用户名: 密码: 验证码:
双极晶体管辐射损伤效应及深能级缺陷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以双极晶体管为研究对象,通过辐照源特点及模拟计算分析,选取电子、质子、Co-60射线及重离子作为辐照源,研究了双极晶体管电离效应、位移效应及其协合效应的特点和电性能退化规律。基于双极晶体管辐射效应和电性能退化规律表征、深能级瞬态谱分析及退火效应研究3种技术途径,揭示了双极晶体管的电离效应、位移效应及电离/位移协合效应的机制,建立了双极晶体管电离损伤和位移损伤量化模型。
     研究结果表明,不同种类的辐照源辐照时,NPN和PNP型双极晶体管的电性能参数呈现类似的变化趋势,器件类型对电性能参数变化趋势的影响不大。电离辐射损伤条件下,双极晶体管的电性能参数退化随辐照注量逐渐趋于饱和。基于深能级瞬态谱(DLTS)分析结果可知,电离辐射损伤会在双极晶体管集电区产生类深能级缺陷信号,在NPN型晶体管集电区表现为多子俘获陷阱,在PNP型晶体管集电区表现为少子俘获陷阱。位移和电离/位移协合辐射损伤时,双极晶体管的电性能随辐照注量持续退化,未见饱和趋势。位移辐射损伤在双极晶体管集电区中产生的深能级缺陷以多子俘获陷阱为主。基于双极晶体管的电离损伤机制,构建了过剩基极电流的表达式,提出了双极晶体管电流增益随电离辐照注量变化的简化模型,与试验数据吻合良好。
     不同种类重离子辐照试验结果表明,在相同位移吸收剂量下,不同种类的重离子对双极晶体管所造成的电性能退化程度和深能级缺陷浓度不同。穿透能力较弱的粒子,易在射程末端产生级联效应,导致深能级缺陷浓度明显提高并加剧晶体管的电性能退化;而穿透力较强的离子,主要在入射路径周围产生空位及间隙原子,所产生的深能级缺陷的浓度较低,电性能退化程度较小。基于入射粒子在晶体管基区产生位移吸收剂量分布的不均匀性和电离效应的影响,提出了优化NIEL方法的新思路,建立了不同种类粒子位移损伤等效性转换关系,与试验结果吻合良好。
     经20MeV Br离子辐照的双极晶体管顺序进行110keV电子辐照时,随着电子辐照注量的增加,电流增益的退化先逐渐恢复后继续加剧。DLTS测试结果表明,当低能电子辐照注量较小时,有利于低能电子产生的电离损伤使重离子位移辐射缺陷信号部分恢复,导致双极晶体管的电流增益逐渐恢复;当低能电子注量较大时,低能电子电离辐射损伤效应增强,促进重离子位移辐射缺陷浓度明显增加和电流增益衰降。
     不同偏置条件下低能质子和电子顺序辐照试验结果表明,相同辐照注量条件下,双极晶体管发射结零偏时所受辐射损伤程度最大,发射结反偏时辐射损伤程度居中,发射结正偏时辐射损伤程度最小。偏置条件对电离/位移协合辐射效应的影响规律与其对位移辐射效应的影响相同。通过重离子或低能质子与低能电子进行综合辐照试验,揭示了双极晶体管电离损伤对位移损伤起退火和加剧两种作用机制。
     在等时退火过程中,经不同类型粒子辐照后的晶体管电性能参数随着退火温度的升高均逐渐恢复。当退火温度达到700K时,NPN和PNP型双极晶体管的电性能参数均可恢复至辐照前的水平。随着退火温度的升高,电离辐射损伤缺陷浓度逐渐降低。对于位移辐射损伤,退火温度较低时(<550K),随着退火温度的升高,能级较深的缺陷浓度逐渐降低,而能级较浅的缺陷浓度逐渐升高;退火温度较高时(>550K),随退火温度的升高,辐照缺陷浓度均逐渐降低。
The degradation caused by electrons, protons, heavy ions with various energiesand Co-60source radiation is examined for the bipolar junction transistors, basedon analysis of the space radiation environment and ground-based simulationexperiments. Based on the research of radiation effects and electrical degradation,deep level transient spectra (DLTS) and annealing effects on BJTs, the mechanismsof synergistic effects between ionization and displacement damage are revealed.The model of ionization and displacement damage for the bipolar transistors isgiven.
     Experimental results show that with increasing irradiation fluence, thedegradation trends of NPN and PNP bipolar transistors are similar, under a givencondition for different particles, fluxes and energies. For ionizing radiation damage,the degradation of bipolar transistor shows a saturated trend with increasing fluence.Based on the DLTS results, there are the DLTS signals in the base collector junctionof a transistor induced by ionizing radiation. The majority carrier trap defect isfound in the base collector junction of the NPN transistor, while the minority carriertrap defects are measured in the base collector junction of PNP transistor inducedby gamma rays and110keV electrons. However, for displacement and synergisticradiation damage, the degradation of bipolar transistor has no saturated trend. Thedeep level defect in transistor induced by displacement radiation mainly is majoritycarrier trap defect. Based on the mechanism of ionizing damage, the function of theexcess base current and the simple model of current gain degradation in bipolartransistor are built, while the model and the experimental data match well.
