用户名: 密码: 验证码:
不同海洋生境来源微生物胞外多糖的结构及抗氧化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋微生物所处的独特生存环境,使其具有产生新颖化学结构和独特生物学活性胞外多糖的潜质,是开发海洋多糖类药物的新资源。微生物胞外多糖作为天然活性生物大分子,在生物医药、日用化工等领域日益受到人们的广泛关注。本论文以十六种海洋来源的微生物发酵液为研究对象,提取胞外多糖并对其得率、理化性质和单糖组成进行分析,从中筛选得到五株海洋微生物,分别为珊瑚共生真菌Penicillium commune518#;厚藤共生真菌Fusarium oxysporum Y24-2;苔藓共生真菌Penicillium purpurogenum ZZ05-4;红树林根泥真菌,Trichoderma.sp ghq-198和胶州湾海泥真菌Penicillium.sp ghq-18,对从中提取得到的胞外多糖进行进一步的分离纯化、结构解析和抗氧化活性评价。研究结果如下:
     1.十六种微生物胞外多糖的提取得率在0.43-3.56g/L之间;总糖含量在55.45%~92.30%之间;蛋白含量在0.82%~13.65%之间;所有胞外多糖中均没有检测到硫酸根的存在。在得到的十六种胞外多糖中,七种胞外多糖的单糖组成以甘露糖和葡萄糖为主,两种以甘露糖和半乳糖为主,三种以相似比例的甘露糖、葡萄糖和半乳糖为主,另外编号为AH17-3和GW3-13的两种微生物产胞外多糖还含有较高比例的葡萄糖醛酸和葡萄糖胺。分析表明,不同来源的微生物产胞外多糖在得率单糖组成和理化性质上均有较大差异。
     2.从海南直针尖柳珊瑚Muricella abnormalis共生真菌Penicillium commune518#发酵液中提取胞外多糖,经过Q Sepharose Fast Flow阴离子柱层析和Superdex75prep凝胶渗透色谱分离纯化得到三个组分F1P-1S, F1P-2S和F1P-3S,其中主要组分F1P-2S的总糖含量约为96.4%,蛋白含量约为1.23%,分子量为18.6kDa,单糖组成主要由Man、Glc和Gal以27.9%、14.7%和57.4%的比例构成。经过IR,甲基化和NMR分析表明,F1P-2S主要由→6)-p-D-Galf-(1→、→2)-p-D-Galf-(1→、→2,6)-α-D-Manp-(1→、→2)-α-D-Manp-(1→和α-D-Glcp-(1→以大约6:2:1:2比例构成,其中主要以→2)-α-D-Manp-(1→作为主链,在O-6位存在一个以呋喃半乳糖为主的长链分支的葡萄甘露半乳聚糖。体外抗氧化活性分析表明,F1P-2S具有良好的体外清除DPPH自由基活性,ECso为2.87mg/mL。该结构的胞外多糖是首次从珊瑚来源的真菌中分离得到的,对海洋微生物胞外多糖的研究具有重要意义。
     3.厚藤共生真菌Fusarium oxysporumY24-2胞外多糖经离子交换柱层析分离得到TW和TS两个组分,得率分别为17%和36%;TS进一步经过Sephacryl S-100HR凝胶柱层析纯化得到分子量大约为61.2kDa的纯品胞外多糖TS-1。TS-1的总糖含量在91.3%左右,蛋白含量约为0.79%,主要由Man、Glc和Gal以1.33:1.30:1.00的比例构成。甲基化、IR和NMR分析表明,TS-1主要由→6)-β-D-Galf-(1→为主要连接方式,并在每个呋喃半乳糖的C-2位存在分支,分支部分的结构片段由β-D-Manp-(1→2)-β-D-Manp-(1→2)-α-D-Glep-(1→、α-D-Glcp-(1→和β-D-Manp-(1→2)-α-D-Glcp-(1→以1:2:1的比例构成,该类型的胞外多糖在海洋来源Fusarium oxysporum中十分罕见。体外抗氧化活性分析表明,TS-1具有良好的体外清除DPPH自由基,羟基自由基和超氧阴离子自由基的能力,特别是体外清除羟基自由基的能力为最好,其ECso值为1.15mg/mL,可以作为一个抗氧化活性胞外多糖的新来源。为海洋共附生植物中结构新颖、活性独特胞外多糖的研究和应用奠定了基础。
     4.苔藓内生真菌Penicillium purpurogenum ZZ05-4胞外多糖经过阴离子交换柱层析和凝胶渗透色谱分离纯化得到两种分子量分别为28.69kDa和43.91kDa的胞外多糖组分WHW-1和WHS-1。总糖含量和蛋白含量分别为90.30%~87.74%和2.69%-4.35%。甲基化、IR和NMR分析表明,WHW-1是由α-D-Manp-(1→、→2)-α-D-Manp-(1→和→2,6)-α-D-Manp-(1→残基构成的甘露聚糖,主要在→6)-α-D-Manp-(1→的C-2位存在分支结构;WHS-1主要由Man、Glc和Gal以4.20:1.30:0.02的比例构成的中性杂多糖,部分酸水解后GC-MS分析表明,WHS-1主要由→2)-α-D-Manp-(1→构成主链,末端Manp,和→2)-α-D-Manp-(1→构成支链部分,在整个糖环结构的最外围部分连接有→5)-Galf-(1→和末端Ga残基的结构。该类结构的胞外多糖在苔藓来源的Penicillium purpurogenum中鲜见报道。
     5.红树林根泥真菌Trichoderma.sp ghq-198胞外多糖经过离子交换柱层析分离得到水洗组分HQW和0.6M盐洗组分HQS,得率分别为10.07%和45.42%。Superdex75prep凝胶渗透纯化获得分子量分别为12.87kDa的HQW1和29.82kDa的HQS1。HQS1糖含量和蛋白含量分别为88.84%和3.49%。HQS1则主要由Man: Glc: Gal以5.92:0.87:3.98的比例构成,HQS1经甲基化分析发现连接方式非常复杂,共存在非还原末端的Manp和Galf,→2)-Manp-(1→,→3)-Manp-(1→,→2)-Galp(1→,→6)→Manp-(1→,→6)-Galf-(1→,→5,6)-Galf(1→,→3)-Manp-(1→,→3,6)-Manp-(1→和→2,3,6)-Manp-(1→11种连接方式,部分酸水解后GC-MS分析表明,沉淀部分HQS1→P主要由→2)→Manp-(1→,→6)-Manp-(1→,→3)-Manp-(1→,→2,6)-Manp-(1→及非还原末端Manp构成。其中→6)-Manp-(1→和→2)-Manp-(1→的连接方式明显增加,说明可这两种连接方式构成了多糖的主链结构。对HQS1进行了寡糖降解条件的摸索和制备,获得聚合度为2-4含有取代甲基的寡糖片段。丰富了“海洋糖库”中特征寡糖和多糖的结构。体外氧化活性分析表明HQS1具有一定的体外清除DPPH自由基,羟基自由基和超阳阴离子自由基活性。
