用户名: 密码: 验证码:
结核分枝杆菌Mtb9.9家族蛋白免疫功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结核病是由结核分枝杆菌(Mycobacterium tuberculosis,简称为M.tb)引起的一种慢性传染病。据世界卫生组织(WHO)统计,当前全球约有1/3的人感染了结核杆菌,每年死于结核病的人数达到300万。随着耐药结核的增加和HIV共感染,结核病成了危害人类健康的重要传染病之一。要控制结核病的流行与蔓延的关键在于弄清楚结核的耐药机制、有效地疫苗保护、早期诊断以及规范的多药物联合的化学治疗。目前广泛使用的唯一结核疫苗BCG的保护效果不理想,迫切需要新型结核疫苗的开发,另外改良的诊断试剂对于检测结核分枝杆菌感染是必须的,研究新的血清学诊断方法是对现有诊断方法的一个有力补充。
     定量蛋白质组学(quantitative proteomics)是研究结核耐药机制、找到新的疫苗和诊断候选蛋白的有力工具。我们利用定量蛋白质组学的相对和绝对定量的等量异位标签技术(Isobaric Tag for Relative and Absolute Quantitation,iTRAQ)研究了两株临床分离的广泛耐药结核(extensively drug resistant tuberculosis, XDR-TB)和标准株H37Rv之间的差异蛋白表达。发现Mtb9.9c蛋白在两株XDR-TB中分别上调表达了1.7和21.3倍。Mtb9.9c蛋白是Mtb9.9家族中的一员。这是一组由94个氨基酸组成的相对分子质量为9.9kDa的蛋白家族,H37Rv株的Mtb9.9家族主要由Mtb9.9a (Rvl793)、 Mtb9.9c (Rvll98)、 Mtb9.9d (Rv1037c)和Mtb9.9e (Rv2346c)基因编码,其序列相互间具有高度同源性,本论文以这一家族蛋白为研究对象,探索了Mtb9.9家族蛋白作为亚单位疫苗和诊断抗原的潜力。
     本文成功地在大肠杆菌(Escherichia coli, E.coli中克隆、表达和纯化了Mtb9.9家族蛋白。将重组蛋白和弗氏不完全佐剂(IFA)联合免疫C57BL/6小、鼠,在第三次免疫后的第三周,收集小鼠血清和脾细胞进行Western Blot、细胞免疫和体液免疫检测。结果显示Mtb9.9家族蛋白之间有相似和特异的抗原表位。我们用Elispot发现了免疫小鼠产生IFN-γ的脾细胞数量增多。Elisa检测到细胞因子IFN-γ、 TNF-a的分泌量比对照多,但IL-4几乎没有变化。上述结果说明了Mtb9.9家族蛋白主要诱导Thl型细胞免疫。体液免疫检测了小鼠免疫后血清中IgG、 IgG1、 IgG2a、 IgG2b和IgG2c的抗体水平,发现Mtb9.9家族蛋白能诱导小鼠产生强烈的体液免疫应答,说明这是一组免疫原性抗原。另外IgG2c和IgG2b的产生量都比IgGl多,进一步证实了Mtb9.9家族蛋白诱导以Th1型为主的细胞免疫。
     为了进一步评估Mtb9.9家族蛋白的诊断潜力,我们克隆、表达、纯化了CFP-10蛋白做为血清学诊断的对照蛋白,来检测Mtb9.9家族蛋白针对结核病人血清以及接种BCG的健康对照者(n=61)血清的抗体反应。结核病人血清包括全敏肺结核病人的血清(n=101)、肺外结核病人(n=10)和多耐药病人血清(n=60)。结果显示在诊断耐多药病人血清方面,Mtb9.9a蛋白的敏感性可以达到75%,比对照CFP-10蛋白的敏感性53.3%要高,但是它的特异性为83.6%,略低于对照CFP-10蛋白的88.5%。研究中还发现,重组Mtb9.9a蛋白针对接种BCG的健康对照者和耐多药结核病人的血清学反应具有显著的差异(P<0.0001)。证明了Mtb9.9a蛋白具有用于耐多药结核病人的血清学诊断的潜力。这一结果在文献检索中未见报道。
     综上所述,Mtb9.9家族蛋白主要介导Thl型细胞免疫,具有作为亚单位疫苗的应用潜力。另外Mtb9.9a蛋白可以区别耐多药病人和健康对照,有希望作为耐多药结核病人的血清学诊断的候选抗原。
Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (M.tb). According to the World Health Organization (WHO) statistics, one-third of the world's population was infected with mycobacterium tuberculosis, causing over3million deaths annually. Moreover, with the emergence of multidrug-resistant TB and the spread of HIV, tuberculosis became one of the main infectious diseases which destroyed people's health. Understanding the drug resistant mechanism、 good vaccine development and early diagnosis followed by chemotherapy are the major control strategy. The only available vaccine BCG shows disputable protection efficacy against pulmonary tuberculosis, therefore it is urgently needed to develop more effective vaccines against TB. Furthermore, improved diagnostic reagents are needed for the detection of Mycobacterium tuberculosis infections, and the development of a serodiagnostic test would complement the diagnostic methods presently available.
     Quantitative proteomics is a strong tool to study M.tb drug-resistant mechanism, find new vaccine and diagnostic proteins. We use isobaric tag for relative and absolute quantitation (iTRAQ) to study the differently expressed protein between two extensively drug resistant tuberculosis (XDR-TB) with H37Rv. We found that Mtb9.9c up express1.7and21.3fold in two XDR-TBs, respectively. Mtb9.9c belongs to Mtb9.9protein family. Mtb9.9protein family consisting of five members Mtb9.9A (Rv1793), Mtb9.9B (Rv3619c), Mtb9.9C (Rv1198), Mtb9.9D (Rv1037c) and Mtb9.9E (Rv2346c), shows>90%aa sequence identity.Mtb9.9proteins were highly homologous and were predicted to encode94amino acids with molecular mass of9.9kD. Because of they are highly homologous and antigenic proteins, we study whether they have potential to be subunit vaccine and diagnostic antigen.
     First we cloned, expressed and purified Mtb9.9family proteins in E.coli. And then we immunize mouse with Mtb9.9family proteins and IFA, at the third week after three immunization, we gather mouse serum and spleen cells to do western blot, cellular immunity and humoral immunity tests. The result of western blot showed that Mtb9.9proteins have same and typical antigenic epitope. The Mtb9.9proteins induced an increased Th1type cellular and humoral immune response in mice, characterized by an elevated concentration of IFN-y and TNF-a in antigen stimulated splenocyte culture and a strong lgG2c antibody response.