     The results of various heavy ions radiation experiments show that the electricaldegradation and concentration of defects induced by various heavy ions aredifferent. The particle with small range can produce more clusters and more deeplevel defects, induce more degradation of electrical parameters. The particles withlong range can produce fewer vacancies and interstice atom, and less deep leveldefects, induce less degradation of electrical parameters. Considering theinhomogeneity of the displacement dose in the base region of a bipolar transistorand the impact of ionizing radiation, the equivalence of damage induced by variousdisplacement sources is built, while the model and the experimental data match well.
     Based on the experimental results of20MeV Br ions and110keV electronssequence irradiations, the current gain of the transistor irradiated by low energy electrons after heavy ions irradiation, recovers slowly at lower fluence andcontinues degrading at higher fluence. Based on the DLTS results, the ionizingdamage can recover a part of displacement defects, which make the current gainrecovery at lower electron fluence. However, the defects induced by radiationdamage increase with the increasing electron fluence, the current gain of transistorcontinue degrading.
     During the sequence exposure of electrons and protons under various biascases, it is observed that the radiation damage in transistor with emitter-basejunction zero bias case is biggest, and the radiation damage under reverse bias caseis smaller, the radiation damage under forward bias case is smallest. The impact ofbias case on synergistic radiation damage is similar as the impact of bias case ondisplacement damage. Based on the combined radiation of heavy ions or lowerenergy protons and electrons, it is clear that the ionization damage could giveannealing and enhancement effect to displacement damage in bipolar junctiontransistors.
     In isochronal annealing experiment, the electrical parameters of bipolartransistors recovered with increasing annealing temperature. For various radiationdamages, the electrical parameters of bipolar transistors totally recovered, when theannealing temperature is up to700K. The concentration of the defects induced byionizing radiation damage goes down with the increasing temperature. Fordisplacement damage, the deeper energy level defects decrease and the shallowerenergy level defects with the increasing annealing temperature, when thetemperature is below550K. Meanwhile, all of the defects decrease with theincreasing annealing temperature, when the temperature is above550K.
引文
[1] Benton E R, Benton E V. A Survey of Radiation Measurements Made AboardRussian Spacecraft in Low-Earth Orbit [J]. NASA/CR-1999-209256,1999:6-50
    [2]李兴冀.星用双极型器件带电粒子辐照效应及损伤机理[D].哈尔滨工业大学博士学位论文.2010,1-5
    [3]赵志明. NPN型晶体管辐照损伤及退火效应研究[D].哈尔滨工业大学硕士学位论文.2010,8-10
    [4] Barnhart D J, Vladimirova T, Sweeting M N, Stevens K S. RadiationHardening by Design of Asynchronous Logic for Hostile Environments [J].IEEE Journal of Solid-State Circuits.2009,44(5):1617-1627
    [5] Maurer R H, Fraeman M E, Martin M N, Roth D R. Harsh Environments:Space Radiation Environment, Effects, and Mitigation[J]. Johns Hopkins APLTechnical Digest.2008,28(1):17-29
    [6]刘超铭. CC4013集成电路电离辐射效应研究[D].哈尔滨工业大学硕士学位论文.2009,1-10
    [7] Hall D J, Holland A. Space Radiation Environment Effects on X-ray CCDBackground [J]. Nuclear Instruments and Methods in Physics ResearchSection A.2010,612(2):320-327
    [8] Kuznetsov N V. The Rate of Single Event Upsets in Electronic Circuitsonboard Spacecraft. Cosmic Research [J].2005,43:423-431
    [9] Berger T. Radiation Dosimetry onboard the International Space Station ISS [J].Zeitschrift für Medizinische Physik.2008,18(4):265-275
    [10] Olson B D, Amusan O A, Dasgupta S, Massengill L W, Witulski A F, Bhuva BL, Alles M L, Warren K M, Ball D R. Analysis of Parasitic PNP BipolarTransistor Mitigation Using Well Contacts in130nm and90nm CMOSTechnology [J]. IEEE Trans. on Nuclear Science.2007,54(4):894-897
    [11] Pease R L. Total Ionizing Dose Effects in Bipolar Devices and Circuits [J].IEEE Trans. on Nuclear Science.2003,50(3):539-551
    [12] Madhu K V, Kumar R, Ravindra M, Damle R. Investigation of Deep LevelDefects in Copper Irradiated Bipolar Junction Transistor [J]. Solid-StateElectronics.2008,52:1237-1243
    [13] Kulkarni S R, Ravindra M, Joshi G R, Damle R. High-Energy ElectronInduced Gain Degradation in Bipolar Junction Transistors [J]. NuclearInstruments and Methods in Physics Research B.2006,251:157-162