     6.胶州湾海泥真菌Penicillium sp.ghq-18胞外多糖经过阴离子交换柱层析和凝胶柱色谱分离纯化后主要得到四个多糖组分HW-1、HW-2、HS1-1和HS2-1。四者的得率分别为53.21%、9.22%、61.08%和37.59%;经过HPGPC测定其分子量分别为16.9kDa、11.3kDa、20.7kDa和26.6kDa;主要组分HS1-1的单糖组成比例为Man:Glc:Gal=14.76:1.00:6.53,总糖含量为95.45%,还含有2.86%的蛋白质。IR,甲基化和NMR分析表明HS1-1是一个半乳甘露聚糖,甘露糖核心部分由→2)-α-Manp(1→、→6)-α-Manp(1→构成主链,在1,2-连接甘露糖的C-3和C-6位存在α-Manp(1→分支;呋喃半乳糖部分是以p-(1→5)-Ga1f作主链,在O-6位存在非还原末端Galf的取代结构。体外抗氧化活性测试表明HS1-1具有一定的体外清除DPPH,羟基自由基和超氧游离基的活性。该研究表明海洋基质底泥来源真菌是活性胞外多糖的重要来源。
     本论文的研究成果丰富了“海洋糖库”的数据资源,为海洋糖类药物和功能性食品的研究和开发提供了一定的理论基础,对进一步丰富微生物胞外多糖产品市场具有重要的指导意义。
The unique living environments of marine microorganisms, makes them have theability of generate various exopolysaccharides with novel chemical structural andparticular biological activities. Therefore the marine microorganisms-derivedexopolysaccharides(EPSs) are the new resources for development of marinepolysaccharide drugs. As the natural biological macromolecules, exopolysaccharideshave increasing more and more attention in the biological medicine and daily chemicalindustry. In this paper,16kinds of extracellular polysaccharides were isolated fromdifferent sources of marine microbial fermented liquid. The yield, basic physicochemicalproperty, monosaccharide composition and antioxidant activity of the EPSs wereanalyzed. Based on the analysis results ifve kinds of marine microorganisms wereobtained, including the coral symbiotic fungus Penicillium commune518#, mangrovesymbiotic fungus Fusarium oxysporum Y24-2,mangrove forest root Mud fungiTrichoderma.sp ghq-198,the jiaozhou bay sea mud fungus Penicillium.sp ghq-18andmoss symbiotic fungus Penicillium purpurogenum ZZ05-4.The crude extracellularpolysaccharides were further isolated and puriifed, and there structures characteristicsand antioxidant activities were investigated. Results of the study are as follows:
     1. The yield of16species of microorganism extracellular polysaccharides werebetween0.43?3.56g/L. The total sugar content and protein content were55.45%?92.30%and0.82%?13.65%. After deproteinized with Sevag method the binding proteinstill existence. All the EPSs samples were not detected the presence of sulfate. In the16kinds of EPSs, seven kinds of them were mainly composed of Man and Glc,two kindsof them were composed of Man and Gal, and three kinds of them were compose ofsimilar proportion of Man, Glc and Gal. In addition two EPSs produced by strainsAH17-3and GW3-13contains a higher proportion of GlcA and GlcN. The results showed that different sources of microorganisms EPSs varying in yield, monosaccharides composition, physicochemical property and DPPH radicals scavenging activities.
