用户名: 密码: 验证码:
薄板型微悬臂梁流固耦合特性及其尺度效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微悬臂梁传感器是探索微观世界的重要工具,被广泛应用于微观领域形貌探测和参数测量。由于频率参数容易获得,通过获取微悬臂梁传感器谐振频率变化,进而间接探测被测对象的动态测量方法成为研究热点。微悬臂梁传感器主要工作于流体环境,而微悬臂梁传感器在流体中振动时产生的流固耦合现象将引起谐振频率异常下降,并表现出尺度效应,给以微悬臂梁传感器为工具的定量研究带来较大困难。因此揭示微悬臂梁传感器流固耦合特性及尺度效应影响机理,修正谐振频率与被测量之间的关系模型已成为一项重要的研究内容。
     本文以确定微悬臂梁传感器谐振频率与流体密度、粘度和微悬臂梁材料特征长度等多参数之间的定量关系为目的,建立考虑尺度效应的二维微悬臂梁流固耦合模型,给出简化数值求解方法,在此基础之上,分析粘性流体环境下,微悬臂梁频率响应中的流固耦合特性,以及微尺度下表现出的尺度效应。
     作为尺度效应中最为典型的类型之一,微尺度下,材料内部微结构非均匀性引起的尺寸效应将不能忽略。基于修正Cosserat理论建立了考虑尺寸效应的微平板二维力学模型,利用微分求积法(DQM)对微分方程进行了数值求解,分析了不同边界条件下,微平板力学特性中的尺寸效应。在尺寸效应的影响下,微平板静态挠度将减小而谐振频率将增大,并且随着板厚度及泊松比的增大,尺寸效应的影响逐渐减弱,而板长宽比的变化则与尺寸效应没有直接的关系。
     流体环境下流固耦合作用将引起微结构的动力学特性发生变化。为获得更为准确的频率响应特性,建立了微平板振动边界与密闭腔内粘性流体发生耦合作用时,考虑尺寸效应及耦合面边界滑移这两种类型尺度效应的二维流固耦合模型,提出基于等效参数提取的简化数值求解方法,分析粘性流体环境下,不同边界微平板的频率响应特性。在流固耦合作用影响下,微平板各阶谐振频率及振幅均显著降低,且影响程度不但取决于流体的密度,还与粘度,雷诺数等参数密切相关。当考虑尺寸效应影响时,谐振频率受粘性流体影响的程度将减弱;而当引入边界滑移条件后,流固耦合作用对频率响应的影响同样有所降低,但是非常微弱。
     以边界与粘性流体发生耦合作用微平板流固耦合特性研究为基础,建立浸于无限大粘性流体中的考虑尺度效应的微悬臂梁二维流固耦合方程组,分析微悬臂梁频率响应中的流固耦合特性。微尺度下,粘性流体对微悬臂梁的作用不再只是流体附连水质量,流体粘性力作用同样不能忽略。随着模态数的增加,同种粘性流体对谐振频率的影响也随之增大。同时随着微悬臂梁厚度的减小、泊松比的提高以及长宽比的增大,流固耦合作用的影响程度将逐渐增强。
     针对薄板型微悬臂梁频率响应中的尺寸效应以及浸于粘性流体中的微悬臂梁流固耦合特性进行实验研究,基于测量结果对微悬臂梁谐振频率与尺寸效应、流固耦合特性之间的关系进行分析,论证了本文建立的理论模型和提出的基于等效参数提取的简化数值方法在处理薄板型微悬臂梁流固耦合特性问题上的有效性,同时证明了仿真结论的正确性。
     本文通过对薄板型微悬臂梁流固耦合特性及尺度效应的研究,建立了谐振频率与流体密度、粘度和微悬臂梁材料特征长度等多因素之间的定量关系模型,分析了流固耦合作用及尺度效应影响下,微悬臂梁频率响应的变化规律,这对揭示流体对微纳米结构动力学特性影响及其表现出的尺度效应的物理机制、高灵敏微悬臂梁传感器设计和应用具有重要意义。
The microcantilever sensor is an important tool to explore the microscopic world,and it is widely used in the microscopic field for morphology detection and parametermeasurement. Since frequency parameters are easy to obtain, the dynamic measuringmethod which the object is indirectly detected through variation of resonancefrequencies of microcantilever sensors, has become a research hotspot. Most ofmicrocantilever sensors work in a fluid environment. The fluid-structure interactionphenomena caused by the microcantilever vibration in the fluid will cause abnormaldecline of resonant frequencies, and the scale effect occurs. This phenomenon hasbrought greater difficulties in quantitative research using the microcantilever sensor asa tool. Therefore, revealing mechanisms of fluid-structure interaction and scale effectfor microcantilever sensors, and then revising the relationship model between resonantfrequencies and the object measured,has become an important research content.