    [14] Gnana Prakash A P, Ke S C, Siddappa K. I-V and Deep Level TransientSpectroscopy Studies on60MeV Oxygen Ion Irradiated NPN Transistors [J].Nuclear Instruments and Methods in Physics Research B.2004,215:457-470
    [15] Johnston A H, Rax B G. Testing and Qualifying Linear Integrated Circuits forRadiation Degradation in Space [J]. IEEE Trans. on Nuclear Science.2006,53(4):1779-1786
    [16] Ratti L, Manghisoni M, Oberti E, Re V, Speziali V, Traversi G, Fallica G,Modica R. Response of SOI Bipolar Transistors Exposed to-Rays underDifferent Dose Rate and Bias Conditions [J]. IEEE Trans. on Nuclear Science.2005,52(4):1040-1047
    [17] Lang D V. Deep-level Transient Spectroscopy: A New Method to CharacterizeTraps in Semiconductors [J]. Journal of Applied Physics.1974,45(7):3023
    [18] Lefevre H, Schulz M. Double Correlation Technique (DDLTS) for the Analysisof Deep Level Profiles in Semiconductors [J]. Applied Physics.1977,12(1):45-53
    [19] Kimerling L C. New Developments in Defect Studies in Semiconductors [J].IEEE Transactions on Nuclear Science.1976,23(6):1497-1505
    [20] Miller G L, Ramirez J V, Robinson D A H. A Correlation Method forSemiconductor Transient Signal Measurements [J]. Journal of AppliedPhysics.1975,46(6):2638
    [21] Ikossianastasiou K, Roenker K P. Refinements in the Method of Moments forAnalysis of Multiexponential Capacitance Transients in Deep-level TransientSpectroscopy [J]. Journal of Applied Physics.1987,61(1):182-190
    [22] Dobaczewski L, Kaczor P, Hawkins I D. Laplace Transform Deep-levelTransient Spectroscopic Studies of Defects in Semiconductors [J]. Journal ofApplied Physics.1994,76(1):194-198
    [23] Kymakis E, Koudoumas E, Franghiadakis I, Amaratunga G A J, Post-Fabrication Annealing Effects in Polymer-nanotube Photovoltaic Cells [J]. J.Phys. D: Appl. Phys.2006,39:1058
    [24] Lee J S, Choi Y K, Ha D, Balasubramanian S, King T J, Bokor J. HydrogenAnnealing Effect on DC and Low-frequency Noise Characteristics in CMOSFinFETs [J], IEEE Device Letters2003,24(3):186-188
    [25] McNeill C R, M. Halls J J, Wilson R, Whiting G L, Berkebile S, Ramsey M G,Friend R H, Greenham N C. Efficient Polythiophene/Polyfluorene CopolymerBulk Heterojunction Photovoltaic Devices: device physics and annealingeffects [J], Advanced Functional Materials.2008,18(16):2309-2321
    [26] Hartmann Q J, Hwangbo H, Yung A, Ahmari D A, Fresina M T, Baker J E,Stillman G E. Removal of Hydrogen From the Base of Carbon-dopedIn0.49Ga0.51P/GaAs Heterojunction Bipolar Transistors by Ex-situ Annealingand the Effects on Device Characteristics [J], Applied Physics Letters,1996,68(7):982-894
    [27]黄本诚,童靖宇.空间环境工程学[M],中国科学技术出版社,2010:377-379
    [28] Dyer C. Radiation Effects on Spacecraft&Aircraft [J]. QinetiQ,2001:1-8
    [29] Huston S L, Cantwell D, Dorman P, Carsten J. Model for EstimatingDirectional Flux and Detector Response for Space Radiation Experiments [J].IEEE Trans. on Nuclear Science.2007,54(6):1990-1996
    [30] Walt M. Introduction to Geomagnetically Trapped Radiation [M]. Cambridge,1994:11-14
    [31] Prolss G W. Physics of the Earth’s Space Environment [M]. Springer,2004:241-246
    [32] ECSS for Space Standardization: Space Environment [J], ECSS-E-10-04A,2000
    [33] Tverskoy B A. Main Mechanisms in the Formation of the Earth’s RadiationBelts [J]. Rev. Geophys.,1969,7:219-221
    [34]林元章.太阳物理导论[M].科学出版社,2000:2-26
    [35] Engvold O. The Solar Chemical Composition [J]. Phys. Scripta,1977,16:48-50
    [36] Bisrwas S, Durgaprasad N. Skylab Measurements of Low Energy Cosmic Rays[J]. Space Science Review,1980,25(3):285-327
    [37] Cronin J W. Cosmic Rays: the Most Energetic Particles in the Universe [J].Rev. Mod. Phys.,1999,71:165-172
    [38] Shibata T. Cosmic Rays Spectrum and Composition: Direct Observation [C].Inv. Rapp. Highlight Papers. Proc.24thICRC, Rome,1995:713-736
    [39] Hill C S. Operational Experience and Performance of the CDFII SiliconDetector [J]. Nuclear Instruments and Methods in Physics Research Section A.2004,530:1-6
    [40] Reed S J B, Ware N G. Quantitative Electron Microprobe Analysis UsingAlithium Drifted Silicon Detector [J]. X-Ray Spectrometry.1973,2(2):69-74
    [41] Hill C S. Initial Experience with the CDF Layer00Silicon Detector [J].Nuclear Instruments and Methods in Physics Research Section A.2003,511:118-120