     2. After separation and purification with Q Sepharose Fast Flow anion exchange column chromatography and gel permeation chromatography on Superdex75prep, three purified EPSs were obtained from gorgonian Muricella abnormalis symbiotic fungi Penicillium commune518#. The main component F1P-2S with a molecular weights of18.6kDa, and the total sugar content and protein content were about96.4%and1.23%, respectively. After HPLC monosaccharide composition analysis, F1P-2S was mainly composed of Man, Glc and Gal in a ratio of27.9%,14.7%and57.4%. Structure analysis indicated that F1P-2S was mainly composed with a-D-Glcp-(1→,→6)-β-D-Galf-(1→,→2)-β-D-Galf-(1→,→2,6)-α-D-Manp-(1→and→2)-α-D-Manp-(1→in a molar ratio of2:6:2:1:1. The EPSs structure of F1P-2S with a→2)-α-D-Manp(1→as backbone chain and substituted at O-2position with a long branch chain composed of galactofuranose and glucopyranose. EPSs with this structure was isolated from coral source fungus for the first time.
     3. Two EPSs TW and TS were isolated from Fusarium oxysporumY24-2with a receiving rate about17%and36%, respectively. TS was further purified by Sephacryl S-100HR gel column chromatography and a purified EPS named TS-1withmolecular weight about61.2kDa was obtained. The total sugar and protein contents of TS-1were about91.3%and0.79%, respectively. TS-lwas mainly composed of Man, Glc and Gal in a molar ratio of1.33:1.30:1.00. Methylation, IR, GC-MS and NMR analysis results indicated that TS-1had a [→-6)-β-D-Galf-(1→] glycosyl main chain with a branch structure at C-2position of every [→-6)-β-D-Galf-(1→]glycosyls. The branch structure fragments of TS-1was mainly consist of a-D-Glcp-(1→, β-D-Manp-(1μ2)-β-D-Manp-(1→2)-α-D-Glcp-(1→and β-D-Manp-(1→2)-α-D-Glcp-(1→in a ratio of2:1:1. In vitro antioxidant activity tests showed TS-1possessed good scavenging abilities on hydroxyl radicals and DPPH radicals asevidence by their low EC50value of1.15mg/mL and2.11mg/mL. With regard to superoxide radicals scavenging ability, the EC50value was about2.17mg/mL. This research provide basis for the discovery and application of novel structure exopolysaccharides from marine epiphytes.
     4. Two purified EPSs WHW-1and WHS-1were isolated from moss endophytic fungi Penicillium purpurogenum ZZ05-4, and their molecular weights were about28.69kDa and43.91kDa, respectively. The total sugar content and protein content were at90.30%-87.74%and2.69%-4.35%. Structure analysis showed WHW-1was a mannan, with [→6)-a-D-Manp(1→] glycosyls as its bachbone and branched at C-2position of the main chain. The branches of WHW-1were major composed of→-2)-a-D-Manp-(1→and a-D-Manp-(1→. WHS-1was a heteropolysaccharide mainly constituted by Man, Glc and Gal in a ratio of4.20:1.30:0.02. After partial acid hydrolysis, methylation and and GC-MS analysis, WHS-1maybe with a→2)-a-D-Manp-(1→constitute the main chain, and the branches were major of→6)-a-D-Manp-(1→and Manp residue.→5)-Galf-(1→and Galf residues were connected to the outermost peripheral portion of the whole sugar structure.
     5. After isolation and purification with Q Sepharose Fast Flow and Superdex75prep column chromatography, two purified EPSs HQW1and HQS1with a molecular weight of about12.87kDa and29.82kDa were obtained.The sugar and protein contents of HQS1were88.84%and3.49%, respectively. HQS1was mainly composed of Man, Glc and Gal in a molar ratio of5.92:0.87:3.98. Methylation analysis showed HQS1mainly composed of Manp-(1→, Galf-(1→,→2)-Manp-(1→,→3)-Manp-(1→,→2)-Galf-(1→,→6)-Manp-(1→,→6)-Galf(1→,→5,6)-Galf-(1→,→2,6)-Manp-(1→,→3,6)-Manp-(1→and→2,3,6)-Manp-(1→. After partial acid hydrolysis and GC-MS analysis, the mainly connection type were1-2,1-3,1-6,1-2,6, and the non-reducing terminal mannose, wherein the→6)-Manp-(1→and→2)-Manp-(1→connections increaced significantly. This results indicating both connections constitute the main chain structure of HQS1. The oligosaccharides of HQS1with DP2-5was prepared by mild acid hydrolysis and purified by gel-permeation chromatography. HQS1showed certain antioxidant activity in vitro antioxidant experiments, but the activity is not significant.