     In order to evaluate whether Mtb9.9can be diagnostic antigen or not, we cloned, expressed and purified CFP-10protein as control. When tested in a conventional ELISA, the Mtb9.9a protein revealed statistically significant antigenic distinction between healthy BCG-vaccinated controls (n=61) and MDR tuberculosis patients. The panel of patient sera comprised sera from pulmonary tuberculosis patients (n=101) and extra-pulmonary tuberculosis patients (n=10) and MDR patients (n=60). It was shown that serum immunoglobulin G antibodies positive rate of recombinant protein antigen Mtb9.9a was75.0%which was higher than CFP-10in MDR pulmonary tuberculosis patients, the specificity of these proteins were83.6%and88.5%, respectively. This study demonstrates that Mtb9.9a protein can be a useful diagnostic marker in MDR pulmonary tuberculosis.
     In conclusion, Mtb9.9family proteins have the potential to be subunit vaccine because they have the Th1type cellular immunization. Besides Mtb9.9a can distinguish MDR patients and health control, so it also can be use as candidate antigen as serological test.
引文
[1]Kaufmann, S. H. E..Nature Med,2000,6:955-960.
    [2]Kaufmann SH, Robert Koch. The Nobel Prize and the ongoing threat of tuberculosis [J]. N Engl J Med,2005,353 (23):2423-2436.
    [3]彭卫生,王英年,肖成志,李拯民.新编结核病学[M].中国医药科技出版社,2003:7
    [4]Blanchard JS. Molecular mechanisms of drug resistance in Mycobacterium tuberculosis [J]. Annu Rev Biochem,1996,65:215-239.
    [5]Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C. Tuberculosis [J]. Lancet, 2003,362(9387):887-899.
    [6]Davies PD. The world-wide increase in tuberculosis:how demographic changes, HIV infection and increasing numbers in poverty are increasing tuberculosis [J]. Ann Med,2003,35 (4):235-243.
    [7]World Health Organization, WHO report 2006:Global tuberculosis control: surveillance, planning, financing [EB]. www.who.int/tb
    [8]http://www.chinatb.org
    [9]Dye C, Scheele S, Dolin P, et al. Global burden of tuberculosis:estimated incidence, prevalence, and mortality by country [J]. JAMA,1999,282:677-686.
    [10]Espinal MA, Laszlo A, Simonsen L, et al. Global trends in resistance to antituberculosis drugs [J]. N Engl J Med,2001,344(17):1294-1303.
    [11]Dye C, Williams BG, Espinal M A, et al. Erasing the world's slow stain:strategies to beat multi-drug resistant tuberculosis [J]. Science,2002,295(5562):2042-2046.
    [12]梅建,薛桢,沈鑫等.原发性耐药是耐药结核病产生的重要原因[J].中华结核和呼吸杂志,2006,29(2):75-78.
    [13]Siddiqi S, TakharP, Baldeviano C, et al. Isoniazid induces its own resistance in nonreplicating Mycobacterium tuberculosis [J]. Antimicrob Agents Chemother, 2007,51(6):2100.4.
    [14]Bardou F, Raynaud C, Ramos C, et al. Mechanism of isoniazid uptake in Mycobacterium tuberculosis [J]. Microbiology,1998,144 (Pt 9):2539-2544.
    [15]Stoeckle MY, Guan L, Riegle N, et al. Catalase-peroxidase gene sequence in isoniazid sensitive and resistant strains of Mycobacterium tuberculosis from NewYork city [J]. J Infect Dis,1993,168:1063-1065.
    [16]Altamirano M,Marostenmaki J,Wong A,et al. Mutations in the catalase-peroxidase gene from isoniazid-resistant Mycobacrerium tuberculosis isolates [J]. J Infect Dis,1994,169:1162-1165.
    [17]Brien KL, Dietz HC, Romagnoli M, et al. Evaluation of inhA gene and catalase-peroxidase gene among isoniazid-sensitive and resistant Mycobacterium tuberculosis isolates [J]. Mol Cell Probes,1996,10:126.
    [18]Rouse DA, Devito JA, Li Z, et al. Site-directed mutagenesis of the KatG gene of Mycobacterium tuberculosis:effects on Cata-lase-peroxidase activities and isoniazid resistance [J]. Mol Microbiol,1996,22(3):583-592.
    [19]Morris S, Bai GH, Suffys P, et al. Molecular mechanisms of multiple drug resistance in clinical isolates of Mycobacterium tuberculosis [J]. J Infect Dis, 1995,171(4):954-960.
    [20]Musser JM, Kapur V, Williams DL, et al. Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid resistant and susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing:restricted array of mutations associated with drug resistance [J]. J Infect Dis,1996,173 (1):196-202.
    [21]Wilson T M, Collins DM. ahpC, a gene involved in isoniazid resistance of the Mycobacterium tuberculosis complex [J]. Mol Microbiol,1996,19(5):1025-1034.
    [22]Chen P,Bishai WR. Novel selection for Isoniazid (INH) resistance genes supports a role for NAD+bidding proteins in mycobacterial INH resistance [J]. Infect Immun,1998,66 (11):5099-5106.
    [23]Minsel L, Weisbrod T R, Marcinkeviciene JA, et al. NADH dehydrogenase defects confer isoniazid resistance and conditional lethality in Mycobacterium tuberculosis[J]. J Bacteriol,1998,180(9):2459-2467.
    [24]Lee AS, Teo AS, Wong SY. Novel mutations in ndh in isoniazid resistant Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother [J].2001, 45(7):2157-2159.
    [25]Mdluli K, Slayden RA, Zhu Y, et al. Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid [J].Science,1998,280(5369) 1607-1610.
    [26]Zahrt T C, Song J, Siple J, et al. Mycobacterial FurA is a negative regulator of catalase peroxidase gene katG [J]. Mol Microbiol,2001,39(5):1174-1185.
    [27]Ramasw amy SV, Reich R, Dou S J, et al. Single nucleotide poly-morphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis [J]. Antimicrob Agents Chemother,2003,47(4):1241-1250.
    [28]Alland D, Stryn AJ, Weisbrod T, et al. Characterization of the Mycobacterium tuberculosis in iBAC promoter,a promoter that responds to cell wall biosynthesis inhibition[J]. J Bacteriol,2000,182 (7):1802-1811.
    [29]Colangeli R, Helb D, Sridharan S, et al. The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol [J]. Mol Microbiol,2005,55 (6):1829-1840.