    [42] Moll M, Fretwurst E, Kuhnke M, Lindstrom G. Relation Between MicroscopicDefects and Macroscopic Changes in Silicon Detector Properties after HadronIrradiation [J]. Nuclear Instruments and Methods in Physics Research SectionA.2002,186:100-110
    [43] Moll M, Development of Radiation Hard Sensors for very High LuminosityColliders—CERN-RD50Project [J]. Nuclear Instruments and Methods inPhysics Research Section A.2003,511:97-105
    [44] Haywood S, Rossi L, Nickerson R, Romaniouk A. ATLAS—Inner DetectorTechnical Design Report [J/OL]. http://cds.cern.ch/record/331064
    [45] Wermes, Norbert, Hallewel G. ATLAS—Pixel Detector Technical DesignReport [J/OL]. http://cds.cern.ch/record/381263
    [46] Geneva. CMS—Technical Proposal [J/OL]. http://cds.cern.ch/record/290969
    [47] Kern W, Schnable G L. Chemically Vapor-deposited BorophosphosilicateGlasses for Silicon Device Applications [J]. RCA Review.1982,47:186
    [48] Thorsness A G, Muscat A J. Moisture Absorption and Reaction in BPSG ThinFilms. J. Electrochem [J]. Soc.2003,150(22):219-228
    [49] French P J, Wolffenbuttel R F. Reflow of BPSG for sensor applications [J].Journal of Micromechanics and Microengineering.1993,3(3):135
    [50] Fanciulli M, Boneraa E, Carollo E, Zanotti L. EPR and UV-Raman study ofBPSG thin films: structure and defects [J]. Microelectronic Engineering.2001,55:64-71
    [51] Fenidel W, Matter D, Burtscher H, Schmidt-Ott A. Interaction Between Carbonor Iron Aerosol Particles and Ozone [J]. Atmospheric Environment.1995,29(9):967-973
    [52] Nyffeler U P, Li Y H, Santschi P H. A Kinetic Approach to Describe Trace-element Distribution between Particles and Solution in Natural AquaticSystems [J]. Geochimica et Cosmochimica Acta.1984,48(7):1513-1522
    [53] Ashkin A. Acceleration and Trapping of Particles by Radiation Pressure [J].Phys. Rev. Lett.1970,24:156-159
    [54] Matter P H, Wang E, Ozkan U S. Preparation of Nanostructured Nitrogen-Containing Carbon Catalysts for the Oxygen Reduction Reaction from SiO2-and MgO-supported Metal Particles [J]. Journal of Catalysis.2006,243(2):395-403
    [55] Valavanidis A, Salika A, Theodoropoulou A. Generation of Hydroxyl Radicalsby Urban Suspended Particulate Air Matter. The Role of Iron Ions [J].Atmospheric Environment.2000,34(15):2379-2386
    [56] Belkic D. A Quantum Theory of Ionisation in Fast Collisions Between Ionsand Atomic Systems [J]. Journal of Physics B: Atomic and Molecular Physics.1978,11:3529
    [57] Geissel H, Laichter Y, Schneider W F W, Armbruster P. Energy Loss andEnergy Loss Straggling of Fast Heavy Ions in Matter. Nuclear Instruments andMethods in Physics Research.1982,194:21-29
    [58] Whetten R L, Cox D M, Trevor D J, Kaldor A. Correspondence BetweenElectron Binding Energy and Chemisorption Reactivity of Iron Clusters [J].Phys. Rev. Lett.1985,54:1494-1497
    [59] Bauer M, Heitmann T, Macalady D L, Blodau C. Electron Transfer Capacitiesand Reaction Kinetics of Peat Dissolved Organic [J]. Matter. Environ. Sci.Technol.,2007,41(1):139-145
    [60] Mayer J M. Proton-coupled Electron Transfer: A Reaction Chemist's View [J].Annual Review of Physical Chemistry.2004,55:363-390
    [61] Kopecky J, Uhl M. Test of Gamma-ray Strength Functions in Nuclear ReactionModel Calculations [J]. Phys. Rev. C1990,41,1941-1955
    [62] Reeves J N, Watson D, Osborne J P, Pounds K A, O'Brien P T, Short A D T,Turner M J L, Watson M G, Mason K O, Ehle M, Schartel N. The Signature ofSupernova Ejecta Measured in the X-ray Afterglow of Gamma-Ray Burst [J].Nature.2002,416,512-515
    [63] Liatard E, Bruandet J F, Glasser F, Kox S, Chan T U, Costa G J, Heitz C, MasrY E, Hanappe F, Bimbot R, Guillemaud-Mueller D, Mueller A C. MatterDistribution in Neutron-Rich Light Nuclei and Total Reaction Cross-Section[J]. Europhys. Lett.1990,13:401
    [64] Seebauer E G, Noh K W. Trends in Semiconductor Defect Engineering at theNanoscale [J]. Materials Science and Engineering R.2010,70:151-168
    [65] Huhtinen M. Simulation of Non-ionising Energy Loss and Defect Formation inSilicon [J]. Nucl. Instr.&Meth. in Phys. Res. A,2002,491:194~215
    [66] Wunstorf R. Systematische Untersuchungen zur Strahlenresistenz von SiliziumDetektoren fur die Verwendung von Hochenergie-Experimenten [M]. PhDthesis, Universtity of Hamburg,1992.
    [67] Shi Y, Shen D X, Wu F M, Cheng K J. A Numerical Study of Cluster CenterFormation in Neutron-irradiated Silicon [J]. J. Appl. Phys.,1990,67(2):1116-1118
    [68] Stahl J. Defect Characterisation in High-Purity Silicon after γ-and HadronIrraditation [M]. PhD thesis, University of Hamburg,2004.