     6. Four polysaccharide fraction HW-1, HW-2, HS1-1and HS2-1were obtained after purification from the jiaozhou bay sea mud fungus Penicillium sp. ghq-18and the yield of the four polysaccharide were53.21%,9.22%,61.08%and37.59%, respectively. The molecular weight of the four polysaccharide were16.9,11.3,20.7and26.6kDa. HS1-1was mainly composed of Man, Glc and Gal in a molar ratio of14.76:1.00:6.53. Structure analysis indicated HS1-1was a galactomannan, the backbone of mannose core composed of a-Manp(1→,→2)-a-Manp(1→、→6)-a-Manp(1→。→2,6)-a-Manp(1→The galactofuranose had a (3-(1→5)-Galf backbone with a branch structure of β-Galf-(1→at O-6position of the main chain. In vitro antioxidant activity tests showed HS1-1has a certain scavenging activities on DPPH, hydroxyl radicals and superoxide radicals.
     Different kinds of EPSs with novel structure were isolated and from different sources of marine microbial fermentation broth. The determination of in vitro antioxidant activities of EPSs enrich the "Marine sugar library", which provide a certain theoretical basis for the research of marine carbohydrate drugs and functional foods. This thesis has important guiding significance for further enrich microbial extracellular polysaccharide products market.
引文
[1] Ferguson MA, Homans SW, Dwek RA, et al. Glycosyl-phosphatidylinositol moiety that anchorsTrypanosoma brucei variant surface glycoprotein to the membrane. Science (New York, N.Y.).1988,239(4841):753^759.
    [2]魏培莲.微生物胞外多糖研究进展.浙江科技学院学报,2002, 14(2):8?12.
    [3]苏文金,黄益丽,黄耀坚,等.产免疫调节活性多糖海洋放线菌的筛选.海洋学报,2001,23(6):114?119.
    [4] Kobayashi J, Ishibashi M. Bioactive metabolites of symbiotic marine microorganisms. ChemicalReviews,1993,93(5):1753?1769
    [5] Rougeaux H, Talaga P, Carlson RW, et al. Structural studies of an exopolysaccharide produced byAlteromonas macleodii subsp.fijiensis originating from a deep-sea hydrothermal vent. Carbohydr.Res,1998,312:53?59.
    [6] Sutherland IW. Novel and established applications of microbial polysaccharides. Trends inBiotechnology,1998,16:41?46.
    [7] Jorirs K, Vandamme EJ. Novel production and application aspects of bacterial cellulose.Microbiology,1993,1:27?29.
    [8] Rehm BHA. Microbial production of biopolymers and polymer precursors: applications andperspectives. Caister Academic Press.2009.
    [9] Schaechter M, Lederberg J. The Desk Encyclopedia of Microbiology,2004. Elsevier
    [10]Souza AM, Sutherland IW. Exopolysaccharide and storage polymer production in Enterobacteraerogenes type8strains. Journal of Applied Bacteriolology,1994,76:463-468.
    [1l]Yamazaki M, Thome L, Mikolajczak MJ, et al. Linkage of genes essential for synthesis of apolysaccharide capsule in Sphingomonas Strain S88. Journal of Bacteriology,1996,178:2676-2687.
    [12]Amanullah A, Serranocarreon L, Castro B, et al. The influence of impeller type in pilot scalexanthan fermentations. Biotechnology Bioengineering,1998,57:95-108.
    [13]Thorne L, Mikolajczak MJ, Armentrout RW, et al. Increasing the yield and viscosity ofexopolysaccharide secreted by Sphingomonas by augmentation of chromosomal genes with multiplecopies of cloned biosynthetic genes. Journal of Industrial Microbiology and Biotechnology,2000,25:49~57.
    [14]Ruffing A, Chen RR. Metabolic engineering of microbes for oligosaccharide and polysaccharidesynthesis. Microbial Cell Factories,2006,5:25.
    [15]Cuthbertson L, Mainprize IL, Naismith JH, et al. Pivotal roles of the outer membranepolysaccharide export and polysaccharide copolymerase protein families in export of extracellularpolysaccharides in Gram-negative bacteria. Microbioly and Molecular Biology Reviews,2009,73:155~177.
    [16]Whitfield C, Roberts IS. Structure, assembly and regulation of expression of capsules inEscherichia coli. Molecular Microbiology,1999,31:1307~1319.
    [17]Sutherland IW. Biotechnology of Microbial Exopolysaccharide^. Cambridge University: NewYork, NY, USA,1990.
    [18]Morris VJ, Stephen AM. Williams PA. Food polysaccharides and their applications [J]. NewYork: Stephens, AM,1995,341~375
    [19]Tsujisaka Y, Mitsuhashi M, Pullulan[J]. Industrial gums, polysaccharides and their derivatives.San Diego, CA: Academic Press.1993,447~460
    [20]Yalpani M.(1998). In M. Yalpani (Ed.), Polysaccharides: Synthesis, modifications, andstructure-property relations. Amsterdam: Elsevier.
    [21JRemminghorst U, Rehm BHA. Bacterial alginates: From biosynthesis to applications. BiotechnolLetter,2006,28(21):1701~1712.