    [30]陈亮,宝福凯.结核分枝杆菌异烟肼耐药基因与耐药机制研究进展[J].中国人兽共患病学报,2009,25(3):288-291。
    [31]姜英,彭俊平,杨帆等.结核分枝杆菌耐毗嗪酰胺分子机制研究[J].微生物学免疫学进展,2007,35(1):5-9.
    [32]曾涛.结核分枝杆菌耐药分子机制及检测方法的研究进展[J].中国热带医学,2008,8(3):481-484.
    [33]徐龙强,于红.结核分支杆菌耐药的分子机制研究进展[J].检验医学与临床,2009,6(11):887-889.
    [34]Hou L, Osei-Hyiaman D, Zhang Z, et al. Molecular characterization of pncA gene mutations in Mycobacterium tuberculosis clinical isolates from China [J]. Epidemiol Infect,2000,124(2):227-232.
    [35]Park SK, Lee JY, Chang CL, et al. pncA mutations in clinical Mycobacterium tuberculosis isolates from Korea [J]. BMC Infect Dis,2001,1(1):4-6.
    [36]Endoh T, Yagihashi A, Uehara N, et al. Pyrazinamide resistance associated with pncA gene mutation in Mycobacterium tuberculosis in Japan [J]. Epidemiol Infect,2002,128 (2):337-342.
    [37]Bamaga M, Wright DJ, Zhang H. Selection of in vitro mutants of pyrazinamide-resistant Mycobacterium tuberculosis[J]. Int J Antimicrob Agents, 2002,20(4):275-281.
    [38]Onodera Y, Tanaka M and Sato K. Inhibitory activity of quinolones against DNA gyrase of Mycobacterium tuberculosis [J]. J Antimicrob Chemother,2001,47(4): 447-450.
    [39]Buriankova K, Doucet- Populaire F, Dorson O, et al. Molecular basis of intrinsic macrolide resistance in the Mycobacterium tuberculosis complex [J]. Antimicrob Agents Chemother,2004,48 (1):143-150.
    [40]叶松,赛文莉,王健.二线抗结核分枝杆菌药物耐药分子机制[J].现代预防医学,2007,34(10):1870-1871.
    [41]吴雪琼.耐药性结核分枝杆菌的分子生物学研究现状[J].中华结核和呼吸杂志,2006,29(12):837-840.
    [42]Renqatajan J, Sassetti CM, Naroditskaya V, et al. The folate pathwa y is a target for resistance to the drug para-aminosalicylic acid (PSA) in mycobacteria [J]. Mol Microbiol,2004,53(1):275-282.
    [43]Fenq Z, Barletta RG. Roles of Mycobacterium smegmatis D-alanine、 D-alanine ligase and D- alanine racemase in the mechanisms of action of and resistance to the peptidoglycan inhibitor D-cycloserine [J]. Antimicrob Agents Chemother,2003,47 (1):283-291.
    [44]Morris S, Bai GH, Suffys P, et al. Moleculars mechanisms of multipledrug resistance in clinical isolates of Mycobacterium tuberculosis [J]. J Infect Dis, 1995,171(4):954-960.
    [45]吴雪琼,庄玉辉,张俊仙等.耐多药结核病耐药分子机制的研究[J].中华结核和呼吸杂志,1997,20(6):332-335.
    [46]Morten Krogh Y L S W B V P J. Analysis of DIGE data using a linear mixed model allowing for protein-specific dye effects [J].Proteomics.2007,7 (23):4235-4244.
    [47]Hansen K C, Schmitt-Ulms G, Chalkley R J, et al. Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional Chromatography [J]. Mol Cell Proteomics.2003,2(5): 299-314.
    [48]王林纤,戴勇,涂植光.iTRAQ标记技术与差异蛋白质组学的生物标志物研究[J].生命的化学,2010,30(1):135-140.
    [49]伏建峰,史清海,路西春.蛋白质组学技术及其在临床检验诊断学中的应用[J].现代检验医学杂志,2007,22(5):99-101.
    [50]王一鸣、陶晶、郭晓奎、姚玉峰.蛋白质组学在结核分枝杆菌研究中的应用[J].微生物学通报,2009,36(2):245-249.
    [51]Bahk YY, Kim SA, Kim JS, et al. Antigens secreted from Mycobacterium tuberculosis:identification by proteomics approach and test for diagnostic marker [J]. Proteomics,2004,4(11):3299-3307.
    [52]SilNGH K K, DONG Y, PAT IBANDLA S A, et al. Immunogenicity of the Mycobacterium tuberculosis PPE55 (Rv3347c) protein during in cipient and clinical tuberculosis [J]. Infect Immun,2005,8 (8):5004-5014.
    [53]刘丽蓉,乐军,王洪海等.利用双向电泳技术研究异烟肼耐药MTB感染U937引致 的差异表达蛋白[J].中国生物化学与分子生物学报,2006,2(2):142-150.
    [54]PHEIFFER C,BETTS JC,FLYNN H R, et al. Protein expression by a Beijing strain differs from that of another clinical isolate and Mycobacterium tuberculosis H37Rv [J]. Microbiology,2005,151 (Pt4),1139-1150.
    [55]乐军,刘丽蓉,谢建平等.异烟肼耐药和敏感结核分枝杆菌的比较蛋白质组学研究[J].中华微生物学和免疫学杂志,2004,24(4):258-262.
    [56]ungblut PR, Muller EC, Mattow J, et al. Proteomics reveals open reading frames in Mycobacterium tuberculosis H37Rv not predicted by genomics [J]. Infect Immun,2001,69(9):5905-5907.
    [57]Jungblut PR, Schaible UE, Mollenkopf HJ, et al. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains:towards functional genomics of microbial pathogens [J]. Mol Microbiol,1999,33(6): 1103-1117.
    [58]Mattow J, Jungblut PR, Schaible U E, et al. Identification of proteins from Mycobacterium tuberculosis missing in attenuated Mycobacterium bovis BCG strains [J]. Electrophoresis,2001,22 (14):2936-2946.
    [59]He XY, Zhuang YH, Zhang XG, et al. Comparative proteome analysis of culture supernatant proteins of Mycobacterium tuberculosis H37Rv and H37Ra [J]. Microbes Infect,2003,5(10):851-856.
    [60]Covert BA, Spencer JS, Orme IM, et al. The application of proteomics in defining the T cell antigen of Mycobacterium tuberculosis [J]. Proteomics,2001,1 (4): 574-586.
    [61]Yeremeev W, Kondratieva TK, Rubakova E I, et al. Proteins of the Rpf family: immune cell reactivity and vaccination efficacy against tuberculosis in mice [J]. Infect Immun,2003,71(8):4789-4794.
