
    [25]C.E. J,I.I, H.S. E. Effect of Freeze-Thaw Cycles on the Permeability and Macrostructure of Soils [C] Proceedings of the International Symposium on Frozen Soil Impacts on Agricultural, Range and Forest Lands. Spokane, Wash. U. S.:Army Cold Regions Research and Engineering Laboratory,1990:145-155
    [26]T.F. ZIMMIE, C. LAPLANTE. The Effect of Freeze2thaw Cycles on the Permeability of a Fine Grained Soil [C]Proceedings of the 22nd Mid-Atlantic Industrial Waste Conference Phailadelphia, Pa:Drexel University,1990:580-593
    [27]B.C.H. OTHMAN MAJDI A. Effect of Freeze-Thaw on the Hydraulic Conductivity and Morphology of Compacted Clay[J]. Canadian Geotechnical Journal.1993,30 (2):236-246
    [28]V. PETER. Permeability and Volume Changes in Till Due to Cyclic Freeze/Thaw[J]. Canadian Geotechnical Journal of Geotechnical Engineering.1998,35 (3):471-477
    [29]L. S, T. J, R. M. Effects of Frost on the Mechanical Behaviour of Champ Lain Sea Clays[J]. Canadian Geotechnical Journal.1991,28 (5):690-697
    [30]G. J, A.V.C. S. Effects of Freeze-Thaw and Softening on Anatural Clay at Low Stresses[J]. Canadian Geotechnical Journal.1985,22 (1):69-78
    [31]A.B. D, M.J. M. Change in Soil Structure Due to Freeze2thaw and Repeated Loading[J]. Transportation Research Record.1983,918:15-21
    [32]B. B, Y.L.Y. C. Shear Strength of a Soil after Freezing and Thawing[J]. ASCE Journal of the Soil m Echanics and Foundations Division.1964,90 (4):1-26
    [33]G.I. BONDARENKO, A.V. SADOVSKY. Water Content Effect of the Thawing Clay Soils on Shear Strength [C]//Proceedings of the 7th International Symposium on Ground Freezing Rotterdam, Netherlands:A. A. Balkema,1991:123-127
    [34]Y.M. CHUVILIN, O.M. YAZYNIN. Frozen Soilmacro2and Microstructure Formation [C]//Proceedings of the 5 th International Conference on Permafrost Trondheim:Tapir Publishers,1988:320-323
    [35]A.O. B, L. B. Frozen Ground Engineering[M]. Wiley,2003:57-67
    [36]C. SWAN, C. GREENE. Freeze-Thaw Effects on Boston Blue Clay[J]. Journal of Engineering and Applied Science, Soil Improvement for Big Digs.1998,81:161-176
    [37]T. ONO, T. MITACHI. Computer Controlled Tri-Axial Freeze Thaw Shear Apparatus [C]/Proceedings of the 8th International Symposium of Ground Freezing Rotterdam, Netherlands:A. A. Balkema,1997:335-339
    [38]K. AOYAMA, S. OGAWA, M. FUKUDA. Temperature Dependencies of Mechanical Properties of Soils Subjected to Freezing and Thawing [C]//Proceedings of the 4th International Symposium on Ground Freezing Rotterdam,Netherlands:A. A. Balkema Publishers,1985:217-222
    [39]R.S.Tarr. Rapidity of Weathering and Stream Erosion Int He Arctic Latitudes[J]. American Geologist. 1897,19:131-136
    [40]M.A. Othman, C.H. Benson. Effect of Freeze-Thaw on the Hydraulic Conductivity and Morphology of Compacted Clay[J]. Canadian Geotechnical Journal.1993,30 (2):236-246
    [41]W.-H. Kim, D.E. Daniel. Effects of Freezing on Hydraulic Conductivity of Compacted Clay[J]. Journal of Geotechnical Engineering.1992,118 (7):1083-1097
