用户名: 密码: 验证码:
黄海全新世浮游植物生产力和群落结构变化规律及控制机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄海是西北太平洋非常重要的陆架边缘海,地处亚洲季风影响的区域,又受到黄海暖流及黑潮的作用,其生态环境具有明显的区域性特征。为揭示黄海全新世期间生态环境演变规律的控制机制,需要有长期的黄海生态环境演变资料,因此高分辨率的黄海全新世古环境记录非常重要。本论文利用南黄海中部泥质区同一纬度断面的三个沉积物岩心(YS01,ZY1,ZY2)的生物标志物指标,基于海源生物标志物含量可以反映浮游植物生产力,生物标志物比值可以反映浮游植物群落结构的前提,重建了南黄海全新世的浮游植物生产力和群落结构以及海水表层温度(SST),对黄海全新世生态环境的演变规律及控制机制进行探讨。
     早全新世阶段(10.5-7ka),南黄海的生态环境主要受海平面变化的控制。在7ka之前的全新世低海平面阶段,生物标志物指标重建的浮游植物生产力以及颗石藻对浮游植物群落结构的贡献都很低。多个生物标志物指标都记录了9.6ka MWP-1C融水脉冲事件:在MWP-1C之前,海洋初级生产力较低,陆源有机质的相对贡献很高;在MWP-1C之后,海洋初级生产力升高,陆源有机质的相对贡献快速降低,但沉积有机质中陆源有机质仍占主导。早全新世低海平面阶段,研究站位更容易受到陆地径流量的影响。在夏季季风影响下,降雨引起的陆地径流使黄海处于低盐河口环境,不利于颗石藻生长。相比中晚全新世,早全新世时期颗石藻对浮游植物群落的贡献相对较低。
     中晚全新世阶段(7-0ka),海平面趋于稳定,黄海暖流入侵黄海,黄海环流体系形成。黄海暖流的入侵对南黄海的生态环境产生很大影响,浮游植物生产力和群落结构对黄海暖流的强度以及路径的变化有直接响应,受控于黄海暖流的变化。总体上讲,浮游植物生产力水平在中晚全新世黄海环流体系形成后整体升高,陆源有机质对沉积有机质的贡献较早全新世降低。岩心ZY1及ZY2生物标志物含量结果显示,两岩心的总浮游植物生产力水平的变化趋势相似。从6ka至0ka,两岩心的总生产力都呈上升趋势,并且在3ka都有明显的转变,东亚冬季风是该阶段南黄海浮游植物生产力的控制因素。黄海环流体系形成后,自6ka以来增强的东亚冬季季风驱动会使黄海环流体系增强,且可以通过风尘输入为南黄海带来更多的营养盐,都有利于浮游植物初级生产力的提高。而位于最西侧更靠近黄海沿岸流的YS01岩心记录的生产力从6ka以来没有明显上升趋势,且此岩心附近海域浮游植物生产力平均水平高于另外两个岩心,表明该处浮游植物生产力除了受东亚冬季季风的控制,可能还受黄海陆架锋锋面上升流的影响。由于对高盐度环境的需求,颗石藻生产力变化同时受到黄海暖流强度及夏季季风降水引起的径流量强弱的影响。在黄海暖流影响的区域,黄海暖流影响增强,利于颗石藻生长,使得颗石藻对浮游植物群落结构的相对贡献增大。南黄海浮游植物生产力和群落结构在晚全新世(3ka)有明显改变,这可能与ENSO活动强度增大、频次增多的影响相关,但其作用机制尚未清楚,可能与大气及海洋环流的变化有关。
     岩心ZY1及ZY2的长链烯酮含量及生物标志物比值(A/B)在中晚全新世的变化有一定的差异,两岩心指标的差值与黑潮强度指标的变化趋势比较一致,反映了黄海暖流主流轴中晚全新世的空间摆动。在黑潮增强阶段(6-4.2ka和1.7-0ka),黄海暖流主流轴向东摆动,对岩心ZY1影响较大,表现为颗石藻生产力及对其浮游植物群落结构的相对贡献更高。相反,在黑潮减弱阶段(4.2-1.7ka),黄海暖流主流轴向西摆动,对岩心ZY2影响更大,引起较高的颗石藻生产力及其对浮游植物群落结构相对较高的贡献。
     岩心YS01的SST结果记录了南黄海全新世的气候演化的经历:早全新世阶段(9.6-7ka),主要受北半球太阳辐射的变化控制,呈大幅波动增温过程;中全新世阶段(7-2.8ka),从6.8ka黄海暖流入侵黄海维持高温到6ka后,SST整体降低,呈现低温震荡;晚全新世阶段(2.8-0ka),SST整体升高且呈小振幅波动。在黄海暖流入侵黄海后的中晚全新世,黄海暖流影响区域SST的变化受黄海暖流控制,并且对黑潮的变化有很好响应。
     岩心YS01的SST记录反映出南黄海全新世存在几次明显的降温事件:0.3-0.5ka,1.2-1.6ka,2.7-3.1ka,4.2-4.5ka,5.5-5.9ka,6.9-7.2ka,8.1-8.5ka和9.2-9.5ka,并且SST记录中存在~532年变化周期,生物标志物比值A/B记录存在~1560年的变化周期,这与北大西洋、黑潮和陆地等全球环境指标记录的气候突变事件及周期循环有较好的一致性。说明南黄海在黄海暖流控制下,通过大气及海洋环流的变化对全球气候变化事件也有较好的响应。该岩心的SST记录表明南黄海的古环境演化在区域性海洋环境尤其是黄海暖流控制下对全球性气候变化的响应。
The Yellow Sea (YS) is an important marginal sea in the northwestern Pacific andits environment and ecology have changed significantly during the Holocene. Thechanges were driven by the interactions of the Yellow Sea Warm Current (YSWC),the East Asian Monsoon (EAM) and the Kuroshio Current (KC). In order to study theHolocene environmental and ecosystem variations in the YS, high-resolution recordswhich could provide materials for paleoclimatic and palaeoceanographic research arenecessary. This thesis carries out the multi-biomarkers in three sediment cores (YS01,ZY1, ZY2) drilled from the same latitude section in the South Yellow Sea (SYS)central mud area to reconstruct the past sea surface temperature (SST), phytoplanktonproductivity and community structure changes. The biomarker method is based on theassumptions that sedimentary biomarker contents reflect phytoplankton productivityand biomarker ratios reflect community structure.