    [62]Mustafa A bu S, Al-Attiyah R. Tuberculosis:Looking beyond BCG vaccines [J]. J Postgrad Med,2003,49 (2):134-140.
    [63]Mattow J, ungblut PR, Schaible UE, et al. Identification of proteins from Mycobacterium tuberculosis missing in attenuated Mycobacterium bovis BCG strains [J]. Electrophoresis,2001,22(14):2936-2946.
    [64]Ben Amor, Y.,E. Shashkina, S. Johnson,P. J. Bifani,N. Kurepina,B.Kreiswirth, S. Bhattacharya,J. Spencer,A. Rendon,A. Catanzaro,and M. L. Gennaro. Immunological characterization of novel secreted antigens of Mycobacterium tuberculosis [J]. Scand. J. Immunol.,2005,61:139-146.
    [65]Dillon,D. C.,M. R. Alderson,C. H. Day,T. Bement, A. Campos-Neto, Y. A.Skeiky,T. Vedvick,R. Badaro,S. G. Reed, and R. Houghton. Molecular and immunological characterization of Mycobacterium tuberculosis CFP-10,an immunodiagnostic antigen missing in Mycobacterium bovis BCG [J]. J. Clin. Microbiol.,2005,38:3285-3290.
    [66]Greenaway,C.,C. Lienhardt, R. Adegbola,P. Brusasca,K. McAdam, and D. Menzies. Humoral response to Mycobacterium tuberculosis antigens in patients with tuberculosis in the Gambia [J]. Int. J. Tuberc. Lung Dis.,2005, 9:1112-1119.
    [67]Hendrickson,R. C.,J. F. Douglass,L D. Reynolds,P. D. McNeill,D. Carter, S. G. Reed,and R. L. Houghton. Mass spectrometric identification of mtb81,a novel serological marker for tuberculosis [J]. J. Clin.Microbiol.2000,38:2354-2361.
    [68]Houghton,R. L.,M. J. Lodes,D. C. Dillon,L. D. Reynolds,C. H. Day, P. D.McNeill,R. C. Hendrickson,Y. A. Skeiky,D. P. Sampaio,R. Badaro, K. P.Lyashchenko,and S. G. Reed. Use of multiepitope polyproteins in serodiagnosis of active tuberculosis [J]. Clin. Diagn. Lab. Immunol.2002, 9:883-891.
    [69]Lodes,M. J.,D. C. Dillon,R. Mohamath,C. H. Day,D. R. Benson,L. D. Reynolds,P. McNeill,D. P. Sampaio,Y. A. Skeiky, R. Badaro, D. H. Persing, S. G. Reed,and R. L. Houghton. Serological expression cloning and immunological evaluation of MTB48, a novel Mycobacterium tuberculosis antigen [J]. J. Clin. Microbiol.2001,39:2485-2493.
    [70]Senthil Kumar,K. S.,K. R. Uma Devi, and R. Alamelu. Isolation and evaluation of diagnostic value of two major secreted proteins of Mycobacterium tuberculosis [J]. Indian J. Chest Dis. Allied Sci.,2002,44:225-232.
    [71]Silva, V. M.,G. Kanaujia, M. L. Gennaro, and D. Menzies. Factors associated with humoral response to ESAT-6,8 kDa and 14 kDa in patients with a spectrum of tuberculosis [J]. Int. J. Tuberc. Lung Dis.,2003,7:478-484.
    [72]Smith,C. V.,C. C. Huang,A. Miczak,D. G. Russell,J. C. Sacchettini, and K. Honer zu Bentrup. Biochemical and structural studies of malate synthase from Mycobacterium tuberculosis [J]. J. Biol. Chem.,2003,278:1735-1743.
    [73]Singh, K. K.,Y. Dong,J. T. Belisle,J. Harder,V. K. Arora,and S. Laal. Antigens of Mycobacterium tuberculosis recognized by antibodies during incipient, subclinical tuberculosis [J]. Clin. Diagn. Lab. Immunol.2005,12:354-358.
    [74]Singh, K. K.,Y. Dong,L. Hinds,M. A. Keen,J. T. Belisle,S. Zolla-Pazner,J. M. Achkar,A. J. Nadas, V. K. Arora and S. Laal. Combined use of serum and urinary antibody for diagnosis of tuberculosis [J]. J. Infect. Dis.,2003,188: 371-377.
    [75]Wanchu,A.,Y. Dong, S. Sethi, V. P. Myneedu, A. Nadas, Z. Liu, J. Belisle,and S. Laal. Biomarkers for clinical and incipient tuberculosis:performance in a TB-endemic country [J]. PLoS One,2008,3:e2071.
    [76]Samanich, K., J. T. Belisle, and S. Laal. Homogeneity of antibody responses in tuberculosis patients [J]. Infect. Immun.,2001,69:4600-4609.
    [77]Bethunaickan,R., A. R. Baulard,C. Locht,and A. Raja. Antibody response in pulmonary tuberculosis against recombinant 27kDa (MPT51, Rv3803c) protein of Mycobacterium tuberculosis [J]. Scand. J. Infect. Dis.,2007,39:867-874.
    [78]Ramalingam,B.,K. R. Uma Devi,and A. Raja. Isotype-specific anti-38 and 27 kDa (MPT 51) response in pulmonary tuberculosis with human immunodeficiency virus coinfection [J]. Scand. J. Infect. Dis.,2003,35:234-239.
    [79]Singh, K. K.,Y. Dong,J. T. Belisle,J. Harder,V. K. Arora,and S. Laal. Antigens of Mycobacterium tuberculosis recognized by antibodies during incipient, subclinical tuberculosis [J]. Clin. Diagn. Lab. Immunol.,2005,12:354-358.
    [80]Wanchu,A.,Y. Dong,S. Sethi,V. P. Myneedu,A. Nadas, Z. Liu, J. Belisle, and S. Laal. Biomarkers for clinical and incipient tuberculosis:performance in a TB-endemic country [J]. PLoS One,2008,3:e2071.
    [81]Zhang, H.,J. Wang,J. Lei,M. Zhang,Y. Yang,Y. Chen,and H. Wang. PPE protein (Rv3425) from DNA segment RD11 of Mycobacterium tuberculosis:a potential B-cell antigen used for serological diagnosis to distinguish vaccinated controls from tuberculosis patients [J]. Clin. Microbiol. Infect.2007,13:139-145.