    [22]Banik RM,Santhiagu A,Upadhyay SN. Optimization of nutrients for gellan gum production bySphingomonas paucimobilis ATCC31461in molasses based medium using response surfacemethodology. Bioresource Technology,2007,98(4):792~797
    [23]Santhiagu A, Rathindra MB. Optimization of gellan gumproduction by Sphingomonaspaucimobilis ATCC31461with nonionic surfactants using central composite design. Journal ofBioscence and Bioengineering,2008,105(3):204-210
    [24Leathers TD. Biotechnological production and applications of pullulan. Applied Microbiologyand Biotechnology,2003,62:468~473
    [25] Darzi HH, Larimi SG, Darzi GN. Synthesis, characterization and physical properties of a novelxanthan gum/polypyrrole nanocomposite. Synthetic Metals,2012,162(2):236~239
    [26] Coleman RJ, et al. Identification and organization of genes for diutan polysaccharide synthesisfrom Sphingomonas sp. ATCC53159.J. Ind. Microbiol. Biotechnol,2008,35:263~274.
    [27]Ruffing A, Chen RR. Metabolic engineering of microbes for oligosaccharide and polysaccharidesynthesis. Microb. Cell Factories,2006,5:25
    [28]GlennSA, Gurich N, Feeney MA, et al. The ExpR/Sin quorum-sensing system controlssuccinoglycan production in Sinorhizobium meliloti. Journal of Bacteriology,2007,189:7077~7088
    [29]Evans LR, Linker A, Impallomeni G. Structure of succinoglycan from an infectious strain ofAgrobacterium radiobacter. International Journal of Biological Macromolecules,2000,27:319~326
    [30]Donot F, Fontana A, Baccou JC, et al. Microbial exopolysaccharides: Main examples ofsynthesis, excretion, genetics and extraction. Carbohydrate Polymers,2012,87:951-962
    [31]Imeson A.(Ed.) Food Stabilisers, Thickening and Gelling Agents. Wiley-Blackwell,2011
    [32]Rehm B. Microbial production of biopolymers and polymer precursors: applications andperspectives.[M] Caister Academic Press,2009.
    [33]Yang ST.(Ed.) Bioprocessing for Value-Added Products from Renewable Resources, ElsevierScience,2011.
    [34]Filomena F, Alves VD, Reis MAM. Advances in bacterial exopolysacchairdes: from productionto biotechnological applications. Trends in Biotechnology,2011,29(8):388~398.
    [35]Ali BH, Ziada A, Blunden G. Biological effects of gum arabic: A review of some recentresearch. Food and Chemical Toxicology,2009,47(1):1~8.
    [36]Wijesekara I, Pangestuti R, Kim SK. Biological activities and potential health benefits ofsulfated polysaccharides derived from marine algae. Carbohydrate Polymers,2011,84(1):14~21.
    [37]Zhang M,Cui SW, Cheung PCK, et al. Antitumor polysaccharides from mushrooms: a reviewon their isolation process, structural characteristics and antitumor activity. Trends in Food Scienceand Technology,2007,18(1):4~19.
    [38]Bhanja SK, Nandan CK, Mandal S,et al. Isolation and characterization of theimmunostimulating P-glucans of an edible mushroom. Carbohydrate Research,2012,357:83~89.
    [39]Das D, Mondal S,Roy SK, et al. A (1—6)-|3-glucan from a somatic hybrid of Pleurotus lfoirdaand Volvariella volvacea: isolation, characterization, and study of immunoenhancing properties.Carbohydrate Research,2010,345(7):974~978.
    [40]Fujimiya Y, Suzuki Y, Oshiman K, et al. Selective tumoricidal effect of soluble proteoglucanextracted from the basidiomycete, Agaricus blazei Murill, mediated via natural killer cell activationand apoptosis. Cancer Immunology, Immunotherapy.1998,46(3):147~159.
    [41]Mizuno T, Hagiwara T, Nakumura T, et al. Antitumor activity and some properties ofwater-soluble polysaccharides from "Himematsutake", the fruiting body of Agaricus blazei Murill.Agricultural and Biological Chemistry,1990,54(11):2889-2896.
    [42]Fenichel RL, Chirigos MA. Immune Modulation Agents and Their Mechanism [M]. New York:Marcel Dekker,1984:400~409.
    [43]Xiao JH, Fang N, Liu ZL, et al. Investigation on antitumor mechanism of polysaccharide frommedicinal fungus Penicillium jiangxiense. Journal of Chinese medicinal,2008,31(1):71~6.
    [44]Bae JS, Jang KH, Jin HK. Effects of natural polysaccharides on thegrowth and peritonealcarcinomatosis of human gastric adenocarcinoma in a nude mouse model. Cancer Letters,2006,235:60~68.
    [45]ChenL, Pan JZ, Li X, et al. Endo-polysaccharide of Phellinus igniarius exhibited anti-tumoreffect through enhancement of cell mediated immunity. International Immunopharmacology,2011,11:255~259.
    [46]Kitaguchi N, Takahashi Y, Tokushima Y, et al. Novel precursor of Alzheimer's disease amyloidprotein shows protease inhibitory activity. Nature,1988,331:530-532.
    [47]陈小燕,高泽立.多糖的研究进展-多糖对机体免疫功能的影响.胃肠病学和肝病学杂志,2006,15(5):540~543.