     During the early Holocene (10.5-7ka), the phytoplankton primary productivityand community structure changes in the SYS are mainly controlled by the sea-levelrising and display lower paleoproductivity and haptophyte contribution. The rapidsea-level rise event MWP-1C occurred in9.6ka was recorded in core YS01withincreased primary productivity and decreased terrestrial organic matter contribution.Reconstructed phytoplankton community structure variations may also be affected bythe East Asian Summer Monsoon (EASM) which could lead to the precipitationchanges. More runoff transported to the YS induced by stronger rainfall precipitationwould decrease the salinity, which would result in less haptophyte contribution. TheYS was in a low salinity estuarine environment stage during the early Holocene andhaptophytes contribute less compared with the Mid-late Holocene.
     During the Mid-late Holocene (7-0ka), after the intrusion of the YSWC at about6.8ka, the SYS environment has been under the influence of the YSWC, andproductivity-community structure has been affected by the YSWC strength-pathwayvariations. Phytoplankton productivity is enhanced and contributes more comparedwith terrestrial organic matters after the formation of the YS circulation system. Thecontent values of the marine biomarkers in the core ZY1and ZY2are similar, andthey also reveal similar temporal trends. From6ka to3ka, the biomarker contents inthe two cores were relatively low with small oscillations, followed by a distinctincrease at about3ka which indicated productivity increased with stronger East AsianWinter Monsoon (EAWM). The circulation system in the YS are strengthened byincreased EAWM. In addition, a stronger EAWM could increase nutrient levels ineuphotic layer and increase dust input, all enhancing productivity. For core YS01which locates to the west of the other two cores, the marine biomarker contents ishigher and lack of an increasing trend. We presume that the productivity in thislocation could also be affected by the YS continental shelf front upwelling besides theEAWM. In areas influenced by the YSWC, an increase in haptophyte contributionwould be caused by stronger YSWC influence with the EASM precipitationmodulating. The abrupt increase of productivity values and haptophyte contributionduring the late Holocene (3ka) may be related to the occurrence of stronger and morefrequent ENSO, reflecting the onset and enhanced magnitude of modern ENSOsystem.
     Some differences of the biomarker records between core ZY1and ZY2suggestspatial variations in responses to YSWC and KC forcing. When the KC wasintensified during the periods6-4.2ka and1.7-0ka, the YSWC extended eastward,exerting more influence on core ZY1. On the other hand, when the KC weakenedduring4.2-1.7ka, the YSWC extended westward, exerting more influence on the coreZY2.
     The SST results in core YS01show that three periods of the regional climatechanges can be identified during the Holocene. During the early Holocene (9.6-7ka),it shifted from cold to warm with large amplitude under the control of Northern Hemisphere solar irradiance; the middle Holocene (7-2.8ka), the higher SST lasteduntil6ka and then decreased with oscillation; the late Holocene (2.8-0ka), theclimate was replaced by a warm stage with small fluctuations. The SST changes arecontrolled by the YSWC and in good response to the KC variations.
     There are also eight cold events recorded in core YS01, which occurred at0.3-0.5ka,1.2-1.6ka,2.7-3.1ka,4.2-4.5ka,5.5-5.9ka,6.9-7.2ka,8.1-8.5ka and9.2-9.5kathrough the last9.6ka. The SST displays periodicity of~532yr during the last9.6kaand biomarker proxy A/B ratio displays periodicity of~1560yr after the YSWCintrusion. The cold events and the millennial scale climate cycle appear to correlatewell with records in the North Atlantic, the KC and other different regions of theworld, suggesting global climatic tele-connections. The SST records in core YS01indicate that the YS climate is affected by global and regional climate change.
引文
[1] Hedges J I and Keil R G. Sedimentary organic matter preservation: an assessment andspeculative synthesis. Marine Chemistry,1995,49(2-3):81-115.
    [2] Muller-Karger F E, Varela R, Thunell R, et al. The importance of continental margins inthe global carbon cycle. Geophysical Research Letters,2005,32(1): L01602.
    [3] Son S, Campbell J, Dowell M, et al. Primary production in the Yellow Sea determined byocean color remote sensing. Marine Ecology Progress Series,2005,303:91-103.
    [4] Chen C-T A and Borges A V. Reconciling opposing views on carbon cycling in the coastalocean: Continental shelves as sinks and near-shore ecosystems as sources of atmosphericCO2. Deep Sea Research Part II: Topical Studies in Oceanography,2009,56(8):578-590.
    [5] Paerl H W. Assessing and managing nutrient-enhanced eutrophication in estuarine andcoastal waters: Interactive effects of human and climatic perturbations. EcologicalEngineering,2006,26(1):40-54.
    [6] Crowley T J. Causes of Climate Change Over the Past1000Years. Science,2000,289(5477):270-277.
    [7] Osborn T J and Briffa K R. The Spatial Extent of20th-Century Warmth in the Context ofthe Past1200Years. Science,2006,311(5762):841-844.
    [8] Mann M E, Zhang Z, Rutherford S, et al. Global Signatures and Dynamical Origins of theLittle Ice Age and Medieval Climate Anomaly. Science,2009,326(5957):1256-1260.
    [9] Kutzbach J E and Street-Perrott F A. Milankovitch forcing of fluctuations in the level oftropical lakes from18to0kyr BP. Nature,1985,317(6033):130-134.
    [10]黄春长.环境变迁.科学出版社,1998.
    [11]施雅风,孔昭宸,王苏民,等.中国全新世大暖期的气候波动与重要事件.中国科学:B辑,1992,12(1):1300-1308.
    [12]王绍武,龚道溢.全新世几个特征时期的中国气温.自然科学进展,2000,10(4):325-332.
    [13] Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in NorthAtlantic Holocene and glacial climates. Science,1997,278(5341):1257.
    [14] Mayewski P, Rohling E, Curt Stager J, et al. Holocene climate variability. QuaternaryResearch,2004,62(3):243-255.
    [15]汪品先.全球季风的地质演变.科学通报,2009,(5):535-556.
    [16] Kutzbach J E. Monsoon Climate of the Early Holocene: Climate Experiment with theEarth's Orbital Parameters for9000Years Ago. Science,1981,214(4516):59-61.
    [17] Hu C, Henderson G M, Huang J, et al. Quantification of Holocene Asian monsoon rainfallfrom spatially separated cave records. Earth and Planetary Science Letters,2008,266(3-4):221-232.