    [82]Murthy, M. K., R. R. Parasa, A. Deenadayalan, P. Sharma, and A. Raja. Evaluation of the diagnostic potential of region of deletion-1-encoded antigen culture filtrate protein-10 in pulmonary tuberculosis [J]. Diagn. Microbiol.Infect. Dis.2007,59:295-302.
    [83]Zhang,H.,J. Wang J. Lei,M. Zhang,Y. Yang, Y. Chen, and H. Wang. PPE protein (Rv3425) from DNA segment RD11 of Mycobacterium tuberculosis:a potential B-cell antigen used for serological diagnosis to distinguish vaccinated controls from tuberculosis patients [J]. Clin. Microbiol. Infect.2007,13:139-145.
    [84]Bothamley,G. H.,and R. M. Rudd. Clinical evaluation of a serological assay using a monoclonal antibody (TB72) to the 38 kDa antigen of Mycobacterium tuberculosis [J]. Eur. Respir. J.,1994,7:240-246.
    [85]Chan, S. L., Z. Reggiardo, T. M. Daniel, D. J. Girling, and D. A. Mitchison. Serodiagnosis of tuberculosis using an ELISA with antigen 5 and a hemagglutination assay with glycolipid antigens. Results in patients with newly diagnosed pulmonary tuberculosis ranging in extent of disease from minimal to extensive [J]. Am. Rev. Respir. Dis.,1990,142:385-389.
    [86]Murthy, M. K., R. R. Parasa, A. Deenadayalan, P. Sharma, and A. Raja. Evaluation of the diagnostic potential of region of deletion-1-encoded antigen culture filtrate protein-10 in pulmonary tuberculosis [J]. Diagn. Microbiol.Infect. Dis.2007,59:295-302.
    [87]Ramalingam, B., K. R. Uma Devi, and A. Raja. Isotype-specific anti-38 and 27 kDa (MPT 51) response in pulmonary tuberculosis with human immunodeficiency virus coinfection [J]. Scand. J. Infect. Dis.2003,35:234-239.
    [88]Samanich, K. M., M. A. Keen, V. D. Vissa, J. D. Harder, J. S. Spencer, J. T.Belisle, S. Zolla-Pazner, and S. Laal. Serodiagnostic potential of culture filtrate antigens of Mycobacterium tuberculosis [J]. Clin. Diagn. Lab. Immunol., 2000,7:662-668.
    [89]Senthil Kumar, K. S., K. R. Uma Devi, and R. Alamelu. Isolation and evaluation of diagnostic value of two major secreted proteins of Mycobacterium tuberculosis [J]. Indian J. Chest Dis. Allied Sci.,2002,44:225-232.
    [90]Daniel, T. M., A. A. Sippola, A. Okwera, S. Kabengera, E. Hatanga, T. Aisu,S. Nyole, F. Byekwaso, M. Vjecha, L. E. Ferguson, et al. Reduced sensitivity of tuberculosis serodiagnosis in patients with AIDS in Uganda [J].Tuber. Lung Dis., 1994,75:33-37.
    [91]Raja, A., K. R. U. Devi, B. Ramalingam, and P. J. Brennan. Improved diagnosis of pulmonary tuberculosis by detection of free and immune complex- bound anti-30kDa antibodies [J]. Diagn. Microbiol. Infect. Dis.2004,50:253-259.
    [92]Uma Devi, K. R., B. Ramalingam, and A. Raja. Antibody response to Mycobacterium tuberculosis 30 and 16kDa antigens in pulmonary tuberculosis with human immunodeficiency virus coinfection [J]. Diagn. Microbiol.Infect. Dis. 2003,46:205-209.
    [93]Verbon, A., R. A. Hartskeerl, A. Schuitema, A. H. Kolk, D. B. Young, and R. Lathigra. The 14,000-molecular-weight antigen of Mycobacterium tuberculosis is related to the alpha-crystallin family of low-molecular-weight heat shock proteins [J]. J. Bacteriol.,1992,174:1352-13.
    [94]Sherman, D. R., M. Voskuil, D. Schnappinger, R. Liao, M. I. Harrell, and G. K. Schoolnik. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin [J]. Proc. Natl. Acad. Sci. USA,2001,98: 7534-7539.
    [95]Raja, A., K. R. U. Devi, B. Ramalingam, and P. J. Brennan. Immunoglobulin G, A, and M responses in serum and circulating immune complexes elicited by the 16-kilodalton antigen of Mycobacterium tuberculosis [J]. Clin. Diagn. Lab. Immunol.2002,9:308-312.
    [96]Uma Devi, K. R., B. Ramalingam,and A. Raja. Antibody response to Mycobacterium tuberculosis 30 and 16kDa antigens in pulmonary tuberculosis with human immunodeficiency virus coinfection [J]. Diagn. Microbiol.Infect. Dis., 2003,46:205-209.
    [97]Lee, K. S., V. S. Dubey, P. E. Kolattukudy, C. H. Song, A. R. Shin, S. B.Jung, C. S. Yang, S. Y. Kim, E. K. Jo, J. K. Park, and H. J. Kim. Diacyltrehalose of Mycobacterium tuberculosis inhibits lipopolysaccharideand mycobacteria-induced proinflammatory cytokine production in human monocytic cells [J]. FEMS Microbiol. Lett,2007,267:121-128.
    [98]Julian, E., L. Matas, J. Alcaide, and M. Luquin. Comparison of antibody responses to a potential combination of specific glycolipids and proteins for test sensitivity improvement in tuberculosis serodiagnosis [J]. Clin.Diagn. Lab. Immunol.,2004,11:70-76.
    [99]Julian, E., L. Matas, A. Perez, J. Alcaide, M. A. Laneelle, and M. Luquin. Serodiagnosis of tuberculosis:comparison of immunoglobulin A (IgA) response to sulfolipid I with IgG and IgM responses to 2,3-diacyltrehalose, 2,3,6-triacyltrehalose, and cord factor antigens [J]. J. Clin. Microbiol.,2002,40: 3782-3788.
    [100]Simonney,N.,J. M. Molina,M. Molimard.E. Oksenhendler, and P. H. Lagrange. Circulating immune complexes in human tuberculosis sera:demonstration of specific antibodies against Mycobacterium tuberculosis glycolipid (DAT, PGLTb1, LOS) antigens in isolated circulating immune complexes [J]. Eur. J. Clin. Investig.1997,27:128-134.
    [101]Vera-Cabrera,L,A. Rendon, M. Diaz-Rodriguez, V. Handzel, and A. Laszlo. Dot blot assay for detection of antidiacyltrehalose antibodies in tuberculous patients [J]. Clin. Diagn. Lab. Immunol.,1999,6:686-689.