    [69] Watkins G D, Brower K L, EPR Observation of the Isolated Interstitial CarbonAtom in Silicon [J], Phys. Rev. Lett.,1976,36:1329-1332
    [70] Davies G, Lightowlers E C, Newman R C, Oates A S. A Model for RadiationDamage Effects in Carbon-doped Crystalline Silicon [J]. Semicond. SciTechnol,1987,2:524-532
    [71] MacEvoy B C, Hall G, Gill K. Defect Evolution in Irradiated Silicon DetectorMaterial [J]. Nucl. Instr.&Meth. in Phys. Res. A,1996,374:12-26
    [72] Kramberger G, Contarato D, Fretwurst E, H onniger F, Lindstr om G, PintilieI, R oder R, Schramm A, Stahl J. Superior Radiation Tolerance of ThinEpitaxial Silicon Detectors [J]. Nucl. Instr.&Meth. in Phys. Res. A,2003,515:665-670
    [73] S. P. Voinigescu, M. C. Maliepaard, J. L. Showell, G. E. Babcock, D.Marchesan, M. Schroter, P. Schvan, D. L. Harame. A Scalable High-frequencyNoise Model for Bipolar Transistors with Application to Optimal TransistorSizing for Low-noise Amplifier Design [J]. IEEE Journal of Solid-StateCircuits,1997.32(9):1430-1439
    [74] Kroemer H. Two Integral Relations Pertaining to the Electron Transportthrough a Bipolar Transistor with a Nonuniform Energy Gap in the BaseRegion. Solid-State Electronics [J].1985.28(11):1101-1103
    [75] Baliga B J, Adler M S, Love R P, Gray P V, Zommer N D. The Insulated GateTransistor: A New Three-terminal MOS-controlled Bipolar Power Device [J].IEEE Transactions on Electron Devices,1984,31(6):821-828
    [76] Prins J F, Bipolar Transistor Action in Ion Implanted Diamond [J]. AppliedPhysics Letters.1982.41(10):950-952
    [77] Capasso F, Sen S, Gossard A C, Hutchinson A L, English J H. Quantum-wellResonant Tunneling Bipolar Transistor Operating at Room Temperature [J].IEEE Electron Device Letters,1986.7(10):573-576
    [78] Hall D J, Holland A. Space Radiation Environment Effects on X-ray CCDBackground [J]. Nuclear Instruments and Methods in Physics ResearchSection A.2010,612(2):320-327
    [79] Kuznetsov N V. The Rate of Single Event Upsets in Electronic Circuitsonboard Spacecraft [J]. Cosmic Research.2005,43:423-431
    [80] Berger T. Radiation Dosimetry onboard the International Space Station ISS [J].Zeitschrift für Medizinische Physik.2008,18(4):265-275
    [81] Olson B D, Amusan O A, Dasgupta S, Massengill L W, Witulski A F, Bhuva BL, Alles M L, Warren K M, Ball D R. Analysis of Parasitic PNP BipolarTransistor Mitigation Using Well Contacts in130nm and90nm CMOSTechnology [J]. IEEE Trans. on Nuclear Science.2007,54(4):894-897
    [82] Sze S M, Ng K K. Physics of Semiconductor Devices. Third Edition [M]. JohnWiley and Sons,2007:243-247
    [83] Pierret R F.黄如,王漪,王金延等译.半导体器件基础[M].电子工业出版社,2007:269
    [84] Anderson B L, Anderson R L.邓宁,田立林,任敏译.半导体器件基础[M].清华大学出版社,2008:428
    [85]陈星弼,唐茂成.晶体管原理与设计[M],成都电讯工程学院出版社.1987:1-20
    [86] Carron N J. An Introduction to the Passage of Energetic Particles throughMatter [M]. Taylor&Francis,2007:25-301
    [87] Sharma A, Fettouhi A, Schinner A, Sigmund P. Stopping of Swift Ions inCompounds [J]. Nuclear Instruments and Methods in Physics Research B.2004,218:19-28
    [88] Killiany J M. Radiation Effects on Silicon Charge-Coupled Devices [J]. IEEETrans. on Components, Hybrids, and Manufacturing Technology.1978,CHMT-1(4):353-364
    [89] Ahlen S P. Theoretical and Experimental Aspects of the Energy Loss ofRelativistic Heavily Ionizing Particles [J]. Reviews of Modern Physics.1980,52(1):121-152
    [90] Leroy C, Rancoita P. Particle Interaction and Displacement Damage in SiliconDevices Operated in Radiation Environments [J]. Reports on Progress inPhysics.2007,70:493-625
    [91] Griscom D L, Friebele E J. Effects of Ionizing Radiation on AmorphousInsulators [J].1982,(65):63
    [92] Ma T P, Dressendorfer P V. Ionizing Radiation Effects in MOS Devices andCircuits [M]. John Wiley and Sons,1991:91
    [93] Hjalmarson H P, Pease R L, Hembree C E, Van Ginhoven R M, Schultz P A.Dose-rate Dependence of Radiation-Induced Interface Trap Density in SiliconBipolar Transistors [J]. Nuclear Instruments and Methods in Physics ResearchB.2006,250:269-273
    [94] Ko D H, Kim S J, Min K W, Park J, Ryu K S. Enhanced Low Dose Rate Effectof the Radiation-Sensitive Field Effect Transistors Developed by the NationalMicroelectronics Research Centre [J]. Nuclear Instruments and Methods inPhysics Research A.2008,584:440-443
