用户名: 密码: 验证码:
基于大规模定制的数控装备控制系统产品族设计理论及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制造业是中国经济的重要支柱型产业,数控装备业本身属于制造业的重要组成部分,同时又担负着为制造业中其它领域提供制造设备的重任,可见数控装备在制造业中处于极为突出的重要地位,控制系统在数控装备中处于主导地位,是其核心内容。面对当前多样化和个性化的定制需求,传统的产品设计开发方式显现出诸多弊端,不可避免地导致设计效率和质量的下降,应将数控装备控制系统的生产模式向大规模定制转变,本文着重对其中的数控装备控制系统产品族设计进行了深入研究,以期提高定制产品的开发效率和质量,主要研究工作包括:
     剖析目前数控装备控制系统产品设计开发的主要内容和流程,从五个方面指出其在面对定制需求时存在的主要问题。提出数控装备控制系统产品族设计的主要思想,区分与其他产品族设计、以及传统设计的不同之处,提出在产品族设计中需要解决的关键问题。给出产品族设计中的相关定义,确定其技术支撑环境,建立产品族设计的系统框架,提出基于产品族设计通用平台的两阶段开发模式,建立产品族设计的过程模型,构建出数控装备控制系统产品族设计的理论体系。
     提出产品族系统架构的思路,即通过对开发模式、搭载平台、软硬件分工、工作流程的共性和个性特征的分析及提炼,建立产品族系统架构。提出对产品族功能模块进行划分的主要内容和主要原则,建立功能模块的分区管理机制,提出建立产品族的功能模块属性及层次分解模型、功能模块约束关系、功能模块软硬件对应模型、功能模块关系模型和功能模块交互模型,并通过产品族系统架构和功能模块划分及建模的实例深入地阐述其具体过程。
     在产品族功能模块划分及建模的基础上,提出产品族模块化设计的主要思路、核心要素和具体流程。确定在设计过程中对功能进行拆解的主要原则,通过多视图综合完成对功能设计的描述。研究产品族中面向设计优化的任务调配问题,对设计元素进行模块化组织,确定设计阶段模块之间的关系。通过产品族功能模块设计及建模实例深入地阐述其具体过程。
     根据两阶段开发模式的要求,对基于产品族设计通用平台的配置设计问题进行研究。确定定制产品配置设计的主要内容,规划定制产品的两个配置层次,确定功能模块的配置原则和方法。建立非功能性需求与设计方案选择之间的对应关系,确定由功能性需求和非功能性需求共同配合展开功能配置的过程。根据所建系统特性指标集实现按照客户的定制需求确定系统运行环境。建立功能模块在各阶段的正向映射和反向追踪关系,确定个性化模块的二次设计过程。
     在所构建的产品族设计通用平台实例基础上,通过某定制产品的设计开发案例,深入阐述基于产品族设计通用平台两阶段开发模式的具体实施过程。定制产品的设计开发避免了从零开始的实施过程,显著地提高了设计开发效率和质量,验证了本文研究工作的重要价值。
Manufacturing is an important mainstay of Chinese economy. Numerical control equipment industry is an important portion of manufacturing. At the same time, numerical control equipment industry provides equipments for other fields. So the status of numerical control equipment industry in manufacturing is very outstanding. Control system is the dominant portion in numerical control equipment. In the face of diversification and individuation customization requirements, conventional product design and development mode can not meet the requirements, which results in the decline of design efficiency and quality. The product mode of control system should be converted into mass customization. This dissertation researches on product family design of control system in order to elevate the design efficiency and quality. The main jobs can be summarized as follows:
     The main content and flow of current control system design and development have been analyzed. In the face of customization requirements, the main problems which exist in the process have been concluded from five aspects. This dissertation put forward the main idea of control system product family design, and points out its differences with other product family design or conventional product design. The critical problems which should be solved have been brought forward. The correlative definitions and technology supports have been confirmed. The system framework of product family design has been established. Two phase's development mode of product family design has been put forwarded. The process model has been established. Then, the theory system of control system product family design has been constructed.