    [102]Traunmuller,F., I. Haslinger, H. Lagler, G. Wolfgang, M. A. Zeitlinger, and H. A. Abdel Salam. Influence of the washing buffer composition on the sensitivity of an enzyme-linked immunosorbent assay using mycobacterial glycolipids as capture antigens [J]. J. Immunoassay Immunochem.,2005,26:179-188.
    [103]Alderson MR,Bement T,Day CH et al. Expression cloning of an immunodominant family of Mycobacterium tuberculosis antigens using human CD4+T cells [J]. J Exp Med,2000,191:551-60.
    [104]Jens Mattow, Ulrich E. Schaible, Frank Schmidt, Kristine Hagens, Frank Siejak,Gordon Brestrich, Gisela Haeselbarth, Eva-Christina Muller, Peter R. Jungblut, Stefan H. E. Kaufmann, Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen [J]. Electrophoresis,2003,24: 3405-3420.
    [105]Vekemans J,Ota MO,Sillah J et al. Immune responses to mycobacterial antigens in the Gambian population:implications for a vaccine and immunodiagnostic test design [J]. Infect Immun,2004,72:381-8.
    [106]R. AL-ATTIYAH,A. S. MUSTAFA,A. T. ABAL,A. S. M. EL-SHAMY,W. DALEMANS & Y. A. W. SKEIKY. In vitro cellular immune responses to complex and newly defined recombinant antigens of Mycobacterium tuberculosis [J]. Clin Exp Immunol,2004,138:139-144.
    [107]Rhea N. Coler,Davin C. Dillon,Yasir A.W. Skeiky,Maria Kahn,lan M. Orme,Yves Lobet,Steven G. Reed, Mark R. Alderson. Identification of Mycobacterium tuberculosis vaccine candidates using human CD4+T-cells expression cloning [J]. Vaccine,2009,(27):223-233.
    [108]A.S. Mustafa, Y. A. Skeiky, R. Al-Attiyah, M. R. Alderson, R. G. Hewinson, H. M. Vordermeier, Immunogenicity of Mycobacterium tuberculosis antigens in Mycobacterium bovis BCG-vaccinated and M. bovis-infected cattle [J]. Infection and immunity,2006:4566-4572.
    [109]Xiu-Yun He,Yu-Hui Zhuang, Xiao-Gang Zhang, Guo-Li Li. Comparative proteome analysis of culture supernatant proteins of Mycobacterium tuberculosis H37Rv and H37Ra [J]. Microbes and Infection,2003,5:851-856.
    [110]Jones, Gareth J., Hewinson, R. Glyn, Vordermeier, H. Martin, Screening of predicted secreted antigens from Mycobacterium bovis identifies potential novel differential diagnostic reagents [J]. Clinical and vaccine immunology [J]. 2010,17(9):1344-1348.
    [111]Yuqing Li, Jumei Zeng, Jianfang Shi, Mingchao Wang, Muding Rao, Chaolun Xue, Yanli Du,and Zheng-Guo He. A proteome-scale identification of novel antigenic proteins in Mycobacterium tuberculosis toward diagnostic and vaccine development [J]. Journal of Proteome Research,2010,9:4812-4822.
    [112]Mustafa, Abu Salim, Cell mediated immunity assays identify proteins of diagnostic and vaccine potential from genomic regions of difference of Mycobacterium Tuberculosis [J]. Kuwait medical journal,2010,42(2):98-105.
    [113]S. N. M. Hanif, R. Al-Attiyah & A. S. Mustafa. DNA baccine constructs expressing Mycobacterium tuberculosis-specific genes induce immune responses [J]. Scandinavian Journal of Immunology,72:408-415.
    [114]Hanif, S. N. M., Al-Attiyah, R., Mustafa, A. S. Species-specific antigenic Mycobacterium tuberculosis proteins tested by delayed-type hypersensitivity response [J]. International journal of tuberculosis and lung disease [J].2010, 14(4):489-494.
    [115]Anat Zvi, Naomi Ariel, John Fulkerson, Jerald C Sadoff and Avigdor Shafferman. Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses [J]. BMC Medical Genomics,2008,1:18.
    [116]Anjum Mahmood, Shubhra Srivastava, Sarita Tripathi, Mairaj Ahmed Ansari, Mohammad Owais and Ashish Arora. Molecular characterization of secretory proteins Rv3619c and Rv3620c from Mycobacterium tuberculosis H37Rv [J]. the FEBS journal,2011:341-353.
    [117]V. Meikle, A. Alito, A. S. Llera, A. Gioffre', A. Peralta, B. M. Buddle, and A. Cataldi. Identification of novel Mycobacterium bovis antigens by dissection of crude protein fractions [J]. Clinical and vaccine immunology [J].2009: 1352-1359.
    [118]Wilbert Bitter, Edith N.G.Houben, Daria Bottai et al.Systematic genetic nomenclature for type secretion systems [J]. Plos Pathogens,2009,5(10): e1000507.
    [119]Abdallah A M, Verboom T, Hannes F, et al. A specific secretion system mediates PPE41 transport in pathogenic mycobacteria [J]. Mol Microbiol,2006, 62:667-679.
    [1]Alderson MR, Bement T, Day CH et al. Expression cloning of an immunodominant family of Mycobacterium tuberculosis antigens using human CD4+T cells [J]. J Exp Med 2000,191:551-60.
    [2]Wang Q, Yue J, Zhang L, et al. A newly identified 191C/A mutation in the Rv2629 gene was significantly associated with the rifampin resistance in Mycobacterium tuberculosis [J]. J Protome Res,2007,6:4564-4571.
    [3]Alderson MR, Bement T, Day CH et al. Expression cloning of an immunodominant family of Mycobacterium tuberculosis antigens using human CD4+T cells [J]. J Exp Med 2000,191:551-60.
    [4]Jens Mattow, Ulrich E. Schaible, Frank Schmidt, Kristine Hagens, Frank Siejak, Gordon Brestrich,Gisela Haeselbarth, Eva-Christina Muller, Peter R. Jungblut, Stefan H. E. Kaufmann, Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen [J]. Electrophoresis,2003,24:3405-3420.
    [5]Xiu-Yun He, Yu-Hui Zhuang, Xiao-Gang Zhang, Guo-Li Li. Comparative proteome analysis of culture supernatant proteins of Mycobacterium tuberculosis H37Rv and H37Ra [J]. Microbes and Infection,2003,5,851-856.