     This paper aims at determining the multi-factor quantitative relationships betweenresonant frequencies of the microcantilever and the fluid density, viscosity,characteristic length of the material, and establishes a two-dimensional fluid-structureinteraction model which takes the scale effect into account for microcantilevers, andgives a simplify numerical method. On that basis, the fluid-structure interactioncharacteristics and the scale effect on the frequency response of microcantilevers areanalyzed in viscous fluid environment.
     In micro scale, the size effect caused by the non-uniformity of materials internalmicrostructure can’t be neglected. Based on modified Cosserat theory and consideringthe size effect, this paper establishes a two-dimensional mechanical model of a microplate, provides the numerical solution of differential equations using differentialquadrature method (DQM), and analyses the size effect in mechanical properties of themicro plate under different boundary conditions. With the influence of size effect, theStatic bending deflection will decrease and the resonant frequency will increase. Withthe increase of thickness and Poisson's ratios of micro plate, the influence of the sizeeffect becomes weaker gradually. There is no direct relationship between the length-width ratios and the size effect.
     The fluid-structure interaction causes dynamics variation of micro-structure influid environment. In order to obtain more accurate frequency response characteristics,this paper establishes a two-dimensional fluid-structure interaction model whichconsiders the size effect and the boundary slip when the micro plate boundary coupleswith the viscous fluid in closed cavity, proposes a simplified numerical method basedon equivalent parameters extracted, and analyses the frequency response of the micro plate under different boundary conditions in different viscous fluids. With theinfluence of the fluid-structure interaction effect, any order of resonant frequency andamplitude of the micro plate significantly decrease. The extent of the influence notonly depends on the density of the fluid, but also closely relates to the viscosity, theReynolds number and other parameters. When the size effect is considered, the viscousfluid will reduce the influence on the resonant frequency. When the boundary slipcondition is introduced, the fluid-structure interaction will reduce the influence on theresonant frequency, but very slightly.
     Based on the research of fluid-structure interaction characteristics of microplatecoupled with the infinite viscous fluid, the paper establishes two-dimensional fluid-structure interaction equations considering the scale effect of the microcantileverimmersed in a viscous fluid, and analyzes the fluid-structure interaction characteristicsfor frequency response of the microcantilever. In micro scale, the fluid force on themicrocantilever is no longer just additional water mass, and the fluid viscous forcecan’t be neglected ether. With the increase of modal number, the viscous fluidinfluence on resonant frequency increases. Meanwhile, with the decrease of themicrocantilever thickness and the increases of Poisson's ratios and length-width ratios,the extent of the influence of the fluid-structure interaction will increase gradually.
     Experimental study is carried out for the size effect of microcantilever immersedin air and for the fluid-structure interaction characteristics of microcantileverimmersed in a viscous fluid. Based on the measurement results, the relationshipbetween microcantilever resonant frequencies and the size effect, fluid-structureinteraction is analyzed. The effectiveness of the theoretical model established and thesimplified numerical method proposed based on the equivalent parameters extracted inthe processing of fluid-structure interaction characteristics and scale effect for sheet-type microcantilever is demonstrated, and the validation of the simulation conclusionsis proved.
     This paper investigates the fluid-structure interaction and the scale effect,establishes multi-factor quantitative relationship between the resonant frequencies ofthe microcantilever and fluid density, viscosity, material characteristic length, andanalyses the variation of the frequency response of the microcantilever under theinfluence of the fluid-structure interaction and the scale effect. It is significantlyimportant to reveal the physical mechanism of the fluid and the scale effect on thedynamics of micro structures for the design and application of highly sensitivemicrocantilever sensors.