    [18] Wang Y, Cheng H, Edwards R L, et al. The Holocene Asian Monsoon: Links to SolarChanges and North Atlantic Climate. Science,2005,308(5723):854-857.
    [19] Wang Y, Cheng H, Edwards R L, et al. Millennial-and orbital-scale changes in the EastAsian monsoon over the past224,000[thinsp]years. Nature,2008,451(7182):1090-1093.
    [20] Xiao J L, Wu J T, Si B, et al. Holocene climate changes in the monsoon/arid transitionreflected by carbon concentration in Daihai Lake of Inner Mongolia. The Holocene,2006,16(4):551.
    [21] Peng Y, Xiao J, Nakamura T, et al. Holocene East Asian monsoonal precipitation patternrevealed by grain-size distribution of core sediments of Daihai Lake in Inner Mongolia ofnorth-central China. Earth and Planetary Science Letters,2005,233(3-4):467-479.
    [22] Hong Y T, Wang Z G, Jiang H B, et al. A6000-year record of changes in drought andprecipitation in northeastern China based on a δ13C time series from peat cellulose. Earthand Planetary Science Letters,2001,185(1-2):111-119.
    [23]鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义.中国科学: D辑,1998,28(3):278-283.
    [24] Sun Y, Chen J, Clemens S C, et al. East Asian monsoon variability over the last sevenglacial cycles recorded by a loess sequence from the northwestern Chinese Loess Plateau.Geochemistry, Geophysics, Geosystems,2006,7(12): Q12Q02.
    [25] Sun Y, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturningcirculation on the East Asian winter monsoon. Nature Geosci,2012,5(1):46-49.
    [26] Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergencezone on the East Asian monsoon. Nature,2007,445(7123):74-77.
    [27] Qiao S, Yang Z, Liu J, et al. Records of late-Holocene East Asian winter monsoon in theEast China Sea: Key grain-size component of quartz versus bulk sediments. QuaternaryInternational,2011,230(1-2):106-114.
    [28] Xiang R, Yang Z, Saito Y, et al. East Asia Winter Monsoon changes inferred fromenvironmentally sensitive grain-size component records during the last2300years in mudarea southwest off Cheju Island, ECS. Science in China Series D: Earth Sciences,2006,49(6):604-614.
    [29]肖尚斌,李安春,陈木宏,等.近8ka东亚冬季风变化的东海内陆架泥质沉积记录.地球科学:中国地质大学学报,2005,30(005):573-581.
    [30] Xiao S, Li A, Liu J P, et al. Coherence between solar activity and the East Asian wintermonsoon variability in the past8000years from Yangtze River-derived mud in the EastChina Sea. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,237(2-4):293-304.
    [31] Xu F, Li A, Xu K, et al. Cold event at5500a BP recorded in mud sediments on the innershelf of the East China Sea. Chinese Journal of Oceanology and Limnology,2009,27(4):975-984.
    [32] Kim J M and Kennett J P. Paleoenvironmental changes associated with the Holocenemarine transgression, Yellow Sea (Hwanghae). Marine Micropaleontology,1998,34(1-2):71-89.
    [33] Kim J M and Kucera M. Benthic foraminifer record of environmental changes in theYellow Sea (Hwanghae) during the last15,000years. Quaternary Science Reviews,2000,19(11):1067-1085.
    [34] Liu J, Saito Y, Wang H, et al. Sedimentary evolution of the Holocene subaqueousclinoform off the Shandong Peninsula in the Yellow Sea. Marine Geology,2007,236(3-4):165-187.
    [35]刘健,李绍全,王圣洁,等.末次冰消期以来黄海海平面变化与黄海暖流的形成.海洋地质与第四纪地质,1999,19(1):13-24.
    [36] Kim D, Park B K and Shin I C. Paleoenvironmental changes of the Yellow Sea during theLate Quaternary. Geo-Marine Letters,1999,18(3):189-194.
    [37]李铁刚,李绍全. YSDP102钻孔有孔虫动物群与南黄海东南部古水文重建.海洋与湖沼,2000,31(6):588-595.
    [38] Li T G, Nan Q Y, Jiang B, et al. Formation and evolution of the modern warm currentsystem in the East China Sea and the Yellow Sea since the last deglaciation. ChineseJournal of Oceanology and Limnology,2009,27(2):237-249.
    [39] Kong G S, Park S C, Han H C, et al. Late Quaternary paleoenvironmental changes in thesoutheastern Yellow Sea, Korea. Quaternary International,2006,144(1):38-52.
    [40] Liu J, Saito Y, Kong X, et al. Geochemical characteristics of sediment as indicators ofpost-glacial environmental changes off the Shandong Peninsula in the Yellow Sea.Continental Shelf Research,2009,29(7):846-855.
    [41] Liu J, Li A, Chen M, et al. Sedimentary changes during the Holocene in the Bohai Seaand its paleoenvironmental implication. Continental Shelf Research,2008,28(10-11):1333-1339.
    [42] Liu J, Li A and Chen M. Environmental evolution and impact of the Yellow Riversediments on deposition in the Bohai Sea during the last deglaciation. Journal of AsianEarth Sciences,2010,38(1-2):26-33.
    [43] Xiang R, Yang Z S, Saito Y, et al. Paleoenvironmental changes during the last8400yearsin the southern Yellow Sea: Benthic foraminiferal and stable isotopic evidence. MarineMicropaleontology,2008,67(1-2):104-119.
    [44] Xing L, Zhao M X, Zhang H L, et al. Biomarker evidence for paleoenvironmentalchanges in the southern Yellow Sea over the last8200years. Chinese Journal ofOceanology and Limnology,2012,30(1):1-11.
    [45]王利波,杨作升,赵晓辉,等.南黄海中部泥质区YE-2孔8.4kaBP来的沉积特征.海洋地质与第四纪地质,2009,29(5):1-10.
    [46] Wang L B, Yang Z S, Zhang R P, et al. Sea surface temperature records of core ZY2fromthe central mud area in the South Yellow Sea during last6200years and related effect ofthe Yellow Sea Warm Current. Chinese Science Bulletin,2011,56(15):1588-1595.
    [47] Higginson M J, Altabet M A, Murray D W, et al. Geochemical evidence for abruptchanges in relative strength of the Arabian monsoons during a stadial/interstadial climatetransition. Geochimica et Cosmochimica Acta,2004,68(19):3807-3826.