    [6]Jones, Gareth J., Hewinson, R. Glyn, Vordermeier, H. Martin. Screening of predicted secreted antigens from Mycobacterium bovis identifies potential novel differential diagnostic reagents [J]. Clinical and vaccine immunology [J].2010, 17(9):1344-1348.
    [7]Yuqing Li, Jumei Zeng, Jianfang Shi, Mingchao Wang, Muding Rao, Chaolun Xue, Yanli Du,and Zheng-Guo He. A proteome-scale identification of novel antigenic proteins in Mycobacterium tuberculosis toward diagnostic and vaccine development [J]. Journal of Proteome Research.2010,9:4812-4822.
    [8]Mustafa, Abu Salim. Cell mediated immunity assays identify proteins of diagnostic and vaccine potential from genomic regions of difference of Mycobacterium Tuberculosis [J]. Kuwait medical journal.2010,42(2):98-105.
    [9]S. N. M. Hanif, R. Al-Attiyah & A. S. Mustafa. DNA vaccine constructs expressing Mycobacterium tuberculosis-specific genes induce immune responses [J]. Scandinavian Journal of Immunology,72:408-415.
    [10]Hanif,S. N. M., Al-Attiyah, R.,Mustafa, A. S.. Species-specific antigenic Mycobacterium tuberculosis proteins tested by delayed-type hypersensitivity response [J]. International Journal of tuberuculosis and lung disease [J].2010, 14(4):489-494.
    [11]Anat Zvi, Naomi Ariel, John Fulkerson, Jerald C Sadoff and Avigdor Shafferman. Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses [J]. BMC Medical Genomics,2008:1:18.
    [12]Anjum Mahmood, Shubhra Srivastava, Sarita Tripathi, Mai raj Ahmed Ansari, Mohammad Owais and Ashish Arora. Molecular characterization of secretory proteins Rv3619c and Rv3620c from Mycobacterium tuberculosis H37Rv [J]. the FEBS journal,2011:341-353.
    [1]Cooper,A. M.et al. Disseminated tuberculosis in interferon-gamma gene-disrupted mice [J]. Journal of experimental medicine,1993,178(6):2242-2247.
    [2]Flynn,J.L et al. An essential role for interferon-gamma in resistance to Mycobacterium tuberculosis infection [J]. Journal of experimental medicine 1993,178(6):2249-2254.
    [3]Martin, R. M., and A. M. Lew. Is IgG2a a good Th1 marker in mice [J]? Immunol. Today,1998,19:49.
    [4]P. Onyebujoh,G.A.W. Rook. Tuberculosis [J]. Nat. Rev. Micro.,2 (2004):930-932.
    [5]I.M. Orme. Current progress in tuberculosis vaccine development [J]. Vaccine, 2005,(23):2105-2108.
    [6]L.M. Okkels,T.M. Doherty,P. Andersen. Selecting the components for a safe and efficient tuberculosis subunit vaccine-recent progress and post-genomic insights [J]. Curr. Pharm. Biotechnol.,2003,(4):69-83.
    [7]P.K. Sinha,l. Verma,G.K. Khuller. Immunobiological properties of a 30 kDa secretory protein of Mycobacterium tuberculosis H37Ra [J]. Vaccine,1997, (15): 689-699.
    [8]E. Lozes,K. Huygen,J. Content et al. Immunogenicity and efficacy of a tuberculosis DNA vaccine encoding the components of the secreted antigen 85 complex [J]. Vaccine,1997,(15):830-833.
    [9]R.N. Coler,A. Campos-Neto,P. Ovendale. Vaccination with the T cell antigen Mtb 8.4 protects against challenge with Mycobacterium tuberculosis [J]. J. Immunol.,2001,(166):6227-6235.
    [10]S.H.E. Kaufmann. How can immunology contribute to the control of tuberculosis? [J]. Nat Rev Immunol,2001,1:20-30.
    [11]S.H.E. Kaufmann. Envisioning future strategies for vaccination against tuberculosis [J]. Nat Rev Immunol,2006,6:699-704.
    [1]Harboe M. Antigens of PPD.old tuberculin,and autoclaved Mycobacterium bovis BCG studied by crossed immune electrophoresis [J]. Am Rev Respir Dis,1981, 124:80.
    [2]Chan,E. D.,L. Heifets, and M. D. Iseman. Immunologic diagnosis of tuberculosis: a review [J]. Tuber. Lung Dis.80:131-140.
    [3]Gupta,S.,R. Bhatia, and K. K. Datta. Serodiagnosis of tuberculosis [J]. J. Commun. Dis.2000,27:208-214.
    [4]Brusasca, P. N., R. Colangeli, K. P. Lyashchenko, X. Zhao, M. Vogelstein, J. S. Spencer,D. N. McMurray,and M. L. Gennaro. Immunological characterization of antigens encoded by the RD1 region of the Mycobacterium tuberculosis genome [J]. Scand. J. Immunol.2001,54:448-452.
    [5]Chiang,I. H.,J. Suo,K. J. Bai,T. P. Lin,K. T. Luh, C. J. Yu, and P. C. Yang. Serodiagnosis of tuberculosis. A study comparing three specific mycobacterial antigens [J]. Am. J. Respir. Crit. Care Med.,1997,156:906-911.
    [6]Gupta,S.,S. Kumari,J. N. Banwalikar, and S. K. Gupta. Diagnostic utility of the estimation of mycobacterial antigen A60 specific immunoglobulins IgM, IgA and IgG in the sera of cases of adult human tuberculosis [J]. Tuber. Lung Dis.,1995, 76:418-424.
    [7]Moran,A. J.,J. D. Treit,J. L. Whitney, B. Abomoelak, R. Houghton, Y. A. Skeiky, D. P. Sampaio, R. Badaro, and F. E. Nano. Assessment of the serodiagnostic potential of nine novel proteins from Mycobacterium tuberculosis [J]. FEMS Microbiol Lett.,2001,198:31-36.
    [8]Raja,A.,U. D. Ranganathan,R. Bethunaickan, and V. Dharmalingam. Serologic response to a secreted and a cytosolic antigen of Mycobacterium tuberculosis in childhood tuberculosis [J]. Pediatr. Infect. Dis. J.,2001,20:1161-1164.
    [9]V. K. Chaudhary,Abhishek Kulshreshta, Ghata Gupta, Nitin Verma, Sampati Kumari, S.K. Sharma, Amita Gupta,Anil K. Tyagi. Expression and purification of recombinant 38-kDa and Mtb81 antigens of Mycobacterium tuberculosis for application in serodiagnosis [J]. Protein Expr. Purif.,2005,40:169-176.