引文
[1] Qingmin Wang, Yaoen Yang, Mubiao Su and Yuhong Liu. Research on Applicationof Micro-Nano Acceleration Sensor in Monitoring the Vibration State of Vehicles[J]. Procedia Engineering,2012,29:1213-1217.
    [2] Huiling Duan. Surface-Enhanced Cantilever Sensors with Nano-Porous Films [J].Acta Mechanica Solida Sinica,2010,23(1):1-12.
    [3] Woo-Park JEONG, Chang-Choi SOO, Cho HYUN, Woo-Lee DEUG. PortableNano Probe for Micro/nano Mechanical Scratching and Measuring [J].Transactions of Nonferrous Metals Society of China,2011,21(1):205-209.
    [4] Fahlbusch S., Mazerolle S., Breguet J.M. Nanomanipulation in a Scanning ElectronMicroscope [J]. Journal of Materials Processing Technology,2005,167(2-3):371~382.
    [5] Santos N.C., Castanhob M.A. An Overview of the Biophysical Applications ofAtomic Force [J]. Biophysical Chemistry,2004,107:133~149.
    [6] Himanshu Dutt Sharma, Tanmay Pal, Chandra Shekhar, Characterization ofMicrocantilever Spring and Force Sensor Using Nanomanipulators [J]. Thin SolidFilms,2010,519(3):1040-1043.
    [7] Burg T.P., Godin M., Knudsen S.M., et al. Weighing of Biomolecules, Single Cellsand Single Nanoparticles in Fluid [J]. Nature,2007,446:1066-1069.
    [8] Blow N. Nanotechnology: Could it be a Small World after All [J]. Nature,2008,452:901-904.
    [9] Li M., Tang H.X., Roukes M.L. Ultra-Sensitive NEMS-based Cantilevers forSensing, Scanned Probe and Very High-Frequency Applications [J]. NatureNanotechnology,2006,2:114-120.
    [10] Beer S.D., Ende D.V.D., Mugele F. Atomic Force Microscopy CantileverDynamics in Liquid in the Presence of Tip Sample Interaction [J]. Applied PhysicsLetters,2008,93(25):253106.
    [11] Jensen K., Kim K., Zettl A. An Atomic-Resolution Nanomechanical Mass Sensor[J]. Nature Nanotechnology,2008,3:533-537.
    [12] Raman A., Melcher J., Tung R. Cantilever Dynamics in Atomic ForceMicroscopy [J]. Nano today,2008,3(1-2):20-27.
    [13] Sader J.E. Frequency Response of Cantilever Beams Immersed in Viscous Fluidswith Applications to the Atomic Force Microscope [J]. Review of ScientificInstruments,1998,84(1):64-76.
    [14] Yum K., Wang Z.Y., Suryavanshi A.P., et al. Experimental Measurement andModel Analysis of Damping Effect in Nanoscale Mechanical Beam Resonators inAir [J]. Journal of Applied Physics,2004,96(7):3933.
    [15] Zhu Q., Shih W.Y., Shih W.H. Mechanism of Flexural Resonance FrequencyShift of a Piezoelectric Microcantilever Sensor During Humidity Detection [J].Applied Physics Letters,2008,92(18):183505.
    [16] Shih W.Y., Zhu Q., Shih W.H. Length and Thickness Dependence of LongitudinalFlexural Resonance Frequency Shifts of a Piezoelectric Microcantilever Sensordue to Young’s Modulus Change [J]. Journal of Applied Physics,2008,104(7):074503.
    [17] Verbridge S.S., Ilic R., Craighead H.G., et al. Size and Frequency Dependent GasDamping of Nanomechanical Resonators [J]. Applied Physics Letters,2008,93:013101.
    [18] Decuzzi P., Granaldi A., Pascazio G. Dynamic Response of MicrocantileverBased Sensors in a Fluidic Chamber [J]. Journal of Applied Physics,2007,101(2):024303.
    [19] Martin M.J., Fathy H.K., Houston B.H. Dynamic Simulation of Atomic ForceMicroscope Cantilevers Oscillating in Liquid [J]. Journal of Applied Physics,2008,104(4):044306.
    [20] Bruker. http://www.bruker.com/cn.html.