    [48] Werne J P, Hollander D J, Lyons T W, et al. Climate-Induced Variations in Productivityand Planktonic Ecosystem Structure from the Younger Dryas to Holocene in the CariacoBasin, Venezuela. Paleoceanography,2000,15(1):19-29.
    [49] Harrison K G. Role of Increased Marine Silica Input on Paleo-pCO2Levels.Paleoceanography,2000,15(3):292-298.
    [50] Wang P, Tian J, Cheng X, et al. Exploring cyclic changes of the ocean carbon reservoir.Chinese Science Bulletin,2003,48(23):2536-2548.
    [51] Xing L, Tao S, Zhang H, et al. Distributions and origins of lipid biomarkers in surfacesediments from the southern Yellow Sea. Applied Geochemistry,2011,26(8):1584-1593.
    [52]王迪迪.东,黄海典型海域近200年的古生产力重建及其影响因素:[硕士学位论文].中国海洋大学,2008.
    [53]杨茜,宋娴丽,孙耀.东海,黄海近代沉积中有机碳源解析及对浮游植物总量的重建潜力.海洋学报,2012,34(4):188-194.
    [54]叶曦雯,刘素美,赵颖翡,等.东,黄海沉积物中生物硅的分布及其环境意义.中国环境科学,2004,24(3):265-269.
    [55]杨茜,孙耀,王迪迪,等.东海,黄海近代沉积物中生物硅含量的分布及其反演潜力.海洋学报,2010,(003):51-59.
    [56]邢磊,赵美训,张海龙,等.二百年来黄海浮游植物群落结构变化的生物标志物记录.中国海洋大学学报:自然科学版,2009,39(2):317-322.
    [57]丁玲,邢磊,赵美训.生物标志物重建浮游植物生产力及群落结构研究进展.地球科学进展,2010,25(9):981-989.
    [58]秦蕴珊,赵一阳,陈丽蓉,等.黄海地质.北京:海洋出版社,1989.
    [59]刘锡清,丛鸿文.黄海地形特征.北京:地质出版社,1997.
    [60]孙湘平.中国近海区域海洋.北京:海洋出版社,2008.
    [61] Liu S, Hong G, Zhang J, et al. Nutrient budgets for large Chinese estuaries.Biogeosciences,2009,6(10):2245-2263.
    [62] Yang S Y, Jung H S, Lim D I, et al. A review on the provenance discrimination ofsediments in the Yellow Sea. Earth-Science Reviews,2003,63(1-2):93-120.
    [63] Milliman J D and Meade R H. World-wide delivery of river sediment to the oceans. TheJournal of Geology,1983:1-21.
    [64] Milliman J D and Syvitski J P. Geomorphic/tectonic control of sediment discharge to theocean: the importance of small mountainous rivers. The Journal of Geology,1992:525-544.
    [65]石学法,申顺喜,陈志华,等.南黄海现代沉积环境及动力沉积体系.科学通报,2009,46(S1):1-6.
    [66]苏纪兰.中国近海的环流动力机制研究.海洋学报,2001,23(3):1-16.
    [67]乔方利主编.中国区域海洋学–物理海洋学.北京:海洋出版社,2012.
    [68]苏纪兰,黄大吉.黄海冷水团的环流结构.海洋与湖沼,1995,26(5,增刊):1-7.
    [69]乐肯堂,毛汉礼.冬季南黄海温,盐结构及其流系.海洋与湖沼,1990,21(6):505-515.
    [70] Beardsley R C, Limeburner R and Kim K, et al. Lagrangian flow observations in the EastChina, Yellow and Japan seas. La mer,1992,30:297-314.
    [71]乐肯堂.冬季黄海暖流水的起源.海洋学报,1992,14(2):9-19.
    [72]汤毓祥,邹娥梅,李兴宰,等.初春南黄海水文特征及环流状况的分析.海洋学报,1999,21(5):1-11.
    [73]汤毓祥,邹娥梅,李兴宰,等.南黄海环流的若干特征.海洋学报,2000,22(1):1-15.
    [74] Song D H, Bao X W, Wang X H, et al. The inter-annual variability of the Yellow SeaWarm Current surface axis and its influencing factors. Chinese Journal of Oceanologyand Limnology,2009,27(3):607-613.
    [75]赫崇本,汪园祥,雷宗友,等.黄海冷水团的形成及其性质的初步探讨.海洋与湖沼,1959,2(1):11-15.
    [76]毛汉礼,任允武,万国铭.应用T-S关系定量地分析浅海水团的初步研究.海洋与湖沼,1964,6(1):1-22.
    [77]翁学传,张以恳,王从敏,等.黄海冷水团的变化特征.海洋与湖沼,1988,19(4):369-379.
    [78] Chen C T A. Chemical and physical fronts in the Bohai, Yellow and East China seas.Journal of Marine Systems,2009,78(3):394-410.
    [79]李绍全,刘健.南黄海东侧陆架冰消期以来的海侵沉积特征.海洋地质与第四纪地质,1997,17(4):1-12.
    [80]申顺喜,陈丽蓉,高良.南黄海冷涡沉积和通道沉积的发现.海洋与湖沼,1993,24(6):563-569.
    [81]赵保仁.南黄海西部的陆架锋及冷水团锋区环流结构的初步研究.海洋与湖沼,1987,18(3):217-227.
    [82]赵保仁.黄海冷水团锋面与潮混合.海洋与湖沼,1985,16(6):451-460.
    [83] Huang D, Zhang T and Zhou F. Sea-surface temperature fronts in the Yellow and EastChina Seas from TRMM microwave imager data. Deep Sea Research Part II: TopicalStudies in Oceanography,2010,57(11-12):1017-1024.
    [84]赵保仁.潮混合与潮生陆架锋研究.海洋科学消息,1991,2:30-31.
    [85]韦钦胜,葛人峰,臧家业,等.夏季南黄海跨锋断面的生态环境特征及锋区生态系的提出.海洋学报,2011,33(3):74-84.
    [86]韦钦胜,吕新刚,王宗兴,等.黄海陆架锋特征及其生态效应的初步分析.地球科学进展,2010,25(4):435-443.
    [87] Hickox R, Belkin I, Cornillon P, et al. Climatology and seasonal variability of oceanfronts in the East China, Yellow and Bohai Seas from satellite SST data. GeophysicalResearch Letters,2000,27(18):2945-2948.
    [88]郝锵.中国近海叶绿素和初级生产力的时空分布特征和环境调控机制研究:[博士学位论文].中国海洋大学,2010.