    [10]Abhishek Kulshrestha,Amita Gupta, Nitin Verma S.K. Sharma,Anil K. Tyagi, Vijay K. Chaudhary. Expression and purification of recombinant antigens of Mycobacterium tuberculosis for application in serodiagnosis [J]. Protein Expr. Purif.,2005,44:75-85.
    [11]Karin Weldingh,Ida Rosenkrands,Limei Meng Okkels,T. Mark Doherty,and Peter Andersen. Assessing the serodiagnostic potential of 35 Mycobacterium tuberculosis proteins and identification of four novel serological antigens [J]. J. Clin. Microbiol.,2005,43:57-65.
    [12]Andersen,P.,A. B. Andersen, A. L. Sorensen, and S. Nagai. Recall of long-lived immunity to Mycobacterium tuberculosis infection in mice [J]. J. Immunol., 1995,154:3359-3372.
    [13]Berthet,F. X.,P. B. Rasmussen.I. Rosenkrands, P. Andersen, and B.Gicquel. A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10) [J]. Microbiology,1998, 144:3195-3203.
    [14]Skjot, R. L., T. Oettinger, I. Rosenkrands, P. Ravn, I. Brock, S. Jacobsen, and P. Andersen. Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens [J]. Infect. Immun.,2000,68:214-220.
    [15]Sorensen,A. L.,S. Nagai, G. Houen, P. Andersen, and A. B. Andersen. Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis [J]. Infect. Immun.,1995,63: 1710-1717.
    [16]Lyashchenko, K., R. Colangeli, M. Houde, H. Al-Jahdali, D. Menzies, and M. L. Gennaro. Heterogeneous antibody responses in tuberculosis [J]. Infect. Immun., 1998,66:3936-3940.
    [17]Silva,V. M.,G. Kanaujia, M. L. Gennaro, and D. Menzies. Factors associated with humoral response to ESAT-6,38 kDa and 14 kDa in patients with a spectrum of tuberculosis [J]. Int. J. Tuberc. Lung Dis.,2003,7:478-484.
    [18]R.L. Houghton, M.J. Lodes, D.C. Dillon, L.D. Reynolds, C.H. Day, P.D. McNeill, R.C. Hendrickson, Y.A. Skeiky, D.P. Sampaio, R. Badaro, K.P. Lyashchenko, S.G. Reed. Use of multiepitope polyproteins in serodiagnosis of active tuberculosis [J]. Clin. Diagn. Lab Immunol.,2002,9:883-891.
    [19]Young Yil Bahk, Suk Am Kim, Ji-Soo Kim, Hyung-Jin Euh, Gil-Han Bai, Sang-Nae Cho and Yu Sam Kim. Antigens secreted from Mycobacterium tuberculosis: identification by proteomics approach and test for diagnostic marker [J]. Proteomics,2004,4:3299-3307.
    [20]Dillon,D. C.,M. R. Alderson,C. H. Day,T. Bement,A. Campos-Neto, Y. A. Skeiky, T. Vedvick, R. Badaro, S. G. Reed, and R. Houghton. Molecular and immunological characterization of Mycobacterium tuberculosis CFP-10, an immunodiagnostic antigen missing in Mycobacterium bovis BCG [J]. J. Clin. Microbiol,2000,38:3285-3290.
    [21]Alderson MR,Bement T,Day CH et al. Expression cloning of an immunodominant family of Mycobacterium tuberculosis antigens using human CD4+ T cells [J]. J Exp Med,2000,191:551-60.
    [22]Jens Mattow,Ulrich E. Schaible,Frank Schmidt, Kristine Hagens, Frank Siejak,Gordon Brestrich, Gisela Haeselbarth,Eva-Christina Muller, Peter R. Jungblut, Stefan H. E. Kaufmann, Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen [J]. Electrophoresis,2003,24: 3405-3420.
    [23]Xiu-Yun He,Yu-Hui Zhuang,Xiao-Gang Zhang,Guo-Li Li. Comparative proteome analysis of culture supernatant proteins of Mycobacterium tuberculosis H37Rv and H37Ra [J]. Microbes and Infection,2003,5:851-856.
    [24]Jones, Gareth J., Hewinson, R. Glyn, Vordermeier, H. Martin, Screening of predicted secreted antigens from Mycobacterium bovis identifies potential novel differential diagnostic reagents [J]. Clinical and vaccine immunology [J].2010, 17(9):1344-1348.
    [25]Yuqing Li, Jumei Zeng, Jianfang Shi, Mingchao Wang, Muding Rao, Chaolun Xue, Yanli Du,and Zheng-Guo He. A proteome-scale identification of novel antigenic proteins in Mycobacterium tuberculosis toward diagnostic and vaccine development [J]. Journal of Proteome Research,2010,9:4812-4822.
    [26]Mustafa, Abu Salim, Cell mediated immunity assays identify proteins of diagnostic and vaccine potential from genomic regions of difference of Mycobacterium Tuberculosis [J]. Kuwait medical journal,2010,42(2):98-105.
    [27]S. N. M. Hanif, R. Al-Attiyah & A. S. Mustafa. DNA baccine constructs expressing Mycobacterium tuberculosis-specific genes induce immune responses [J]. Scandinavian Journal of Immunology,72:408-415.
    [28]Hanif, S. N. M., Al-Attiyah, R., Mustafa, A. S. Species-specific antigenic Mycobacterium tuberculosis proteins tested by delayed-type hypersensitivity response [J]. International journal of tuberculosis and lung disease [J].2010, 14(4):489-494.
    [29]Anat Zvi,Naomi Ariel.John Fulkerson, Jerald C Sadoff and Avigdor Shafferman. Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses [J]. BMC Medical Genomics,2008,1:18.
    [30]Anjum Mahmood,Shubhra Srivastava, Sarita Tripathi, Mairaj Ahmed Ansari, Mohammad Owais and Ashish Arora. Molecular characterization of secretory proteins Rv3619c and Rv3620c from Mycobacterium tuberculosis H37Rv [J]. the FEBS journal,2011:341-353.
    [31]Munk ME,Arend SM,Brock I,Ottenhoff THM, Andersen P.Use of ESAT-6 and CFP-10 antigens for diagnosis of extrapulmonary tuberculosis [J]. J Infect Dis, 2001,183:175-6.
    [32]Walsh A,McNerney R. Guidelines for establishing trials of new tests to diagnose tuberculosis in endemic countries [J]. Int J Tuberc Lung Dis,2004,8:609-613.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700