    [21] Xu S, Muthatasan R. Cantilever Biosensors in Drug Discovery [J]. ExpertOpinion on Drug Discovery,2009,4(12):1237-1251.
    [22] Ilic B, Craighead H G, Krylov S, et al. Attogram Detection UsingNanoelectromechanical Oscillators [J]. Journal of Applied Physics,2004,95(7):3694-3703.
    [23] Yang Y T, Callegari C, Feng X L, et al. Zeptogram-Scale Nanomechanical MassSensing [J]. Nano Letters,2006,6(4):583-586.
    [24] Thundat T, Warmack R J, Chen G Y, et al. Thermal and Ambient-InducedDeflections of Scanningforce Microscope Cantilevers [J]. Applied Physics Letters,1994,64(21):2894-2896.
    [25] Hnote, Thundat T, Lesniewska E, et a1. Measuring Magnetic Susceptibilities ofNanogram Quantities of Materials Using Microcantilevers [J]. Ultramicrescopy,2001,86(1-2):175-180.
    [26] Davis Z J, Abadalgk.Kuhn O, et al. Fabrication and Characterization ofNanoresonating Devices for Detection [J]. Journal of Vacuum Science&Technology B,2000.18(2):612-616.
    [27] Boskovic S, Chon J, Mulvaney P, et a1. Rheological Measurements UsingMicrocantilever [J]. Journal of Rheology,2002,46(4):891-899.
    [28] Barth S, Koch H, Kittel A, et a1. Laser-Cantilever Anemometer: a New High-Resolution Solar for Air and Liquid Flows [J].Review of Scientific Immanent,2005,76(7):075110.
    [29] Lee D, Shin N, Lee K H, et a1. Microcantilever a with Nanowells as MoistureSensors [J].Sensors and Actuators B-Chemical,2009,137(2):561-565.
    [30]董瑛,高伟,郑义等.用于挥发性有机化合物探测的微悬臂梁传感器[J].纳米技术与精密工程,2010,8(2):95-101.
    [31] Yang R, Huang X, Wang ZY, et al. A Chemisorption-Based MicrocantileverChemical Sensor for the Detection of Trimethylamine [J].Sensors and ActuatorsB-Chemical,2010,145(1):474-479.
    [32]张志祥,李民乾.电场驱动微悬臂生物传感器及对DNA的快速、高灵敏度检测[J].生物化学与生物物理进展,2005,32(4):314-317.
    [33]陈雁云,薛长国,黄渊等.微悬臂梁传感器对中药成分的非标记检测[J].实验力学,2010,25(5):529-535.
    [34] Zhang J, Ji H F. An Anti E-Coli O157: H7Antibody-ImmobilizedMicrocantilever for the Detection of Escherichia Coli (E-coli)[J]. AnalyticalSciences,2004,20(4):585-587.
    [35] Zhang Y, Ji HF, Brown GM, Thundat T. Detection of CrO42Using a HydrogelSwelling Microcantilever Sensor [J]. Analytical chemistry,2003,75(18):4773-4777.
    [36] Xu YM, Pan HQ, Wu SH, Zhang BL. Interaction Between Tripeptide Gly-Gly-His and Cu2+Probed by Microcantilevers [J]. Chinese Journal of AnalyticalChemistry,2009,37(6):783-787.
    [37] Calleja M., Nordstrom M.,Alvarez M.,Tamayo J.,Lechugal L. M.,BoisenA. Highly Sensitive Polymer-based Cantilever-Sensors for DNA Detection [J].Ultramicroscopy,2005,105(1-4):215-222.
    [38]王赪胤,王德艳,汪国秀,胡效亚.基于原子力显微镜的微悬臂传感器测定溶菌酶[J].分析化学,2010,38(12):1771-1775
    [39] Tzeng T, Cheng Y, Saeidpourazar R, Aphale S, et. Adhesin-SpecificNanomechanical Cantilever Biosensors for Detection of Microorganisms [J].Journal of heat transfer,2011,133(1):011012.1-011012.5.
    [40] Mertens J, Finot E, Nadal M H, et al. Detection of Gas Trace of HydrofluoricAcid Using Microcantilever [J]. Sensors and Actuators B: Chemical,2004,99(1):58-65.