    [95] Kosier S L, Nowlin R N, Schrimpf R D, Reber R A, DeLaus M, Winokur P S,Wei A, Combs W E, Pease R L. Physical Mechanism Contributing to enhancedBipolar Gain Degradation at Low Dose Rates [J]. IEEE Trans. on NuclearScience.1994, NS-41(6):1871
    [96] Hayama K, Takakura K, Ohyama H, Kuboyama S, Simoen E, Mercha A,Claeys C. Dose Rate Dependence of Radiation-induced Lattice Defects andPerformance Degradation in NPN Si Bipolar Transistors by2MeV ElectronIrradiation [J]. Physica B.2007,401-402:469-472
    [97] Beaucour J, Carriere T, Gach A, Laxague D. Total Dose Effects on NegativeVoltage Regulator [J]. IEEE Trans. on Nuclear Science.1994, NS-41(6):2420
    [98] Clure S M, Pease R L, Will W, Perry G. Dependence of Total Dose Responseof Bipolar Linear Microcircuits on Applied Dose Rate [J]. IEEE Trans. onNuclear Science.1994, NS-41(6):2544
    [99] Johnston A H, Lee C I, Rax B G. Enhanced Damage in Bipolar Device at LowDose Rate: Effect at very Low Dose Rate [J]. IEEE Trans. on Nuclear Science.1996, NS-43(6):3049
    [100] Goben C A, A Study of the Neutron-induced Base Current Component inSilicon [J]. IEEE Trans. Nucl. Sci.,1965.12:134-146
    [101]丁富荣,班勇,夏宗璜.辐射物理[M].北京出版社,2004:17-22
    [102]郁金南.材料辐照效应[M].化学工业出版社,2007:168
    [103] Becker H N, Elliott T, Alexander J W. Electron-Induced DisplacementDamage Effects in CCDs [J]. IEEE Trans. on Nuclear Science.2006,53(6):3764
    [104] Srour J R, Palko J W. A Framework for Understanding Displacement DamageMechanisms in Irradiated Silicon Devices [J]. IEEE Trans. on Nuclear Science.2006,53(6):3610-3620
    [105] Sato S, Imaizumi M, Ohshima T. Radiation Degradation Modeling of Triple-Junction Space Solar Cells [J]. Report of Research Center of Ion BeamTechnology.2009,27:37-42
    [106] Warner J H, Messenger S R, Walters R J, Summers G P. DisplacementDamage Correlation of Proton and Silicon Ion Radiation in GaAs [J]. IEEETrans. on Nuclear Science.2005,52(6):2678
    [107] Messenger S R, Burke E A, Summers G P, Walters J. Application ofDisplacement Damage Dose Analysis to Low-Energy Protons on SiliconDevices [J]. IEEE Trans. on Nuclear Science.2002,49(6):2690-2694
    [108] Chugg A M, Jones R, Moutrie M J, Truscott P R. Analyses of Images ofNeutron Interactions and Single Particle Displacement Damage in CCD Arrays[J]. IEEE Trans. on Nuclear Science.2004,51(6):3579
    [109] Messenger S R, Burke E A, Summers G P, Walters R J. Limits to theApplication of NIEL for Damage Correlation [J]. IEEE Trans. on NuclearScience.2004,51(6):3201
    [110] Sato S, Miyamoto H, Imaizumi M, Shimazaki K, Morioka C, Kawano K,Ohshima T. NIEL Analysis of Radiation Degradation Parameters Derived fromQuantum Efficiency of Triple-Junction Space Solar Cell [C]. IEEE33rdPhotovoltaic Specialists Conference, San Diego, CA,2008. Inst Elect&ElectEngn,2008:1435-1439
    [111] Tang X X, Luo W Y, Wang C Z, He X F, Zha Y Z, Fan S, Huang X L, Wang CS. Non-Ionizing Energy Loss of Low Energy Proton in SemiconductorMaterials Si and GaAs [J]. ACTA Physica Sinica.2008,57(2):1266-1270
    [112] Jun I, Xapsos M A, Messenger S R, Burke E A, Walters R J, Summers G P,Jordan T. Proton Nonionizing Energy Loss (NIEL) for Device Applications [J].IEEE Trans. on Nuclear Science.2003,50(6):1924-1928
    [113] Jun I. Effects of Secondary Particles on the Total Dose and the DisplacementDamage in Space Proton Environments [J]. IEEE Trans. on Nuclear Science.2001,48(1):162
    [114] Jun I, McAlpine W. Displacement Damage in Silicon Due to SecondaryNeutrons, Pions, Deuterons, and Alphas from Proton Interactions withMaterials [J]. IEEE Trans. on Nuclear Science.2001,48(6):2034
    [115] Bogaerts J, Dierickx B, Meynants G, Uwaerts D. Total Dose andDisplacement Damage Effects in a Radiation-Hardened CMOS APS [J]. IEEETrans. on Nuclear Science.2003,50(1):84
    [116] Xapsos M A, Summers G P, Blatchley C C, Colerico C W, Burke E A,Messenger S R, Shapiro P. Co60Gamma Ray and Electron DisplacementDamage Studies of Semiconductors [J]. IEEE Trans. on Nuclear Science.1994,41(6):1945-1948
    [117] Garcia P, Vaille J R, Benoit D, Chabane H, Berger G, Idri K, Boch J, Sagnes B,Saign F, Lorfvre E, Bezerra F, Dusseau L. Simultaneous Evaluation of TID andDisplacement Damage Dose Using a Single OSL Sensor [J]. IEEE Trans. onNuclear Science.2006,53(6):3713
    [118] Brucker G J, Dennehy W J, Holmes-Siedle A G. Ionization and DisplacementDamage in Silicon Transistors [J]. IEEE Trans. on Nuclear Science.1966, NS-13(6):188