    [48]Neumann NF, Fagan D, Belosevic M. Macrophage activating factor(s) secreted by mitogienstimulatied goldfish kidney leukocytes syneirgize with bacterial lipopolysaccharide to induce nitricoxide production in teleost macrophages. Development and Comparative Immunology,1995,19(6):473~482.
    [49]Li WX, Chen Q, Li PL, et al. Study on Immunoregulation Effect of ExopolysaccharideProduced by Biifdobacterium spp. Microbiology,2009,36(6):931~935.
    [50]Rout S, Baneijee R. Free radical scavenging, anti-glycation and tyrosinase inhibition propertiesof a polysaccharide fraction isolated from the rind from Punica granatum. Bioresource Technology,2007,98(16):3159~3163.
    [51]Tsai MC, Song TY, Shih PH, et al. Antioxidant properties of water-soluble polysaccharidesfrom Antrodia cinnamomea in submerged culture. Food Chemistry,2007,104(3):1115-1122.
    [52]Wang JW, Luo DH. Antioxidant activities of different fractions of polysaccharide purified fromGynostemma pentaphyllum Makino. Carbohydrate Polymers,2007,68(1):54-58.
    [53]Goldfarb AH. Antioxidants: Role of supplementation to prevent exercise induced oxidativestress. Medicine and Science in Sports and Exercise,1993,25(2):232-236.
    [54]Witt EH., Reznick AZ, Viguie CA, et al. Exercise, oxidative damage and effects of antioxidantmanipulation. Nutrition,1992,122:766~773.
    [55]Ye SH, Liu F, Wang JH, et al. Antioxidant activities of an exopolysaccharide isolated andpurified from marine Pseudomonas PF-6. Carbohydrate Polymers,2012,87:764~770.
    [56]Song HF, Zhang QB, Zhang ZS, et al. In vitro antioxidant activity of polysaccharides extractedfrom Bryopsis plumose. Carbohydrate Polymers,2010,80:1057~1061.
    [57]石全见,孙利芹,周妍,等.紫球藻胞外多糖抗氧化和免疫调节活性的研究.MARINESCIENCE BULLETIN.2009,28(5):85~90.
    [58]Yu RM, Yang W, Song LY, et al. Structural characterization and antioxidant activity of apolysaccharide from the fruiting bodies of cultured Cordyceps militaris. Carbohydrate Polymers,2007,70(4):430~436.
    [59]Asker MMS, Ahmed YM, Ramadan MF. Chemical characteristics and antioxidant activity ofexopolysaccharide fractions from Microbacterium terregens. Carbohydrate Polymers,2009,77(3):563~567.
    [60]Wang J, Zhang QB, Zhang ZS, et al. Antioxidant activity of sulfated polysaccharide fractionsextracted from Laminaria japonica. International Journal of Biological Macromolecules,2008,42(2):127~132.
    [61]杨曦明,范聪,李慧萍,等.白树花多糖硫酸酯的抗凝血活性研究ChinJLabDiagn.2010,14(7):1031~1034.
    [62]Callahan LN, Phelan M, allinson M, et al. Dextran sulfate blocks antibody binding to theprincipal neutralizing domain of human immune deficiency virus type I without interfering withgpl20-CD4interaction. J Virol,1991,65(3):1543.
    [63]Yoshida O, Nakashima H, Yoshida T, et al. Sulfation of the immunomodulating polysaccharidelentinan: a novel strategy for antivirals t o human immune deficiency virus (HIV). BiochemPharmacal,1998,37(15):2887.
    [64] Watson K, Gooderham NJ, Daves DS, et al. Interaction of the trans activating protein HIV-1Tat with sulphated poysaccharide. J Infect Dis,1999,161(1):208.
    [65]王长云,管华诗.多糖抗病毒作用研究进展I多糖抗病毒作用.生物工程进展,2000,20(1):17.
    [66]聂凌鸿,周如金,宁正详.黄原胶的特性、发展现状、生产及其应用.中国食品添加剂,2003,3:82^85.
    [67]崔艳红,黄现青.微生物胞外多糖研究进展.生物技术通报,2006,2:25~28.
    [68]朱桂兰,童群义.微生物多糖的研究进展.食品工业科技,2012,33(6):444~447.
    [69]黄晓波,赵良启.细菌胞外多糖的研究和应用.山西化工,2006,26⑴:25~28.
    [70]Sutherland IW. Microbial polysaccharides from Gram-negative bacteria. International DairyJournal,2001,663~674.
    [71]Katzbauer B. Properties and applications of xanthan gum. Polymer Degradarion and Smbility,1998.59:81~84.
    [72]土屋裕美等,日本公开特许公报.昭1980,166:55~45.
    [73]刘洪灿,任永娥,陈吉棣,等.齐整小核菌胞外多糖的研究.微生物学通报,1993,20(3):147~149.
    [74]刘洪灿.微生物多糖在农业上的应用.河北农业技术师范学院学报,1995,9(2):63~68.
    [75]臧红梅,樊景凤,王斌,等.海洋微生物多样性的研究进展.海洋环境科学,2006,25(3):96~99.
    [76]薛超波,王国良,金珊,等.海洋微生物多样性研究进展.海洋科学进展,2004,22(3):25~28.