    [41] Amirola J, Rodriguez A, Castaner L, et al. Micromachined silicon Microcantilevers for Gas Sensing Applications with Capacitive Readout [J]. Sensors andActuators B,2005(111-112):247-253.
    [42]李鹏,李昕欣,王跃林.用于化学气体检测的压阻检测式二氧化硅微悬臂梁传感器[J].传感技术学报,2007(10):2174-2177.
    [43] Then D, Vidic A, Ziegler C. A Highly Sensitive Self-Oscillating Cantilever Arrayfor the Quantitative and Qualitative Analysis of Organic Vapor Mixtures [J].Sensors and Actuators B-Chemical,2006,117(1):1-9.
    [44] Archibald R, Datskos P, Devault G, et al. Independent Component Analysis ofNanomechanical Responses of Cantilever Arrays [J]. Analytical Chemical Acta,2007,584(1):101-105.
    [45] Zhang J, Lang H P, Huber F, et al. Rapid and Label-Free NanomechanicalDetection of Biomarker Transcripts in Human RNA [J]. Nature Nanotechnology,2006,1(3):214-220.
    [46] Huber F, Backmann N, Grange W, et al. Analyzing Gene Expression UsingCombined Nanomechanical Cantilever Sensors [J]. Journal of Physics: ConferenceSeries,2007,61(1):450-45.
    [47] Hwang K S, Lee J H, Park J, et al. In-Situ Quantitative Analysis of a Prostate-Specific Antigen (PSA) Using a Nanomechanical PZT Cantilever [J]. Lab on aChip,2004,4(6):547-552.
    [48] Rijal K, Mutharasan R. PEMC-Based Method of Measuring DNA Hybridizationat Femtomolar Concentration Directly in Human Serum and in the Presence ofCopious Noncomplementary Strands [J]. Analytical Chemistry,2007,79(19):7392-7400.
    [49] Vancura C, Lichtenberg J, Hierlemann A, et al. Characterization of MagneticallyActuated Resonant Cantilevers in Viscous Fluids [J]. Applied Physics Letters,2005,87(16):162510.
    [50] Verbridge S S, Bellan L M, Parpia J M, et al. Optically Driven Resonance ofNanoscale Flexural Oscillators in Liquid [J]. Nano Letters,2006,6(9):2109-2114.
    [51] Zhang A., Suzuki. K. A Comparative Study of Numerical Simulations for Fluid-Structure Interaction of Liquid-Filled Tank during Ship Collision [J]. OceanEngineering,2007,34(5):645-652.
    [52] Hansson P.A, Sandberg G. Dynamic Finite Element Analysis of Fluid-Filled Pipes[J]. Computer Methods in Applied Mechanics engineering,2001,190(24):3111-3120.
    [53] Lai Y. G. A Numerical Simulation of Mechanical Heart Valve Closure FluidDynamics [J]. Journal of Biomechanics,2002,35(7):881-892.
    [54] Girodroux L. P., Grisval J. P. Guillemot S., et al. Comparison of Static andDynamic Fluid-Structure Interaction Solutions in the Case of a Highly FlexibleModern Transport Aircraft Wing [J]. Aerospace Science and Technology,2003,7(2):121-133.
    [55] Wang X. Q., So R. M. C., Liu Y. Flow-Induced Vibration of an Euler-BernoulliBeam [J]. Journal of Sound and Vibration.2001,243(2):241-268.
    [56] Hu H. Direct Simulation of Flows of Solid-Liquid Mix-Tures [J]. InternationalJournal of Multiphase Flow,1996,22:335-352.
    [57] Choi H G, Joseph D D. Fluidization by Lift of300Circular Particles in PlanePoiseuille Flow by Direct Numerical Simulation [J]. Journal of Fluid Mechanics,2001,438:101-128.
    [58] Hubner B, Walhorn E, Dinkler D. Simultaneous to the Interaction of Wind Flowand Light-Weight Membrane Structures [A]. Proceedings of InternationalConference on Lightweight Structures in Civil Engineering,2002:519-523.