    [119] Nichols D K, Price W E, Gauthier M K. A Comparison of Radiation Damagein Transistors from Co-60Gammas and2.2MeV Electrons [J]. IEEE Trans. onNuclear Science.1982,29:1970-1974
    [120] Gauthier M K, Nichols D K. A Comparison of Radiation Damage in LinearIC’s from Co-60Gamma Rays and2.2MeV Electrons [J]. IEEE Trans. onNuclear Science.1983,30:4192-4196
    [121] Díez S, Lozano M, Pellegrini G, Mandic I, Knoll D, Heinemann B, Ullán M.IHP SiGe: C BiCMOS Technologies as a Suitable Backup Solution for theATLAS Upgrade Front-End Electronics [J]. IEEE Trans. on Nuclear Science.2009,56(4):2449
    [122] Díez S, Ullán M, Campabadal F, Lozano M, Pellegrini G, Mandic I, Knoll D,Heinemann B. Proton Radiation Damage on SiGe: C HBTs and Additivity ofIonization and Displacement Effects [J]. IEEE Trans. on Nuclear Science.2009,56(4):1931-1936
    [123] Rax B G, Johnston A H, Lee C I. Proton Damage Effects in Linear IntegratedCircuits [J]. IEEE Trans. on Nuclear Science.1998,45:2632-2637
    [124] Barnaby H J, Schrimpf R D, Sternberg A L, Berthe V, Cirba C R, Pease R L.Proton Radiation Response Mechanisms in Bipolar Analog circuits [J]. IEEETrans. on Nuclear Science.2001,48:2074-2080
    [125] Barnaby H J, Smith S K, Schrimpf R D, Fleetwood D M, Pease R L.Analytical Model for Proton Radiation Effects in Bipolar Devices [J]. IEEETrans. on Nuclear Science.2002,49:2643-2649
    [126] Schwank J R, Shaneyfelt M R, Paillet P, Beutler D E, Ferlet-Cavois V, DraperB L, Loemker R A, Dodd P E, Sexton F W. Optimum Laboratory RadiationSource for Hardness Assurance Testing [J]. IEEE Trans. on Nuclear Science.2001,48:2152-2157
    [127] Nichols D K, Price W E, Gauthier M K. A Comparison of Radiation Damagein Transistors from Co-60Gammas and2.2MeV Electrons [J]. IEEE Trans. onNuclear Science.1982,29:1970-1974
    [128] Gauthier M K, Nichols D K. A Comparison of Radiation Damage in LinearIC’s from Co-60Gamma Rays and2.2MeV Electrons [J]. IEEE Trans. onNuclear Science.1983,30:4192-4196
    [129] Rose T S, Gunn D, Valley G C. Gamma and Proton Radiation Effects inErbium-Doped Fiber Amplifiers: Active and Passive Measurements [J].Journal of Lightwave Technology,2001,19(12):1918
    [130] Hopkinson G R, Cobalt-60and Proton Radiation Effects on Large Format,2-D, CCD Arrays for an Earth Imaging Application [J]. IEEE Trans. on NuclearScience.1992,39(6):2018-2025
    [131] Sutton A K, A Comparison of Gamma and Proton Radiation Effects in200GHz SiGe HBTs [J]. IEEE Trans. on Nuclear Science.2005,52(6):2358-2365
    [132] Luo Z Y, Chen T B, Ahyi A C, Sutton A K, Haugerud B M, Cressler J D,Sheridan D C, Williams J R, Marshall P W, Reed R A, Proton RadiationEffects in4H-SiC Diodes and MOS Capacitors [J]. IEEE Trans. on NuclearScience.2004,51(6):3748-3752
    [133] Chen X, Barnaby H J, Vermeire B. Post-Irradiation Annealing Mechanisms ofDefects Generated in Hydrogenated Bipolar Oxides [J]. IEEE Trans. onNuclear Science.2008,55(6):3032-3038
    [134] Madhu K V, Kulkarni S R, Ravindra M, Damle R, DLTS Study of Deep LevelDefects in Li-ion Irradiated Bipolar Junction Transistor [J]. NuclearInstruments and Methods in Physics Research A.2007,254(1):98-104
    [135] Ahlen S P. Theoretical and Experimental Aspects of the Energy Loss ofRelativistic Heavily Ionizing Particles [J]. Reviews of Modern Physics.1980,52(1):121-152
    [136] Vooka F L, Steina H J. Relation of Neutron to Ion Damage Annealing in Siand Ge [J]. Radiation Effects,1969,2(1):23-30
    [137] Stein H J. Electrical Studies of Neutron-Irradiated n-Type Si: Defect Structureand Annealing [J]. Phys. Rev.1967.163:801-808
    [138] Bagatin M, Gerardin S, Cellere G, Paccagnella A, Visconti A, Beltrami S,Harboe-Sorensen R, Virtanen A. Key Contributions to the Cross Section ofNAND Flash Memories Irradiated With Heavy Ions [J]. IEEE Trans. onNuclear Science.2008,55(6):3302-3308
    [139] Cellere G, Paccagnella A, Larcher L, Chimenton A, Wyss J, Candelori A,Modelli A. Anomalous Charge Loss from Floating-gate Memory Cells due toHeavy Ions Irradiation [J]. IEEE Trans. on Nuclear Science.2002,49(6):3051-3058
    [140] Leamy H J, Kimerling L C, Electron Beam Induced Annealing of Defects inGaAs [J]. Journal of Applied Physics.1977,48(7):2795-2803
    [141] Nielsen K B, Dobaczewski L, Goscinski K, Bendesen R, Andersen O, NielsenB B. Deep Levels of Vacancy-hydrogen Centers in Silicon Studied by LaplaceDLTS [J]. Physica B: Condensed Matter.1999,273:167-170