     The system skeleton of product family has been established by way of abstracting commonness and individuality from development mode, running platform, work assignment of hardware and software, and work process. The main contents and principles of function modules partition in product family have been brought forwarded. The subarea management mechanism of function modules has been established. The construction of function modules attribute and layer decompose model, function modules software and hardware corresponding model, function modules connection model, and function modules intercommunion model for product family have been brought forwarded. The processes of system skeleton establishment and function modules partition in product family have been elaborated by way of examples.
     The main idea, core factor, process of modularization design in product family has been brought forwarded based on the function modules partition and modeling. The main principles of function decompose in design process have been confirmed. The descriptions of function design have been accomplished by the integration of multi-view. The tasks adjusted of product family for design optimization have been studied. The design elements have been organized by modularization. The connection of modules in design phase has been confirmed. The process of function modules design in product family has been elaborated by way of example.
     In terms of the demand of two phase's development mode, configuration design based on product family design universal platform has been studied. The main contents of configuration design for customization product have been confirmed. Two configuration layers of customization product have been partitioned. The principles and methods of configuration have been confirmed. The corresponding between the non-functional requirements and design schemes has been established. The process of function configuration has been confirmed by combining functional requirements with non-functional requirements. The system running circumstance has been confirmed by customization reqirement based on system speciality indexes. The mapping and tracing connection among the phases have been established. The second design process for individuation modules has been confirmed.
     In terms of product family design universal platform example which has been constructed, this dissertation has elaborated the implementation process of two phase's development mode by way of a customization product development case. The design of customization product need not start from scratch, the design efficiency and quality have been elevated evidently. The important value of research has been validated.
引文
[1]刘日良,张先芝,张承瑞.STEP兼容式数控加工技术研究进展[J].计算机集成制造系统,2007,13(8):1608-1615.
    [2]陈吉红.自主技术创新,发展国产中高档数控系统产业[J].航空制造技术,2006,(2):52-55.
    [3]王永章,杜君文,程国全主编.数控技术[M].北京:高等教育出版社,2001.
    [4]叶培华主编.数字控制技术[M].北京:清华大学出版社,2002.
    [5]刘祖其.数控系统及发展趋势[J].制造业自动化,2009,31(12):4-7.
    [6]包杰,李亮,何宁.基于PC的开放式数控系统微铣削伺服控制的研究[J].机械科学与技术,2009,28(9):1230-1234.
    [7]郭鼓,李树军,徐永新等.一种基于PMAC的开放式数控系统的设计与实现[J].制造业自动化.2012,34(2):106-110.
    [8]冯斌,张东升,程有龙等.开放式数控系统摩擦补偿的实现[J].机床与液压,2011,39(19):7-9.
    [9]沈红卫.基于软件的经济型数控系统设计[J].机床与液压,2003,(2):165-167.
    [10]梁宏斌,王永章,李霞.开放式数控系统与标准化[J].计算机集成制造系统,2004,10(9):1134-1138.
    [11]向平,黄健.基于PC的开放式数控系统[J].兵工自动化,2004,23(4):24-25.
    [12]汪木兰,王令其.开放式数控系统实用平台的构造[J].机床与液压,2003,(5):120-122.
    [13]邴龙健,雷玉勇,蔡黎明等.基于PMAC控制器的开放式数控系统研究[J].机床与液压,2009,37(10):24-26.
    [14]杨晓京,陈子辰.微机数控系统开放体系结构的研究[J].组合机床与自动化加工技术,2003,(5):29-32.
    [15]G Prischow, Ch Daniel, G Junghans. Open System Controllers-a Challenge for The Future of The Machine Tool Industry[J]. Annals of the CIRP,1993,42(l):28-35.
    [16]Szafarczyk M. An Open Architecture Real-time Controller for Machining Processes[C]. Proceedings of the 27th CIPP ISMS,2006,45-50.