    [89]孙松主编.中国区域海洋学–生物海洋学.北京:海洋出版社,2012.
    [90] Eglinton G and J H R. Leaf epicuticcular waxes. Science,1967,156:1322-1335.
    [91] Qiu Y J, Bigot M and Saliot A. Non-aromatic hydrocarbons in suspended matter fromChangjiang (Yangtse River) estuary: Their characterization and variation in winter andsummer (low-and high-flow) conditions. Estuarine, Coastal and Shelf Science,1991,33(2):153-174.
    [92] Zhao M, Dupont L, Eglinton G, et al. n-Alkane and pollen reconstruction of terrestrialclimate and vegetation for N.W. Africa over the last160kyr. Organic Geochemistry,2003,34(1):131-143.
    [93] Weijers J W H, Schouten S, Hopmans E C, et al. Membrane lipids of mesophilicanaerobic bacteria thriving in peats have typical archaeal traits. EnvironmentalMicrobiology,2006,8(4):648-657.
    [94] Hopmans E C, Weijers J W H, Schefu E, et al. A novel proxy for terrestrial organicmatter in sediments based on branched and isoprenoid tetraether lipids. Earth andPlanetary Science Letters,2004,224(1-2):107-116.
    [95] DamstéJ S S, Ossebaar J, Abbas B, et al. Fluxes and distribution of tetraether lipids in anequatorial African lake: Constraints on the application of the TEX86palaeothermometerand BIT index in lacustrine settings. Geochimica et Cosmochimica Acta,2009,73(14):4232-4249.
    [96] Schouten S, Hopmans E C, Pancost R D, et al. Widespread occurrence of structurallydiverse tetraether membrane lipids: Evidence for the ubiquitous presence oflow-temperature relatives of hyperthermophiles. Proceedings of the National Academy ofSciences,2000,97(26):14421-14426.
    [97] Zhu C, Weijers J W H, Wagner T, et al. Sources and distributions of tetraether lipids insurface sediments across a large river-dominated continental margin. OrganicGeochemistry,2011,42(4):376-386.
    [98] Hopmans E C, Weijers J W H, Schefu E, et al. A novel proxy for terrestrial organicmatter in sediments based on branched and isoprenoid tetraether lipids. Earth andPlanetary Science Letters,2004,224(1-2):107-116.
    [99] Volkman J K, Barrerr S M, Blackburn S I, et al. Alkenones in Gephyrocapsa oceanica:Implications for studies of paleoclimate. Geochimica et Cosmochimica Acta,1995,59(3):513-520.
    [100] Marlowe I, Brassell S, Eglinton G, et al. Long chain unsaturated ketones and esters inliving algae and marine sediments. Organic Geochemistry,1984,6:135-141.
    [101] Brassell S. Applicaion of biomarkers for delineating marine paleoclimate flacationsduring the pleistocene In: Engel M H, Macko S A, eds. Organic Geochemistry: Princlesand applications. Plenum Press,1993:699-738.
    [102] Brassell S, Eglinton G, Marlowe I, et al. Molecular stratigraphy: a new tool for climaticassessment. Nature,1986,320(6058):129-133.
    [103] Prahl F and Wakeham S. Calibration of unsaturation patterns in long-chain ketonecompositions for palaeotemperature assessment.1987.
    [104] Müller P J, Kirst G, Ruhland G, et al. Calibration of the alkenone paleotemperature indexU37K′based on core-tops from the eastern South Atlantic and the global ocean(60°N-60°S). Geochimica et Cosmochimica Acta,1998,62(10):1757-1772.
    [105] Tao S Q, Xing L, Luo X F, et al. Alkenone distribution in surface sediments of thesouthern Yellow Sea and implications for the UK37' thermometer. Geo-Marine Letters,2011,32(1):1-11.
    [106] Schouten S, Hopmans E C, Schefu E, et al. Distributional variations in marinecrenarchaeotal membrane lipids: a new tool for reconstructing ancient sea watertemperatures? Earth and Planetary Science Letters,2002,204(1-2):265-274.
    [107] Kim J-H, Schouten S, Hopmans E C, et al. Global sediment core-top calibration of theTEX86paleothermometer in the ocean. Geochimica et Cosmochimica Acta,2008,72(4):1154-1173.
    [108]张婷,邢磊,张海龙,等.东海沉积物中微生物标志物GDGTs年代际变化及来源.海洋地质与第四纪地质,2012,32(3):87-95.
    [109]赵一阳,陈毓蔚.试论南黄海中部泥的物源及成因.地球化学,1991,(2):112-117.
    [110]申顺喜,李安春,袁巍.南黄海中部的低能沉积环境.海洋与湖沼,1996,27(5):518-523.
    [111] Yang Z S and Liu J P. A unique Yellow River-derived distal subaqueous delta in theYellow Sea. Marine Geology,2007,240(1-4):169-176.
    [112] Milliman J, Qin Y and Park Y. Sediments and sedimentary processes in the Yellow andEast China Seas. Sedimentary facies in the active plate margin. Terra ScientificPublishing Company, Tokyo,1989:233-249.
    [113] Alexander C R, DeMaster D J and Nittrouer C A. Sediment accumulation in a modernepicontinental-shelf setting: The Yellow Sea. Marine Geology,1991,98(1):51-72.
    [114]徐刚,刘健,孔祥淮,等.南黄海中部泥质沉积成因和物源研究综述.海洋地质动态,2010,26(2):8-12.
    [115] Xing L, Zhang H, Yuan Z, et al. Terrestrial and marine biomarker estimates of organicmatter sources and distributions in surface sediments from the East China Sea shelf.Continental Shelf Research,2011,31(10):1106-1115.
    [116] Weijers J W H, Schouten S, Spaargaren O C, et al. Occurrence and distribution oftetraether membrane lipids in soils: Implications for the use of the TEX86proxy and theBIT index. Organic Geochemistry,2006,37(12):1680-1693.
    [117] Hu B Q, Yang Z S, Zhao M X, et al. Grain size records reveal variability of the East AsianWinter Monsoon since the Middle Holocene in the Central Yellow Sea mud area, China.Science China Earth Sciences,2012,55(10):1-13.
    [118] Archer D, Winguth A, Lea D, et al. What caused the glacial/interglacial atmosphericpCO2cycles? Rev. Geophys.,2000,38(2):159-189.
    [119] Lin C, Ning X, Su J, et al. Environmental changes and the responses of the ecosystems ofthe Yellow Sea during1976-2000. Journal of Marine Systems,2005,55(3-4):223-234.