    [42]T. Hromadka, G. Guymon, R. Berg. Some Approaches to Modeling Phase Change in Freezing Solis[J]. Cold Regions Science and Technology.1981,4 (2):137-145
    [43]S. Takagi. The Adsorption Force Theory of Frost Heaving[J]. Cold Regions Science and Technology.1980,3 (1):57-81
    [44]G. Guymon, T. Hromadka, R. Berg. A One Dimensional Frost Heave Model Based Upon Simulation of Simultaneous Heat and Water Flux[J]. Cold Regions Science and Technology.1980,3 (2):253-262
    [45]E.n.,叶米里扬诺娃.滑坡作用的基本规律[M].铁道部科学研究院西北所滑坡室译:重庆出版社,1986:89-101
    [46]朱林楠,吴紫汪,刘永智.青藏高原东部的冻土退化[J].冰川冻土.1995(02):120-124
    [47]郭东信,程国栋.高亚洲冰缘作用类型及其垂直带谱特征[J].冰川冻土.1996(S1):148-156
    [48]周幼吾,郭东信.我国多年冻土的主要特征[J].冰川冻土.1982(01):1-19+95-96
    [49]王绍令,赵秀锋.青藏公路南段岛状冻土区内冻土环境变化[J].冰川冻土.1997(03): 41-49
    [50]马巍,吴紫汪,张长庆.冻土的强度与屈服准则[J].冰川冻土.1993(01):129-133
    [51]冯勇,何建新,刘亮,杨力行.冻融循环作用下细粒土抗剪强度特性试验研究[J].冰川冻土.2008,v.30(06):1013-1017
    [52]葛琪.基于冻融界面强度损伤的季冻区土质边坡稳定性研究[D].吉林大学.2010:45-60
    [53]罗学东,黄成林,肜增湘,吕乔森.冻融循环作用下蒙库铁矿边坡岩体物理力学特性研究[J].岩土力学.2011,v.32;No.198(S1):155-159
    [54]王大雁,马巍,常小晓,孙志忠,冯文杰,张军伟.冻融循环作用对青藏粘土物理力学性质的影响[J].岩石力学与工程学报.2005(23):4313-4319
    [55]叶万军,杨更社,彭建兵,黄强兵,徐延峰.冻融循环导致洛川黄土边坡剥落病害产生机制的试验研究[J].岩石力学与工程学报.2012(01):199-205
    [56]丑亚玲,盛煜,马巍.多年冻土区道路边坡热状况差异对多年冻土融化形态的影响[J].冰川冻土.2007(06):977-985
    [57]赵相卿,熊治文,韩龙武,杨永鹏.多年冻土区典型路堑边坡失稳病害的防治[J].铁道工程学报.2009(01):32-35
    [58]熊治文,廖小平,朱本珍,郑静,徐兵魁.多年冻土地区路堑边坡病害及其整治原则[J].铁道工程学报.2010(07):6-10
    [59]王建军,奚守仲.某高路堑岩石边坡失稳机制及加固措施研究[J].公路.2011(06):24-28
    [60]靳德武,牛富俊,李宁.青藏高原多年冻土区斜坡稳定性研究进展[J].水文地质工程地质.2006(04):98-102
    [61]靳德武.青藏高原多年冻土区斜坡稳定性研究[D].西安:长安大学.2004:46-75
    [62]刘红军,王丕祥.公路土质边坡冻融失稳稳定性分析[J].哈尔滨工业大学学报.2006(05):764-766
    [63]武鹤.寒区公路土质路堑边坡稳定性分析与技术措施研究[D]:哈尔滨工程大学.2008:88-110
    [64]单炜,刘红军,杨林,郭颖,孙玉英.季冻区土质路堑边坡浅层含水率变化研究[J].岩土力学.2008,v.29;No.157(S1):335-340
    [65]解明曙.林木根系固坡土力学机制研究[J].水土保持学报.1990(03):7-14+50
    [66]王可钧,李焯芬.植物固坡的力学简析[J].岩石力学与工程学报.1998(06):687-691
    [67]王文生,杨晓华,谢永利.公路边坡植物的护坡机理[J].长安大学学报(自然科学版).2005(04):26-30
    [68]吉喜斌,康尔泗,陈仁升,赵文智,金博文,张智慧.植物根系吸水模型研究进展[J].西北植物学报.2006(05):1079-1086
    [69]刘峻杉,高琼,朱玉洁,王昆.土壤-根系统水分再分配:土壤-植物-大气连续体中的 一个小通路[J].植物生态学报.2007(05):794-803
    [70]宋维峰.林木根系与均质土间相互物理作用机理研究[D]:北京林业大学.2006:35-60
    [71]邓卫东,周群华,严秋荣.植物根系固坡作用的试验与计算[J].中国公路学报.2007,No.87(05):7-12
    [72]陈济丁,邓超,孔亚平,何子文.青藏公路多年冻土路段边坡植被种植试验研究[J].公路交通科技.2009,26(7):149-158
    [73]刘红军,郭颖,单炜,陶夏新,孙玉英.土质路堑边坡冻融失稳及植被护坡机理研究[J].岩土工程学报.2011,v.33;No.229(08):1197-1203
    [74]朱海丽,毛小青,倪三川,李国荣,张兴玲,胡夏嵩.植被护坡研究进展与展望[J].中国水土保持.2007,No.301(04):26-29+60
    [75]段晓明.植被护坡研究与应用现状[J].中国农学通报.2007,No.153(03):474-477
    [76]李秀萍.植物物种的生境适宜性研究[D]:内蒙古大学.2007:80-110
    [77]朱学文.土质路堑边坡病害治理试验路段[J].黑龙江交通科技.2012(12):34+36
    [78]邓卫东,周群华,严秋荣.植物根系固坡作用的试验与计算[J].中国公路学报.2007(05):7-12
    [79]单炜,郭颖,刘红军,张程程.土体含水率和相对密实度变化与植物根系固坡效果[J].东北林业大学学报.2012,v.40(12):111-113
    [80]皮.杰.路易丝·卡尔伯格.土壤—植物—大气系统热量、物质运移综合模型理论与实践[M].科学出版社,2010:81-130
    [81]刘江,许秀娟.气象学[M].中国农业出版社,2002:88-89
    [82]王全九,邵明安,黄明斌.土壤物理学[M].高等教育出版社2006:162-183
    [83]de Vries D. A. Thermal Properties of Soil [M].Van Wijd W R. Physics of Plant Enviroment. Amsterdam,1963.