    [17]祁国宁,韩永生,陈俊.合理化工程的理论与实践[R].863/CIMS课题研究报告,1996.
    [18]祁国宁,顾新建,谭建荣.大批量定制技术及其应用[M].北京:机械工业出版社,2003.
    [19]Siemens/Nixdorf.Raio Engineering[R]. Technical Report,1994.
    [20]冯娟,李和良,白立新译.21世纪企业竞争前沿——大规模定制模式下的敏捷产品开发[M].北京:机械工业出版社,1999.
    [21]GM Powertrain. Open, Modular Architecture Controls at GM Powertrain. Technology and Implementation, Version 1.0,1996,3, [EB/OL]. http://www.arcwen.com/omac/document /GMPTG.
    [22]Chrysler. Ford and GM Requirement of Open, Modular Architecture Controllers for Application in The Automotive Industry. Version 1.1,1994,12, [EB/OL]. http://www. arcwen.com/omac/document/omacvl 1.
    [23]NGM Office. Next Generation Manufacturing (NGM).1997, [EB/OL]. http://www.dp. doe.gov/ngm/default.htm.
    [24]W Sperling. Objectives and Basic Ideas of the OSACA Project[R]. OSACA Open Day'96 Report.1996,4.
    [25]OSEC Document Draft. Version 2.0,1996, [EB/OL]. http://www.sml.co.jp/osec/draft2.0.
    [26]B.Joseph Pine Ⅱ. Mass Customization, the New Frontier in Business Competition[M]. Boston:Harvard Business Press,1993.
    [27]Giovani Da Silveria, Denis Borenstein, Flavio S.Fogliatto. Mass Customizaiton:Literature Review and Research Directions[J]. International Journal of Production Economics,2001, (12):11-13.
    [28]Cristiano J J, Liker J K, White C C. Customer-Driven Product Development throught Quality Function Deployment in the U. S. and Japan[J]. The Journal of Product Innovation Management,2000,17(4):286-308.
    [29]Toffler. A Future Shock[M]. New York:Bantam Books,1970.
    [30]Spring M, Dairymple J F. Product Customization and Manufacturing Strategy[J]. International Journal of Operations & Production Management.2000,20(4):441-467.
    [31]Suh N P. The principle of design[M].Oxford:Oxford University Press,1990.
    [32]Ulrich K, Tung K. Fundamentals of Product modularity [C]. Issues in Design/Manufaeturing Conference, Newyork:ASME,1991, DE39:73-80.
    [33]Mitchell M Tseng, Jiao JX, Merchant ME. Design for Mass Customization[J]. Annals of the CIRP,1996,45(1):153-156.
    [34]Jose A. Modular and platform methods for product family design:Literature analysis [J]. Journal of Engineering Manufacture,2005,16(3):371-390.
    [35]Kreng V B, Lee T P. QFD-based modular product design with linear integer programming-a case study[J]. Journal of Engineering Design,2004,15(3):261-284.
    [36]Erens F, Verhulst K. Architectures for Product Families[J]. Computers in Industry, 1997,33(2-3):165-178.
    [37]Simpon T W, Maier J R, Mistree F. Product platform Design:Method and Application [J]. Research in Engineering Design,2001,13(1):2-22.
    [38]Simpon T W, Maier J R, Mistree F. A Product platform Concept Exploration Method for product Family Design[C]. Proceedings of ASME Design Engineering Technical Conferences,1999(9):12-19.
    [39]Giovani Da Silveira. A framework for the management of product variety[J]. International Journal of Operations&Production Management,1998,18(3):271-285
    [40]Martin Mark V, Ishii Kosuke. Design for variety:developing standardized and modularized porduct platform architectures[J]. Research in Engineering Design,2002(13):213-235
    [41]AGARD B, KUSIAK A. Data-mining-based methodology for the design of product families[J]. International jounral of production research,2004,42(15);2955-2969.