    [59] Namkoong K, Choi H. G, Yoo J. Y. Computation of Dynamic Fluid-StructureInteraction in Two-Dimensional Laminar Flows Using Combined Formulation [J].Journal of Fluid and Structure,2005,20:51-69.
    [60] Stein K, Benne Y. R, Kalro V, et a1. Parachute Fluid-Structure Interactions:3-DComputation [J]. Computer. Methods in Applied Mechanics and Engineering,2000,190:373-386.
    [61] Hermann G.M., Jan S. Partitioned but Strongly Coupled Iteration Schemes forNonlinear Fluid-Structure Interaction [J]. Computer&Structures,2002,80(27):1991-1999.
    [62] Jan V., Lieve L., Joris D. Implicit Coupling of Partitioned Fluid-StructureInteraction Problems with Reduced Order Models [J]. Computer&Structures,2007,85(11):970-976.
    [63] Zuijlen V.A.H, Bosscher S., Bijl H. Two Level Algorithms for Partitioned Fluid-Structure Interaction Computations [J]. Computer Methods in Applied Mechanicsand Engineering,2007,196(8):1458-1470.
    [64] Eatock R., Ohkusu M. Green Functions for Hydroelastic Analysis of VibratingFree-Free Beams and Plates [J]. Applied Ocean Research,2002,22:295-314.
    [65]郝双户,董国海,宗智,郑艳娜.圆环在波浪作用下的非线性流固耦合分[J].工程力学,2007,24(7):53-58.
    [66]岳宝增,刘延柱,王照林.非线性流固耦合问题的ALE分步有限元数值方[J].力学季刊,2001,22(1):346-349.
    [67]孙芳锦,张大明,殷志祥.流固耦合问题中基于单元变形的有限元网格更新方法[J].辽宁工程技术大学学报,2008,27(5):674-676
    [68]魏泳涛,刘力菱.流-固耦合问题的ALE有限元分析[J].核动力工程,2009,30(5):79-83.
    [69]黄玉盈,金涛.变水深坝-库系统耦振分析的边界元-有限元混合法[J].固体力学学报,1998,19(3):245-251.
    [70]张效松,叶天琪.流-固耦合问题边界元-有限元耦合方法分析[J].石家庄铁道学院学报,2000,13(2):6-9.
    [71]曹贻鹏,张文平.轴系纵振对双层圆柱壳体水下声辐射的影响研究[J].船舶力学,2007,11(2):293-299.
    [72] Lixiang Zhang, Yakun Guo, Shihua He. Numerical Simulation of Three-Dimensional Incompressible Fluid in a Box Flow Passage Considering Fluid-Structure Interaction by Differential Quadrature Method [J]. Applied MathematicalModeling,2007,31(9):2034-2049.
    [73]包日东,闻邦椿.用微分求积法分析不同支承条件下水下输流管道的动力特性与容许悬跨长度[J].地震工程与工程振动,2009,29(2):131-137.
    [74]陈大林,吴连军.气动载荷对板结构动态特性的影响分析[A].第十届全国振动理论及应用学术会议论文集(2011)下册.
    [75]崔鹏,韩景龙.一种局部形式的流固耦合界面插值方法[J].振动与冲击,2009,28(10):64-68.
    [76]杨莹,陈志英.航空发动机管路流固耦合固有频率计算与分析[J].燃气涡轮实验与研究,2010,23(1):42-46.
    [77]江召兵,沈庆,陈徐均,潘小强. ALE动网格法在流固耦合数值模拟中的应用[J].应用力学学报,2008,25(4):669-672
    [78] JiSeok Lee, SangHwan Lee. Fluid-Structure Interaction Analysis on a FlexiblePlate Normal to a Freestream at Low Reynolds Numbers [J]. Journal of Fluids andStructures,2012,29:18-34.
    [79] Matthew R., Zhanke L, Yin L. Free Vibration of Cantilevered Composite Plates inAir and in Water [J]. Composite Structures,2013,95:254-263.
    [80] Ergin A., Ugurlu B. Linear Vibration Analysis of Cantilever Plates PartiallySubmerged in Fluid [J]. Journal of Fluids and Structures,2003,17:927-939.
    [81] Kang X., Tay C.J., Quan C., et al. Dynamic Mecharacterization of MEMSStructures by Ultrasoniewave Excitation [J]. Journal of Micro Mechanics andMicroengineering,2007,17(12):2426-2431.