    [84]李毅,邵明安.热脉冲法测定土壤热性质的研究进展[J].土壤学报.2005(01):134-139
    [85]Campbell G. S. Soil Physics with Basic [M].Amsterdam 1985
    [86]张志勇.基于驻波率原理的土壤水分测量方法的研究[D]:山西农业大学.2005
    [87]石庆兰,王一鸣.土壤水分测量系统传递函数模型的分析与实验研究[J].纪念中国农业工程学会成立三十周年暨中国农业工程学会2009年学术年会(CSAE 2009)论文集,2009:102-120
    [88]李育超,凌道盛,陈云敏,张文杰.蒙特卡洛法与有限元相结合分析边坡稳定性[J].岩石力学与工程学报.2005(11):1933-1941
    [89]胡明鉴,汪发武,程谦恭.基于高速环剪试验易贡巨型滑坡形成原因试验探索[J].岩土工程学报.2009(10):1602-1606
    [90]胡明鉴,程谦恭,汪发武.易贡远程高速滑坡形成原因试验探索[J].岩石力学与工程 学报.2009(01):138-143
    [91]邢艳秋,吴红波.基于遥感技术对季冻区植被适应性评价的研究[J].第二届中国林业学术大会—S12现代林业技术装备创新发展论文集,2009:85-120
    [92]A.R. Huete, H.Q. Liu, K. Batchily, W. van Leeuwen. A Comparison of Vegetation Indices over a Global Set of Tm Images for Eos-Modis[J]. Remote Sensing of Environment.1997, 59 (3):440-451
    [93]陈拉,黄敬峰,王秀珍.不同传感器的模拟植被指数对水稻叶面积指数的估测精度和敏感性分析[J].遥感学报.2008(01):143-151
    [94]A. Huete, K. Didan, T. Miura, E.P. Rodriguez, X. Gao, L.G. Ferreira. Overview of the Radiometric and Biophysical Performance of the Modis Vegetation Indices[J]. Remote Sensing of Environment.2002,83 (1-2):195-213
    [95]J. He, X. Shao. Relationships between Tree-Ring Width Index and Ndvi of Grassland in Delingha[J]. Chinese Science Bulletin.2006,51 (9):1106-1114
    [96]彭代亮,黄敬峰,王秀珍.基于modis-Evi区域植被季节变化与气象因子的关系[J].应用生态学报.2007(05):985-991
    [97]G Beke, J. McKeague. Influence of Tree Windthrow on the Properties and Classification of Selected Forested Soils from Nova Scotia[J]. Canadian journal of soil science.1984,64 (2):195-207
    [98]B.D. Wardlow, S.L. Egbert, J.H. Kastens. Analysis of Time-Series Modis 250 M Vegetation Index Data for Crop Classification in the Us Central Great Plains [J]. Remote Sensing of Environment.2007,108 (3):290-310
    [99]王宏,李霞,李晓兵,喻锋,余弘婧,杨华.中国东北森林气象因子与NDVI的相关关系[J].北京师范大学学报(自然科学版).2005(04):425-430
    [100]C.O. Justice, J.R.G Townshend, E.F. Vermote, E. Masuoka, R.E. Wolfe, N. Saleous, D.P. Roy, J.T. Morisette. An Overview of Modis Land Data Processing and Product Status[J]. Remote Sensing of Environment.2002,83 (1-2):3-15
    [101]马轩龙,李春娥,陈全功.基于GIS的气象要素空间插值方法研究[J].草业科学.2008,No.184(11):13-19
    [102]李翠平,李仲学,余东明.基于泰森多边形法的空间品位插值[J].辽宁工程技术大学学报.2007,No.133(04):488-491
    [103]邓晓斌.基于ArcGIS两种空间插值方法的比较[J].地理空间信息.2008,6(6):85-87
    [104]程乾生.层次分析法ahp和属性层次模型ahm[J].系统工程理论与实践.1997(11):26-29
    [105]余晓华,江玉林,刘一.应用层次分析法研究公路边坡草种适应性[J].草业科学.2002(06):43-48
    [106]徐青,郭忠印,丁艺.应用层次-主成分分析法评价高等级公路安全性[J].森林工程.2005(01):37-39+48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700