    [42]Siddique Z. Common Platform Development:Designing for product Variety[D]. Atlanta: Georgia Institute of Technology,2000.
    [43]Nayak R U, Chen W, Simpson T W. A variation-based method for product family design [J]. Engineering Optimization,2002:34(l):65-81.
    [44]Jiao J, Tseng M M, Duffy V G, et al. Product Family Modeling for Mass Customization[J]. Computers & Industrial Engineering,1998,35(3-4):495-498.
    [45]Jiao J, Tseng M M. A Methodology of Developing Product Family Architecture for Mass Customization[J]. Journal of Intelligent Manufacturing,1999,10(1);3-20.
    [46]Jiao J, Tseng M M. An Information Modeling Framework for Product Families to Support Mass Customization Manufacturing[J]. Annals of the CIRP,1999,48(1):93-98.
    [47]Pahl Gand, W Beitz. Engineering design:a systematic approach[M]. London:Springer-Verlag,1996.
    [48]Camduff T W, Goonetillake J S. Configuration Management in Evolutionary Engineering Design Usingversioning and Itedgrity Constraints [J]. Advances in Engineering Software, 2004,35:161-177.
    [49]Ulrich K, Tung K. Fundamentals of Product modularity [C]. Issues in Design/Manufacture Integration. New York:ASME,1991:73-79.
    [50]Gershenson J K, Prasad G J, Allamnenl S. Modular product design:a life-cycle view[J]. Journal of Integrated Design and Process Scienee,1999:3(4):13-26.
    [51]Erixon Gunnar. Modularity-the basis for product and factory reengineering[J]. Annals of CIRP,1996,45(1):1-6.
    [52]Stone Robert B, Wood Kristin L, Crawford Richard H. Using quantitative functional models to develop Product architecture[J]. Design Studies,2000,21(3):239-260.
    [53]费志敏,李萍.大规模定制下的标准化设计原则[J].中国标准化,2000(12):4-5.
    [54]You-Tem Tsail, Kuo-Shong Wang. Development of modular-based design in considering technology complexity [J]. European Journal of Operation Research,1999,119(3):692-703.
    [55]Stone R B, Wood K L, Crawford R H. A heuristic method for identifying modules for product architectures[J]. Design Studies,2000,21(1):5-31.
    [56]Zamirowski E J, Kevin N O. Identifying product family architecture modularity using function and variety heuristics[C]. llthlnternational Conference on Design Theory and Methodology Las Vegas, USA:ASME,1999:15-26.
    [57]O Grady Peter, Liang Wen-Yau. Object oriented approach to design with modules[J]. Computer Integrated Manufacturing Systems,1998,11(4):267-28.
    [58]Meyer M H, Lehnerd A P. The Power of product Platforms:Building Value and Cost Leadership[M]. NewYork:FressPress,1997.
    [59]Jiang Z, Yan J. Research and development on constraint-based product family design and assembly simulation[J]. Journal of Materials Processing Teehnology,2003,139(1):257-262.
    [60]Gonzalez-Zugasti J, Otto K, Baker J. Amethod for architecting product platforms[J]. Research in Engineering Design,2002,12(7):61-72.
    [61]Simpson T W, Chen W, Allen J K. Conceptual design of a family of products through the use of the robust concept exploration method[C].6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA.1996,9(2):1535-1545.
    [62]Kohlhase N, Virkhofer H. Development of modular structures:the prerequisite for successful modular products[J]. Journal of Engineering Design,1996,31(7):279-291.
    [63]Baldwin C Y, Clark K B. Design rules:The Power of Modularity [M]. MIT Press, Cambridge, MA,2000.
    [64]Johannesson H. Computer aided modeling of families and family members of designed parts[J]. Advanced Design Automation,1992,44(2):173-179.
    [65]Siddique Z, Rosen D W. Product platform design:a graph grammar approach[C]. ASME Design Engineering Technical Conferences, Las Vegas, NV,1999:183-192.