    [142] Nadazdy V, Durny R, Pincik E. Evidence for the Improved Defect-Pool Modelfor Gap States in Amorphous Silicon from Charge DLTS Experiments onUndoped a-Si:H [J]. Phys. Rev. Lett.1997.78,1102-1105
    [143] Monakhov E V, Avset B S, Hallen A, Svensson B G. Formation of a DoubleAcceptor Center during Divacancy Annealing in Low-doped High-purityOxygenated Si [J]. Phys. Rev. B2002,65:233207
    [144] Lang D V. Deep-level Transient Spectroscopy: a New Method to CharacterizeTraps in Semiconductors [J]. Journal of Applied Physics.1974,45(7):3023
    [145] Lefevre H, Schulz M. Double Correlation Technique (DDLTS) for theAnalysis of Deep Level Profiles in Semiconductors [J]. Applied Physics.1977,12(1):45-53
    [146] Kimerling L C. New Developments in Defect Studies in Semiconductors [J].IEEE Transactions on Nuclear Science.1976,23(6):1497-1505
    [147] Miller G L, Ramirez J V, Robinson D A H. A Correlation Method forSemiconductor Transient Signal Measurements [J]. Journal of Applied Physics.1975,46(6):2638
    [148] Ikossianastasiou K, Roenker K P. Refinements in the Method of Moments forAnalysis of Multiexponential Capacitance Transients in Deep-level TransientSpectroscopy [J]. Journal of Applied Physics.1987,61(1):182-190
    [149] Dobaczewski L, Kaczor P, Hawkins I D. Laplace Transform Deep-levelTransient Spectroscopic Studies of Defects in Semiconductors [J]. Journal ofApplied Physics.1994,76(1):194-198
    [150] Shiau J J, Fahrenbruch A L, Bube R H. Improved Constant CapacitanceVoltage Transient Measurement for Deep Level Analysis [J]. ConferenceRecord of the Nineteenth IEEE Photovoltaic Specialists Conference.1987,750
    [151] http://www.phystech.de; Company homepage
    [152] Erramli H, Elbounagui O, Misdaq M A, Merzouki A. A Monte CarloComputer Code for Evaluating Energy Loss of10keV to10MeV Ions inAmorphous Silicon Materials [J]. Nuclear Instruments and Methods in PhysicsResearch B.2007,263:127-131
    [153] Townsend L W, Moussa H M, Charara Y M. Monte Carlo Simulations ofEnergy Losses by Space Protons in the CRATER Detector [J]. ActaAstronautica.2010,66:643-647
    [154]许淑艳.蒙特卡罗方法在实验核物理中的应用(修订版)[M].原子能出版社,2006:97-177
    [155] Ziegler J F. SRIM-2003[J]. Nuclear Instruments and Methods in PhysicsResearch B.2004,219:1027-1036
    [156] Pavlovic M, Strask I. Supporting Routines for the SRIM Code [J]. NuclearInstruments and Methods in Physics Research B.2007,257:601-604
    [157] Barb J, Sempau J, Ferntidez-Vare J M, Salvat F. PENELOPE: An Algorithmfor Monte Carlo Simulation of the Penetration and Energy Loss of Electronsand Positrons in Matter [J]. Nuclear Instruments and Methods in PhysicsResearch B.1995,100:31-46
    [158] Franke B C, Kensek R P, Laub T W. ITS Version5.0: The Integrated TIGERSeries of Coupled Electron/Photon Monte Carlo Transport Codes with CADGeometry [J]. SAND2004-5172,2005:1-155
    [159] Dapor M. Monte Carlo Simulation of Electron Depth Distribution andBackscattering for Carbon Films Deposited on Aluminium as a Function ofIncidence Angle and Primary Energy [J]. Nuclear Instruments and Methods inPhysics Research B.2005,228:337-340
    [160] Kawrakow I, Rogers D W O. The EGSnrc Code System: Monte CarloSimulation of Electron and Photon Transport [J]. NRCC Report PIRS-701,2003:1-270
    [161] Asai M, Axen D, Banerjee S, Barrand G, Behner F. Geant4-A SimulationToolkit [J]. Nuclear Instruments and Methods in Physics Research A.2003,506:250-303
    [162] Ferrari A, Sala P R, A. Fassòand J. Ranft. FLUKA: A Multi Particle TransportCode-386[J]. Geneva, Switzerland: CERN, INFN, SLAC,2005:1-30
    [163] James M R, McKinney G W, Hendricks J S, Moyers M. Recent Enhancementsin MCNPX: Heavy-Ion Transport and the LAQGSM Physics Model [J].Nuclear Instruments and Methods in Physics Research A2006,562:819-822
    [164] Messenger G C, Ash M S. The Effects of Radiation on Electronic Systems.Second Edition [M]. Van Nostrand Reinhold,1992:223-263
    [165] Kosier S L, Schrimpf R D, Nowlin R N, Fleetwood D M, DeLaus M, Pease RL, Combs W E, Wei A, Chai F. Charge Separation for Bipolar Transistor [J].IEEE Trans. Nucl. Sci.1993,40(6):1276-1285
    [166] Honniger F. Radiation Damage in Silicon–Defect Analysis and DetectorProperties [D]. Ph D. thesis, University of Hamburg,2007.
    [167] Siedle A H, Adams L. Handbook of Radiation effects. Second Edition [M].Oxford,2004:209-213

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700