    [120]李凤业,高抒.黄,渤海泥质沉积区现代沉积速率.海洋与湖沼,2002,33(4):364-369.
    [121]胡邦琦,李国刚,李军,等.黄海,渤海铅-210沉积速率的分布特征及其影响因素.海洋学报,2012,33(6):125-133.
    [122] Dong L X, Guan W B, Chen Q, et al. Sediment transport in the Yellow Sea and EastChina Sea. Estuarine, Coastal and Shelf Science,2011,93(3):248-258.
    [123] Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River'ssubaqueous delta, North Yellow Sea. Marine Geology,2004,209(1-4):45-67.
    [124] Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holoceneand deglacial Asian monsoon record from Dongge Cave, China. Earth and PlanetaryScience Letters,2005,233(1-2):71-86.
    [125] Schubert C J, Villanueva J, Calvert S E, et al. Stable phytoplankton community structurein the Arabian Sea over the past200,000years. Nature,1998,394(6693):563-566.
    [126] Hinrichs K U, Schneider R R, Müller P J, et al. A biomarker perspective onpaleoproductivity variations in two Late Quaternary sediment sections from the SoutheastAtlantic Ocean. Organic Geochemistry,1999,30(5):341-366.
    [127] Henriksson A S, Sarnthein M, Eglinton G, et al. Dimethylsulfide production variationsover the past200k.y. in the equatorial Atlantic: A first estimate. Geology,2000,28(6):499-502.
    [128] Ikehara M, Kawamura K, Ohkouchi N, et al. Variations of Terrestrial Input and MarineProductivity in the Southern Ocean (48°S) During the Last two Deglaciations.Paleoceanography,2000,15(2):170-180.
    [129] Versteegh G and Zonneveld K. Use of selective degradation to separate preservation fromproductivity. Geology,2002,30(7):615.
    [130] Schulte S and Bard E. Past changes in biologically mediated dissolution of calcite abovethe chemical lysocline recorded in Indian Ocean sediments. Quaternary Science Reviews,2003,22(15-17):1757-1770.
    [131] Canuel E A and Martens C S. Reactivity of recently deposited organic matter:Degradation of lipid compounds near the sediment-water interface. Geochimica etCosmochimica Acta,1996,60(10):1793-1806.
    [132] Zimmerman A R and Canuel E A. A geochemical record of eutrophication and anoxia inChesapeake Bay sediments: anthropogenic influence on organic matter composition.Marine Chemistry,2000,69(1-2):117-137.
    [133] Lee H J, Jeong K S, Han S J, et al. Heavy minerals indicative of holocene transgression inthe southeastern Yellow Sea. Continental Shelf Research,1988,8(3):255-266.
    [134] Yang C-S. Active, moribund and buried tidal sand ridges in the East China Sea and theSouthern Yellow Sea. Marine Geology,1989,88(1-2):97-116.
    [135] Lee H J and Yoon S H. Development of stratigraphy and sediment distribution in thenortheastern Yellow Sea during Holocene sea-level rise. Journal of Sedimentary Research,1997,67(2).
    [136] Park S-C, Lee H-H, Han H-S, et al. Evolution of late Quaternary mud deposits and recentsediment budget in the southeastern Yellow Sea. Marine Geology,2000,170(3-4):271-288.
    [137]王利波.黄海北部泥质沉积体的沉积特征:[硕士学位论文].中国海洋大学,2009.
    [138] Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the LatePleistocene: high-resolution sediment records from the South China Sea. Marine Geology,1999,156(1-4):245-284.
    [139] Li T, Xiang R, Sun R, et al. Benthic foraminifera and bottom water evolution in themiddle-southern Okinawa Trough during the last18ka. Science in China Series D: EarthSciences,2005,48(6):805-814.
    [140] Yang D, Yu G, Xie Y, et al. Sedimentary records of large Holocene floods from the middlereaches of the Yellow River, China. Geomorphology,2000,33(1-2):73-88.
    [141] Zhao Y Y, Qin Z Y, Li F Y, et al. On the source and genesis of the mud in the central areaof the South Yellow Sea. Chinese Journal of Oceanology and Limnology,1990,8(1):66-73.
    [142] Yang S Y and Youn J S. Geochemical compositions and provenance discrimination of thecentral south Yellow Sea sediments. Marine Geology,2007,243(1-4):229-241.
    [143] Mask A C, O'Brien J J and Preller R. Wind-driven effects on the Yellow Sea WarmCurrent. Journal of Geophysical Research,1998,103(C13):30713-30729.
    [144] Christopher E N, Cheryl A B and Daniel R L. Seasonal mean circulation in the YellowSea–a model-generated climatology. Continental Shelf Research,2001,21(6-7):667-695.
    [145] Liu S M, Zhang J, Chen S Z, et al. Inventory of nutrient compounds in the Yellow Sea.Continental Shelf Research,2003,23(11-13):1161-1174.
    [146] Bashkin V N, Park S U, Choi M S, et al. Nitrogen budgets for the Republic of Korea andthe Yellow Sea region. Biogeochemistry,2002,57-58(1):387-403.
    [147] Zhang G, Zhang J and Liu S. Characterization of nutrients in the atmospheric wet and drydeposition observed at the two monitoring sites over Yellow Sea and East China Sea.Journal of Atmospheric Chemistry,2007,57(1):41-57.
    [148] Zhang J and Liu M G. Observations on nutrient elements and sulphate in atmospheric wetdepositions over the northwest Pacific coastal oceans-Yellow Sea. Marine Chemistry,1994,47(2):173-189.
    [149] Selvaraj K, Arthur Chen C-T, Lou J-Y, et al. Holocene weak summer East Asian monsoonintervals in Taiwan and plausible mechanisms. Quaternary International,2011,229(1-2):57-66.
    [150] Zhao J T, Li T G, Li J, et al. Paleoproductivity variations in the southern Okinawa Troughsince the middle Holocene: Calcareous nannofossil records. Chinese Science Bulletin,2012:1-6.
    [151] Liu S, Shi X, Liu Y, et al. Records of the East Asian winter monsoon from the mud areaon the inner shelf of the East China Sea since the mid-Holocene. Chinese ScienceBulletin,2010,55(21):2306-2314.
    [152]李冬玲.冲绳海槽南部中全新世以来的硅藻记录与古环境变化:[博士学位论文].华东师范大学,2012.