    [66]Du X, Jiao J, Tseng M M. Product family modeling and design support:an approach based on graph rewriting systems[J]. AIEDAM,2002b,16(2):103-119.
    [67]Bi Z M, Zhang W J. Modularity Technology in Manufacturing:Taxonomy and Issues[J]. International Journal of Manufacturing Technology,2001,18(5):381-390.
    [68]FUJITA K. Product Variety Optimization under Modular Architecture[J]. Computer Aided Design,2002,34(12):953-965.
    [69]Lee W B, Lau H, Liu Z Z, Tam S A. A Fuzzy Analytic Hierarchy Process Approach in Modular Product Design[J]. Expert Systems,2001,18(1):32-42.
    [70]John D Payne. Open up-Carefully:Standards and Well-Thought-out Strategies Can Bring the Benefits of Open Control Architectures to Your Operation [J]. Manufacturing Engineering, 1998,(11):68-75.
    [71]杨帆,肖贝,廖知等.大“S”速度控制方法在数控雕刻系统中的应用[J].华中科技大学学报(自然科学版),2012,40(2):14-17.
    [72]李树荣,张强.计算机数控系统光滑时间最优轨迹规划[J].控制理论与应用,2012,29(2):192-198.
    [73]王太勇,王涛,杨洁等.基于嵌入式技术的数控系统开发设计[J].天津大学学报,2006,39(12):1509-1515.
    [74]Robert Hillaire. Whatever Happened to Open Controls? A Manufacturing Research Engineer Looks at Today's "Open" Controls and Suggests New Directions for Controls Makers [J]. Manufacturing Engineering,2000, (6):80-89.
    [75]王军,王淑红,孙军等.基于STEP-NC数控程序的加工仿真平台[J].沈阳建设大学学报(自然科学版),2007,23(2):311-314.
    [76]韩霜,赵继,刘志新.串-并混联式研抛机床的开放式数控系统研究[J].中国机械工程,2007,18(16):1913-1916.
    [77]姬清华,连黎明.高精度数控机床主轴伺服控制系统研究[J].制造业自动化,2012,34(3):79-81.
    [78]Golden E Herrin. Open Architecture- Who Defines It and Who Benefits? [J], Manufacturing Engineering,1998, (7):86-89.
    [79]孙维堂,刘永坚,张禹等.有限状态机在开放式数控系统中的应用[J].东北大学学报(自然科学版),2007,28(8):1174-1177.
    [80]王治森,高荣,董伯麟等.基于Web服务的移动控制数控系统关键技术研究[J].中国机械工程,2007,18(21):2570-2575.
    [81]曹恒,凌正阳,蒋知峰等.软件设计模式在数控系统人机界面开发中的应用[J].华东理工大学学报(自然科学版),2007,33(6):878-881.
    [82]周舟,张洛平.基于运动控制器的开放式数控系统[J].机床与液压,2003,(3):94-95.
    [83]杨帆,廖知,肖贝等.改进插补算法在数控雕刻系统中的应用[J].华中科技大学学报(自然科学版),2011,39(2):27-31.
    [84]黄河,王甫茂,古文伟等.面向开放式数控系统的高性能自适应插补算法的研究[J].组合机床与自动化加工技术,2010,(12):28-31.
    [85]张广军,宁仲良.开放式数控网络化加工系统的构建与实现[J].机床与液压,2003,(1):119-122.
    [86]关锡友,孙伟.数控机床主轴系统动力学特性分析方法研究[J].组合机床与自动化加工技术,2010,(4):1-5.
    [87]金钊,林宝君,冀群心.数控系统中伺服系统位置前馈控制器的设计[J].测控技术,2010,29(8):65-67.
    [88]孙如军.数控液压伺服系统设计与应用[J].机床与液压,2010,38(18):48-50.
    [89]朱全印,韩来吉,付云强等.数控机床主轴变频调速控制系统原理及应用[J].煤矿机械,2009,30(9):194-196.