    [82]刘宁,林云生,左燕生等.液体中微悬臂传感器共振检测技术的研究[J].微细加工技术,2007,4:59-60.
    [83]房轩,李艳宁,丁丽丽等.液体中基于动态微悬臂梁传感器的质量检测技术[J].压电与声光,2008,30(3):379-384.
    [84] Sader J.E. Calibration of Rectangular Atomic Force Microscope Cantilevers [J].Review of Scientific Instruments,1999,70(10):3967-3969.
    [85] Eysden C.A.V., Sader J.E. Frequency Response of Cantilever Beams Immersed inViscous Fluids with Applications to the Atomic Force Microscope: Arbitrary ModeOrder [J]. Journal of Applied Physics,2007,101(4):044908.
    [86] Don W. D, Fang T, Thomas T. Effective Mass and Flow Patterns of FluidsSurrounding Microcantilevers [J]. Ultramicroscopy,2006,106:789-794.
    [87] Shueei-Muh Lin. Effective Damping and Frequency Shifts of Several Modes ofan Inclined Cantilever Vibrating in Viscous Fluid [J]. Precision Engineering,2010,34:320-326.
    [88] Kimber M., Lonergan R., Garimella S.V. Experimental Study of AerodynamicDamping in Arrays of Vibrating Cantilevers [J]. Journal of Fluids and Structures,2009,25:1334-1347.
    [89]范高超,黄在银,陈洁,马玉洁.尺寸效应对氧化锌微/纳体系热力学性质的影响[J].化学学报,2012,70:1-5.
    [90]黄凌燕.石墨烯拉伸性能与尺度效应的研究[D].华南理工大学硕士论文,2012.
    [91] HaiBo Li, JingTing Xiong, Xi Wang. The Coupling Frequency of Bioliquid-FilledMicrotubules Considering Small Scale Effects [J]. European Journal of Mechanics-A/Solids,2013,39:11-16.
    [92] Chang T. P. Small Scale Effect on Axial Vibration of Non-Uniform and Non-homogeneous Nanorods [J]. Computational Materials Science,2012,54:23-27.
    [93] Carpinteri A., Corrado M., Goso G., Paggi M. Size-Scale Effects on InteractionDiagrams for Reinforced Concrete Columns [J]. Construction and BuildingMaterials,2012,27(1):271-279.
    [94] Wong E W, et al. Nanobeam Mechanics: Elasticity Strength and Toughness ofNanorods and Nanotubes [J]. Science,1997,277(5334):1971-1975.
    [95] Sriram S., Bhushan B. Development of AFM-Based Techniques to MeasureMechanical Properties of Nanoscale Structures [J]. Sensors and Actuators A,2002:338-351.
    [96] Engel U, Eckstein R. Microforming-Form Basic Research to Its Realization [J].Journal of Materials processing Technology,2002,125(1):35-44.
    [97] Abbas A. Size Dependent Forced Vibration of Nanoplates with Consideration ofSurface Effects [J]. Applied Mathematical Modeling,2013,37(5):3575-3588.
    [98]王宁,董刚,杨银堂,陈斌,王凤娟,张岩.考虑晶粒尺寸效应的超薄Cu电阻率模型研究[J].物理学报,2012,61(1):1-7.
    [99]聂志峰,周慎杰,韩汝军,肖林京,王凯.应变梯度弹性理论下微构件尺寸效应的数值研究[J].工程力学,2012,29(6):38-45.
    [100]叶贵根,薛世峰,仝兴华,戴兰宏.材料强化因素对切削过程中尺寸效应的影响[J].中国机械工程,2012,23(5):
    [101] Lam D C C, Yang F, Chong A C M, Wang J, Tong P. Experiments and Theory inStrain Gradient Elasticity [J]. Journal of the Mechanics and Physics of Solids,2003,51:1477-1508.
    [102] Stolken J S, Evans A G. A Microbend Test Method for Measuring the PlasticityLength Scale [J]. Acta Mater,1998,46(14):5109-5115.
    [103]丁建宁,孟永刚,温诗铸.多晶硅微电子机械构件材料强度尺寸效应研究[J].机械强度,2001,23(4):385-388.