    [77]林永成,周世宁.海洋微生物及其代谢产物.北京:化学工业出版社,2002.
    [78]王祥敏,李明,骆祝华,等.海洋真菌及其生物活性物质多样性研究.海洋湖沼通报,2007,3:69~74.
    [79]Bull AT, St ach JE, Ward AC, et al. Marine actinobacteria: perspectives, challenges, futuredirection s. Antonievan Leeuwenhoek,2005,87(1):65.
    [80]Lazzarini A, Cavaletti L, Toppo G, et al. Rare genera of actinomycetes as potential producers ofnew antibiotics. Antonievan Leeuwenhoek,2000,78:399.
    [81]Kushner DJ. Life in high salt and solute concentrations: halophilic bacteria. Microbial life inextreme environments,1978:317~368.
    [82]冯军,李江海,牛向龙.现代海底热液微生物群落及其地质意义.ADVANCES IN EARTHSC IENCE.2005,20(7):732~739.
    [83]曾胤新,陈波,邹扬,等.极地微生物-新天然药物的潜在来源.微生物学报,2008,48(5):695~700.
    [84]Sun HM, Li X, Tian T, et al. Culture Methods of the Oligotrophic Marine Microbes.Microbiology. JUL20,2009,36(7):1031~1039.
    [85]马聪,陈昌国,蒋学兵,等.中国海域海洋细菌分布特征分析.MedJ Chin PLA,2012,37(9):909~913.
    [86]李越中,陈琦.海洋微生物资源多样性.生物工程进展,1998,18(4):34~40.
    [87]王海雁,刘健,赵淑江.海洋放线菌多样性及其代谢产物研究进.中国海洋药物,2010,29(1):67~74.
    [88]Woodward R, Yi W, Li L, et al. In vitro bacterial polysaccharide biosynthesis: defining thefunctions of Wzy and Wzz. Nature Chemical Biology,2010,6:418-423.
    [89]Omoike A, Chorover J. Spectroscopic study of extracellular polymeric substances from Bacillussubtilis'. aqueous chemistry and adsorption effects. Biomacromolecules,2004,5:1219~1230.
    [90]Umezawa H, Okami Y, Kurazawa S, et al Marinactan, antitumor polysaccharide produced bymarine bacteria. The Journal of Antibiotics,1983,5:471~477.
    [91]Guezennec JG, Pignet P, Raguenes G. Preliminary chemical characterization of unusualeubacterial exopolysaccharides of deep-sea origin. Carbohydrate Polymers,1994,24(2):287~294.
    [92]Raguenes G,Pigner P. Appl Environ Microbiol,1996,62:67.
    [93]Arena A, Maugeri TL, Pavone B, et al. Antiviral and immunoregulatory effect of a novelexopolysaccharide from a marine thermotolerant Bacillus licheniformis. InternationalImmunopharmacology,2006,6(1):8-13.
    [94]Nicolaus B, Moriello V, Lama L, et al. Polysaccharides from extremophilic microorganisms.Origins of Life And Evolution of The Biosphere,2004,34:159~169.
    [95]Shuhong Ye, Feng Liu, Jihui Wang, Han Wang, Meiping Zhang. Antioxidant activities of anexopolysaccharide isolated and purified from marine Pseudomonas PF-6. Carbohydrate Polymers.2012,87:764~770.
    [96]Nichols CM, Lardiere SG, Bowman JP, et al. Chemical Characterization of Exopolysaccharidesfrom Antarctic Marine Bacteria. Microbial Ecology,2005,49:578-589.
    [97]Sayem SM, Manzo E, Ciavatta L, et al. Anti-biofilm activity of an exopolysaccharide from asponge-associated strain of Bacillus licheniformis[J]. Microbial Cell Factories,2011,10(74):1~13.
    [98]Okutaani K, Tandavanitj S. Isolation and characterization of a fucosamine-containingpolysaccharide from a marine strain of Pseudomonas. Bulletin of the Japanese Sociiety Fisheries,1991,57(11):2151~2156.
    [99]Kumar CG,Joo HS, Choi JW, et al. Purification and characterization of an extracellularpolysaccharide from haloalkalophilic Bacillus sp.1-450. Enzyme and microbial technology,2004,34(7):673~681.
    [100]Guo SD,Mao WJ, Han Y,et al. Structural characteristics and antioxidant activities of theextracellular polysaccharides produced by marine bacterium Edwardsiella tarda. BioresourceTechnology,2010,101:4729~4732.
    [101]Costaouec TL, Cerantola S,Ropartz D,et al. Structural data on a bacterial exopolysaccharideproduced by a deep-sea Alteromonas macleodii strain. Carbohydrate Polymers,2012,90:49~59.
    [102]Hyde KD, Jones EBG, Leano E,et al. Role of fungi in marine ecosystems. Biodiversity andConservation,1998,7:1147~1161.
    [103]Gareth Jones EB,Jennings DH. The effect of salinity on the growth of marine fungi incomparison with non-marine species. Transactions of the British Mycological Society,1964,47(4):619~625.