    [90]Davis S. From future perfect:Mass customizing[J]. Planning Review,1989,17(2):16-21.
    [91]但斌.大规模定制——打造21世纪企业核心竞争力[M].北京:科学出版社,2004.
    [92]Gilmore J. H, Pine II B J. The four faces of mass customization [J]. Harvard Business Review,1997,75(l):91-101.
    [93]Ross A. Selling uniqueness----Mass customization:The new religion for manufacturers[J]. Management Engineer,1996,75(12):260-263.
    [94]Alford D, Sackett P, Nelder G. Mass customization:An automotive perspective[J]. International Journals of Production Economics,2000,65(1):99-110.
    [95]Duray R, Ward P T, Milligan G W et al. Approaches to mass customization:Configurations and empirical validation[J]. Journal of Operations Management,2000,18(6):605-625.
    [96]Piller F T, Stoko C M. Mass customization:Four approaches to deliver customized products and services with mass production efficiency [C]. Engineering Management Conference, IEMC'02.2002 IEEE International,2002, (2):773-778.
    [97]Beaty R T. Mass customization[J]. Manufacturing Engineer,1996,75(5):217-220.
    [98]Feitzinger E, Lee H L. Mass customization at Hewlett-Packed:The power of postponement J]. Harvard Business Review,1997(1):166-121.
    [99]Eastwood M A. Implement mass customization[J]. Computers in industry,1996,30(3): 171-174.
    [100]Zipkin P. Mass customization[J]. Sloan Management Review,2001,42(3):81-87.
    [101]Simpson T W. Product platform design and customization:status and promise [J]. Artificial Intelligence for Engineering Design, Analysis, and Manufacturing,2004,18(1):3-20.
    [102]Tseng M M, Piller F T. The Customer Centric Enterprise, Advances in Mass Customization and Personalization[M]. New York:Springer,2003.
    [103]涂荣军,刘卫东等.基于FODA方法的数控系统领域分析[J].南昌大学学报理科版,2012,36(6):572-576.
    [104]Tu Rongjun, Liu Weidong. A Study of Virtual Enterprise Modeling Based on Domain Specific Software Architecture[C]. The First International Workshop on Education Technology and Computer Science,2009(2):415-418.
    [105]Erens F, Verhulst K. Architectures for Product Families [J]. Computers in Industry,1997, 33(2-3):165-178.
    [106]Yu J, Gonzales-Zugasti J P, Otto K N. Product Architecture Definition Based upon Customer Demands[J]. Journal of Mechanical Design,1999,121(3):329-335.
    [107]McAdams D A, Stone R B, Wood K L. Functional Interdependence and Product Similarity Based on Customer Needs[J]. Research in Engineering Design,1999.11(1):1-19.
    [108]Wheelwright S, Sasser J. The New Product Development Map[J]. Harvard Business Review, 1989,67(5-6):112-125.
    [109]Salhieh S, Kamrani A. Macro Level Product Development Using Design for Modularity [J]. Robotics and Computer Integrated Manufacturing,1999,15(4):319-329.
    [110]Gu P, Sosale S. Product Modularization for Life Engineering[J]. Robotics and Computer Integrated Manufacturing,1999,15(5):387-401.
    [111]Erixon G, Yxkull A V, Arnstrom A. Modularity-The Basis for Product and Factory Reengineering[J]. Annals of The CIRP,1996,45(1):1-6.
    [112]Dobrescu G, Reich Y. Progressive Sharing of Modules among Product Variants[J]. Computer-Aided Design,2003,35(9):791-806.
    [113]Messac A, Martinez M P, Simpson T W. Effective product family design using physical programming[J]. Engineering Optimization,2002,34(3):245-261.
    [114]Ericsson A, Erixon G. Controlling Design Variants:Modular Product Platforms[M]. New York:ASME Press.1999.