    [153] Xing L, Zhang R P, Liu Y G, et al. Biomarker records of phytoplankton productivity andcommunity structure changes in the Japan Sea over the last166kyr. Quaternary ScienceReviews,2011,30(19-20):2666-2675.
    [154] Harvey H R. Alteration processes of alkenones and related lipids in water columns andsediments. Geochemistry, Geophysics, Geosystems,2000,1(8):1032.
    [155] Sinninghe DamstéJ S, Rijpstra W I C and Reichart G-j. The influence of oxic degradationon the sedimentary biomarker record II. Evidence from Arabian Sea sediments.Geochimica et Cosmochimica Acta,2002,66(15):2737-2754.
    [156] Rontani J-F, Bonin P, Jameson I, et al. Degradation of alkenones and related compoundsduring oxic and anoxic incubation of the marine haptophyte Emiliania huxleyi withbacterial consortia isolated from microbial mats from the Camargue, France. OrganicGeochemistry,2005,36(4):603-618.
    [157] Rontani J F, Zabeti N and Wakeham S G. The fate of marine lipids: Biotic vs. abioticdegradation of particulate sterols and alkenones in the Northwestern Mediterranean Sea.Marine Chemistry,2009,113(1-2):9-18.
    [158] Weiler C, What controls phytoplankton production in nutrient-rich areas of the open sea?1991, Whitman Coll., Walla Walla, WA (United States). Dept. of Biology.
    [159] Falkowski P G, Barber R T and Smetacek V. Biogeochemical Controls and Feedbacks onOcean Primary Production. Science,1998,281(5374):200-206.
    [160] Chen Y l L, Chen H Y and Chung C W. Seasonal variability of coccolithophoreabundance and assemblage in the northern South China Sea. Deep Sea Research Part II:Topical Studies in Oceanography,2007,54(14-15):1617-1633.
    [161] Pennington J T, Mahoney K L, Kuwahara V S, et al. Primary production in the easterntropical Pacific: A review. Progress In Oceanography,2006,69(2–4):285-317.
    [162] Falkowski P and Oliver M. Mix and match: how climate selects phytoplankton. NatureReviews Microbiology,2007,5(10):813-819.
    [163] Egge J and Aksnes D. Silicate as regulating nutrient in phytoplankton competition.Marine ecology progress series. Oldendorf,1992,83(2):281-289.
    [164] Brand L E. The salinity tolerance of forty-six marine phytoplankton isolates. Estuarine,Coastal and Shelf Science,1984,18(5):543-556.
    [165] Head R N, Crawford D W, Egge J K, et al. The hydrography and biology of a bloom ofthe coccolithophorid Emiliania huxleyi in the northern North Sea. Journal of SeaResearch,1998,39(3-4):255-266.
    [166]汪品先,成鑫荣.东海底质中钙质超微化石的分布.海洋学报(中文版),1988,10(1):76-88.
    [167] An Z S, Porter S C, Kutzbach J E, et al. Asynchronous Holocene optimum of the EastAsian monsoon. Quaternary Science Reviews,2000,19(8):743-762.
    [168] Zhou W, Xie S, Meyers P A, et al. Reconstruction of late glacial and Holocene climateevolution in southern China from geolipids and pollen in the Dingnan peat sequence.Organic Geochemistry,2005,36(9):1272-1284.
    [169] Zhou W, Yu X, Jull A J T, et al. High-resolution evidence from southern China of an earlyHolocene optimum and a mid-Holocene dry event during the past18,000years.Quaternary Research,2004,62(1):39-48.
    [170]栾青杉.冬夏季中国近海今生颗石藻及其钙化作用速率研究:[硕士学位论文].中国科学院研究生院(海洋研究所),2010.
    [171]芮晓庆,刘传联,梁丹,等.南黄海表层沉积物中钙质超微化石的分布.海洋地质与第四纪地质,2011,31(5):89-93.
    [172]程振波,石学法.南黄海表层沉积物中微体化石的沉积特点及物源分析.沉积学报,1999,17(12,增刊):775-781.
    [173]李文勤.黄,渤海表层沉积物中钙质超微化石分布规律与黄海暖流流路.海洋科学进展,1991,9(1):7-11.
    [174] Volkman J K, Eglinton G, Corner E D S, et al. Novel unsaturated straight-chain C37-C39methyl and ethyl ketones in marine sediments and a coccolithophore Emiliania huxleyi.Physics and Chemistry of the Earth,1980,12(0):219-227.
    [175] Okada H and Honjo S. The distribution of oceanic coccolithophorids in the Pacific. DeepSea Research and Oceanographic Abstracts,1973,20(4):355-374.
    [176] Yang T N, Wei K Y, Chen M P, et al. Summer and winter distribution and malformation ofcoccolithophores in the East China Sea. Micropaleontology,2004,50(Suppl1):157-170.
    [177]邢磊,丁玲,赵美训,等. Baja California边缘PC14岩芯海水表层及生产力变化的百年尺度记录.海洋与湖沼,2009,40(4):385-392.
    [178] Barron J A, Bukry D and Bischoff J L. High resolution paleoceanography of the GuaymasBasin, Gulf of California, during the past15000years. Marine Micropaleontology,2004,50(3-4):185-207.
    [179] Chang F M, Li T G, Zhuang L H, et al. Environmental anomalies in the northeastern EastChina Sea during the last3000years: implications for El Ni o activity in the Holocene(in Chinese with English abstract). Chinese Journal of Oceanology and Limnology,2010,28(1):190-200.
    [180]常凤鸣.冲绳海槽晚更新世-全新世的古环境演化:[博士学位论文].青岛:中国科学院海洋研究所,2004.
    [181]徐启春,王志联,刘秦玉.北太平洋风应力场变异规律及其与黑潮大弯曲和El-Nino的联系.中国海洋大学学报(自然科学版),1993,3:004.
    [182]袁耀初,刘勇刚.1997-1998年EI Nino至La Nina期间东海黑潮的变异.地球物理学报,2001,44(2):199-210.
    [183]何发祥,洪华生.埃尔尼诺现象与东海黑潮区及其邻近海域水文结构和环流的变异:东海黑潮区及其邻近海区ENSO渔场学问题之一.海洋湖沼通报,1999,(1):16-24.
    [184] Wang L, Chen W and Huang R. Interdecadal modulation of PDO on the impact of ENSOon the east Asian winter monsoon. Geophys. Res. Lett.,2008,35(20): L20702.