    [104] Asghari M., Kahrobaiyan M.H., Ahmadian M.T. A Nonlinear Timoshenko BeamFormulation Based on the Modified Couple Stress Theory [J]. InternationalJournal of Engineering Science,2010,48:1749-1761.
    [105] Liao-Liang Ke, Yue-Sheng Wang. Size Effect on Dynamic Stability ofFunctionally Graded Microbeams Based on a Modified Couple Stress Theory [J].Composite Structures,2011,93:342-350.
    [106] Shengli Kong, Shenjie Zhou, Zhifeng Nie, Kai Wang. The Size-DependentNatural Frequency of Bernoulli-Euler Micro-Beams [J]. International Journal ofEngineering Science,2008,46:427-437.
    [107]康新,席占稳.基于Cosserat理论的微梁振动特性的尺度效应[J].机械强度,2007,29(1):1-4.
    [108]赵冰,郑颖人,陈淳. Cosserat理论的有限元实现及微梁弯曲的尺寸效应模拟[J].长沙理工大学学报,2010,7(4):37-42.
    [109]赵勇,张若京.基于Cosserat理论的微观结构对非均质材料有效性能的影响分析[J].计算机辅助工程,2010,19(2):16-19.
    [110] Neto C, Evans D R, Butt H J, et al. Boundary Slip in Newtonian Liquids: aReview of Experimental Studies [J]. Reports on Progress in Physics,2005,68:285-289.
    [111] Graniek S, Zhu Y X and Lee H J. Slippery Questions about Complex FluidsFlowing past Solids [J]. Nature Materials,2003,2(4):221-222.
    [112] Denn M M. Extrusion Instabilities and Wall Slip [J]. Annual Review of fluidMechanizes,2001,33:265-281.
    [113]王玉亮.固液界面纳米气泡与基底相互作用研究及滑移长度测量[D].哈尔滨工业大学博士论文,2009
    [114] Hervet H, Leger L. Flow with Slip at the Wall: From Simple to Complex Fluids[J]. Comptes Rendus Physique,2003,4(2):241-249.
    [115] Vinogradova O. I., Yakubov G. E. Dynamic Effects on Force MeasurementsLubrication and the Atomic Force Microscope [J]. Langmuir,2003,19(4):1227-1234.
    [116] Cho J H J, Law B M, Rieutord F. Dipol-Dependent Slip of Newtonian Liquids atSmooth Solid Hydrophobic Surfaces [J]. Physical Review Letters,2004,92(16):16610.
    [117] Joseph P., Tabeling P. Direct Measurement of the Apparent Slip Length [J].Physical Review E,2005,71(3):035303.
    [118]王馨,张向军,孟永钢,温诗铸.黏度对流固界面滑移影响的试验研究[J].摩擦学学报,2009,29(3):200-204.
    [119]王馨,张向军,孟永钢,温诗铸.微纳米间隙受限液体边界滑移与表面润湿性试验[J].清华大学学报,2008,48(8):1302-1305.
    [120] Yang F., Chong A.C.M., Lam D.C.C., Tong P. Couple Stress Based StrainGradient Theory for Elasticity [J]. International Journal of Solids and Structures,2002,39:2731-2743.
    [121] Huang Y., Gao H., Hwang K.C. Strain-gradient Plasticity at the Micron Scale.British Columbia: Fleming Printing Ltd,1999,3:1051-1056
    [122]王卫东.面向MEMS设计的微流体流动特性研究[D].西安电子科技大学博士论文,2007.
    [123]钱晓蓉,沈宏继.微流体动力学研究发展与现状[J].航空精密制造技术,2005,41(6):11-14.
    [124]凌智勇,丁建宁,杨继昌,范真,李长生.微流动的研究现状及影响因素[J].江苏大学学报,2002,23(6):1-4.
    [125]许琪楼.矩形悬臂板自由振动精确解法[J].振动与冲击,2001,20(4):52-56.
    [126] Rahaeifard M., Kahrobaiyan M.H., Asghari M., Ahmadian M.T. Static pull-inanalysis of microcantilevers based on the modified couple stress theory[J]. Sensorsand Actuators A,2011,171:370-374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700