    [115]Deboral L Mcguimmess, Jon R Wright. Conceptual Modeling for Configuration:A Description Logic-Based Approach[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,1998,12(4):333-344.
    [116]Tsai Y T, Wang K S. The Development of Modular-Based Design in Considering Technology Complexity[J]. European Journal of Operational Research,1999,119(3): 692-703.
    [117]MacDuffie J P, Sethuraman K, Fisher M. Product variety and manufacturing performance: evidence from the international automotive assembly plants study [J]. Management Science, 1996,42(3):350-369.
    [118]Sato Tomoya, Hagiwara Masafumi. IDSET:Interactive Design System Using Evolutionary Techniques[J]. Computer Aided Design,2001,33:367-377.
    [119]Cetin O L, Saitou K. Decomposition-based assembly synthesis for structural modularity[J]. Journal of Mechanical Design,2004,126(2):234-243.
    [120](美)Ivar Jacobson著.面向对象软件工程[M].北京:人民邮电出版社,2003.
    [121]C McClure. Software Reuse:A Standards-Based Guide [M]. Wiley-IEEE Computer Society, 2001.
    [122]吴哲辉著Petri网导论[M].北京:机械工业出版社,2006.
    [123]袁崇义著.Petri网原理与应用[M].北京:电子工业出版社,2005.
    [124]涂荣军等.开放式线切割数控系统关键技术研究[J].南昌大学学报理科版,2008,32(5):501-504.
    [125]王志明主编.数控技术[M].上海:上海大学出版社,2009.
    [126]Tu Rongjun, Liu Weidong. Modeling of Product Development Management in Virtual Enterprise Based on Unified Modeling Language[C].2009 International Conference on Computational Intelligence and Natural Computing,2009(2):375-378.
    [127]涂荣军.基于UML的线切割数控系统可视化建模[J].南昌大学学报理科版,2008,32(1):93-95,99.
    [128]Tu Rongjun. Modeling and Developing of Wire-electrode Cutting Numerical Control System Based on Windows[C].2008 International Workshop on Modeling, Simulation, and Optimization, WMSO 2008,163-166.
    [129]涂荣军,刘卫东等.数控系统族的可复用参考体系结构建模[J].南昌大学学报理科版,2013,37(1):34-37.
    [130]Tu Rongjun. Study on Reusable Machining Control Model of Wire-electrode Cutting Numerical Control System[C].2009 Second ISECS International Colloquium on Computing, Communication, Control, and Management,2009(3):260-263.
    [131]施泉生编.运筹学[M].北京:中国电力出版社,2004.
    [132]Suh N P. Axiomatic Design Advances and Applications [M]. New York:Oxford University Press,2001.
    [133]Lertworasirikul S, Fang S C, Joines J A, et al. Fuzzy data envelopment analysis—a possibility approach [J]. Fuzzy Sets and Systems,2003,139(2):379-394.
    [134]Metin C, I Deha Er. Fuzzy axiomatic design extension for managing model selection paradigm in decision science[J]. Expert Systems with Applications,2009,36(3):6477-6484.
    [135]Sun Microsystems, Java Management Extensions Instrumentation and Agent Specification [EB/OL]. http://java.sun.com/products/JavaManagement,2002.
    [136]Ivica Crnkovic, Magnus Larsson. Challenges of Component-Based Development[J]. The Journal of Systems and Software,2002,61:201-212.
    [137]Frakes W B, Kyo K. Software Reuse Research:Status and Future [J]. IEEE Transactions on Software Engineering,2005(31):529-536.
    [138](美)Roman Ed精通EJB(第二版)[M].北京:电子工业出版社,2002.
    [139]Caporuscio M, Inverardi P, Pelliccione P. Formal Analysis of Architectural Patterns Software Architecture [M]. Berlin:Springer-Verlag,2004.
    [140]de Bruin H, van Vliet H. Quality-Driven Software Architecture Composition [J]. Journal of Systems and Software,2003,66(3):269-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700