    [185] Wang L, Li J, Lu H, et al. The East Asian winter monsoon over the last15,000years: itslinks to high-latitudes and tropical climate systems and complex correlation to thesummer monsoon. Quaternary Science Reviews,2012,32(0):131-142.
    [186]徐建军,朱乾根.近百年东亚冬季风的突变性和周期性.应用气象学报,1999,10(1):1-8.
    [187]李崇银,穆明权.东亚冬季风-暖池状况-ENSO循环的关系.科学通报,2000,45(7):678-685.
    [188] Chen Y L, Hu D X and Wang F. Long-term variabilities of thermodynamic structure ofthe East China Sea Cold Eddy in summer. Chinese Journal of Oceanology and Limnology,2004,22(3):224-230.
    [189] Moy C, Seltzer G, Rodbell D, et al. Variability of El Nino/Southern Oscillation activity atmillennial timescales during the Holocene epoch. Nature,2002,420(6912):162-165.
    [190] Rodbell D T, Seltzer G O, Anderson D M, et al. An~15,000-Year Record of ElNi o-Driven Alluviation in Southwestern Ecuador. Science,1999,283(5401):516-520.
    [191] Gagan M K, Hendy E J, Haberle S G, et al. Post-glacial evolution of the Indo-PacificWarm Pool and El Ni o-Southern oscillation. Quaternary International,2004,118-119(0):127-143.
    [192] Brijker J M, Jung S J A, Ganssen G M, et al. ENSO related decadal scale climatevariability from the Indo-Pacific Warm Pool. Earth and Planetary Science Letters,2007,253(1-2):67-82.
    [193] Rittenour T M, Brigham-Grette J and Mann M E. El Ni o-Like Climate Teleconnectionsin New England During the Late Pleistocene. Science,2000,288(5468):1039-1042.
    [194] Cane M A. The evolution of El Ni o, past and future. Earth and Planetary Science Letters,2005,230(3-4):227-240.
    [195]汤毓祥.冬至初春黄海暖流的路径和起源.海洋学报,2001,23(1):1-12.
    [196]王辉武,于非,吕连港,等.冬季黄海暖流区的空间变化和年际变化特征.海洋科学进展,2009,27(2):140-148.
    [197]王辉武.黄海暖流季节和年际变化研究:[硕士学位论文].青岛:国家海洋局第一海洋研究所,2008.
    [198] Xu L L, Wu D X, Lin X P, et al. The Study of the Yellow Sea Warm Current and ItsSeasonal Variability. Journal of Hydrodynamics, Ser. B,2009,21(2):159-165.
    [199] Yuan D L and Hsueh Y. Dynamics of the cross-shelf circulation in the Yellow and EastChina Seas in winter. Deep Sea Research Part II: Topical Studies in Oceanography,2010,57(19-20):1745-1761.
    [200] Huang D J, Fan X P, Xu D F, et al. Westward shift of the Yellow Sea warm salty tongue.Geophysical Research Letters,2005,32(24): L24613.
    [201] Wang F, Liu C Y and Meng Q J. Effect of the Yellow Sea warm current fronts on thewestward shift of the Yellow Sea warm tongue in winter. Continental Shelf Research,2012,45(0):98-107.
    [202]刘传玉.中国东部近海温度锋面的分布特征和变化规律:[博士学位论文].青岛:中国科学院研究生院(海洋研究所),2009.
    [203] Jian Z, Wang P, Saito Y, et al. Holocene variability of the Kuroshio Current in theOkinawa Trough, northwestern Pacific Ocean. Earth and Planetary Science Letters,2000,184(1):305-319.
    [204] Li B, Jian Z and Wang P. Pulleniatina obliquiloculata as a paleoceanographic indicator inthe southern Okinawa trough during the last20,000years. Marine Micropaleontology,1997,32(1-2):59-69.
    [205] UjiiéH and UjiiéY. Late Quaternary course changes of the Kuroshio Current in theRyukyu Arc region, northwestern Pacific Ocean. Marine Micropaleontology,1999,37(1):23-40.
    [206]何元庆,姚檀栋,沈永平,等.冰芯与其它记录所揭示的中国全新世大暖期变化特征.冰川冻土,2003,25(1):11-18.
    [207]姚檀栋,Thompson L.敦德冰芯记录与过去5ka温度变化.中国科学(B辑),1992,10:1089-1093.
    [208]张振克,王苏民.13ka以来呼伦湖湖面波动与泥炭发育,风沙-古土壤序列的比较及其古气候意义.干旱区资源与环境,2000,14(3):56-59.
    [209]陈发虎,吴海斌,张家武,等.末次冰消期以来兰州地区冬季风变化研究.第四纪研究,1999,4:306-313.
    [210]侯光良,方修琦.中国全新世气温变化特征.地理科学进展,2011,30(9):1075-1080.
    [211] Wanner H, Beer J, Bütikofer J, et al. Mid-to Late Holocene climate change: an overview.Quaternary Science Reviews,2008,27(19-20):1791-1828.
    [212] Bond G, Kromer B, Beer J, et al. Persistent solar influence on North Atlantic climateduring the Holocene. Science,2001,294(5549):2130.
    [213] Solanki S K, Usoskin I G, Kromer B, et al. Unusual activity of the Sun during recentdecades compared to the previous11,000years. Nature,2004,431(7012):1084-1087.
    [214] Duplessy J-C, Ivanova E, Murdmaa I, et al. Holocene paleoceanography of the northernBarents Sea and variations of the northward heat transport by the Atlantic Ocean. Boreas,2001,30(1):2-16.
    [215] O'brien S, Mayewski P, Meeker L, et al. Complexity of Holocene climate as reconstructedfrom a Greenland ice core. Science,1995,270(5244):1962-1964.
    [216] Wanner H, Solomina O, Grosjean M, et al. Structure and origin of Holocene cold events.Quaternary Science Reviews,2011, In Press, Corrected Proof.
    [217] Barber D, Dyke A, Hillaire-Marcel C, et al. Forcing of the cold event of8,200years agoby catastrophic drainage of Laurentide lakes. Nature,1999,400(6742):344-348.
    [218] Clark P U, Marshall S J, Clarke G K, et al. Freshwater forcing of abrupt climate changeduring the last glaciation. Science,2001,293(5528):283-287.
    [219]方修琦,葛全胜,郑景云.全新世寒冷事件与气候变化的千年周期.自然科学进展,2004,14(4):456-461.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700