    [104]Kohlmeyer J, Kohlmeyer E. Marine Mycology: The Higher Fungi. London: Academic Press.1979.
    [105]Pei H, Lin YZ,Rao LY, et al. Antiviral activities of exopolysaccharide from one fungi strainisolated from mangrove in Hainan province in vitro. Journal of Hainan Medical University,2012,18(2):152~154.
    [106]Sun HH,Mao WJ, Chen Y, et al. Isolation, chemical characteristics and antioxidant propertiesof the polysaccharides rfom marine fungus Penicillium sp. F23-2. Carbohydrate Polymers,2009.78:117~124.
    [107]Yang L, Zu GR, Kong FD,et al. Exopolysaccharides Produced by A Marine Fungi StrainSw-25. Journal of Dalian Institute of Light Industry,2007,26(3):202~205.
    [108]Pei H, Lin YZ, Rao LY, et al. Effects of exopolysaccharide from fungi strain PH0016isolatedfrom mangrove on herpes simplex virus type1activity of exopolysaccharide. Shandong MedicalJournal,2012,52(7):24~26.
    [109]Guo ZY, She ZG, Chen DM,et al. Studying on the Composition of Polysaccharide G-22a fromthe Seeds of Marine Endophytic Fungus No.2508from the South China Sea. ACTASCIENTIARUM NATURALIUM UNIVERSITATIS SUNYATSENI,2003,42(4):127-128.
    [110]Chen DM, She ZG, Guo ZY, et al. The Polysaccharide A2from the Marine MangroveEndophytic Fungus No.2560from the South China Sea. Acta scientiarum naturalium UniversitatisSunyatseni,2004,43(4):124~125.
    [111]裴华,牛莉娜,林英姿,等.一株红树林真菌胞外多糖免疫增强作用研究.食品研究与开发,2012,33(9):170~173.
    [112]Chen Y, Mao WJ, Wang BF, et al. Preparation and characterization of an extracellularpolysaccharide produced by the deep-sea fungus Penicillium griseofulvum. Bioresource Technology,2013,132:178~181.
    [113]Lazzarini A, Cavaletti L, Toppo G, et al. Rare genera of actinomycetes as potential producersof new antibiotics. Antonievan Leeuwenhoek,2000,78:399~405.
    [114]王海雁,刘健,赵淑江.海洋放线菌多样性及其代谢产物研究进展.中国海洋药物,2010,29(1):67~74.
    [115]Okazaki T, Kitahara T, Okami Y. Studies on marine microorganisms. IV. A new antibioticSS-228Y produced by Chainia isolated from shallow sea mud. The Journal of antibiotics,1975,28(3):176.
    [116]Montalvo NF, Mohamed NM, Enticknap JJ, et al. Novel actinobacteria from marine sponges.Antonie van Leeuwenhoek,2005,87(1):29~36.
    [117]Zhang H, Lee YK, Zhang W, et al. Culturable actinobacteria from the marine spongeHymeniacidon perleve: isolation and phylogenetic diversity by16S rRNA gene-RFLP analysis.2006,90(2):159.
    [119]佟茵,吴红娟.植物多糖的提取方法研究进展.中医药信息,2012,29(5):108~110.
    [120]Wang YF, Wei XL, Jin ZY. Structure analysis of a neutral polysaccharide isolated from greentea. Food Research International,2009,42:739~745.
    [121]Mizuno T, Hayashi K, Iwasaki Y, et al. Studies on the host-mediated antitumorpolysaccharides,4: Fractionation, structural investigation and antitumor activity of heterogalactansisolated from the fruit bodies of Ganoderma applanatum.[Forties applanatus] and Fomitopsispinicola. Bulletin of the Faculty of Agriculture-Shizuoka University,1982,31:65
    [122]K'ostalova Z, Hromadkova Z, Ebringerova A. Isolation and characterization of pecticpolysaccharides from the seeded fruit of oil pumpkin. Industrial Crops and Products,2010,31(2):370~377.
    [123]李红民,黄仁泉.提高黄芪多糖提取收率的工艺研究.西北大学学报,2000,30(6):509-510.
    [124]田洛,宣依,范荣军,等.醇碱提取法提取黄芪多糖.吉林大学学报,2006(7),44(4):652-656.
    [125]杨云,冯卫生,孟江,等.正交试验法优选大枣渣多糖水煎煮提取工艺.中药新药与临床药理,2003,14(3):200-202.
    [126]杨云,刘福勤,冯卫生,等.碱法提取大枣渣多糖及活性炭脱色的工艺研究.食品与发酵工业,2004,30(7):30-32.
    [127]袁陆,宫江’杨木,等.植物多糖的提取工艺和方法.吉林畜牧兽医,2011,32(2):13~18.
    [128]程俊文,吴学谦,贺亮,等.香菇子实体多糖分步酶解法提取研究.2009,16(2):67~71.
    [129]王笃政,于娜娜.微波-超声波协同萃取技术在中药有效成分提取中的研究进展.化工中间体,2011(5):5-9.
    [130]杜柯,孙润广,赵凯.超声波在中药多糖提取中的应用.声学技术,2009,28(6):98~100.
    [131]念保义,王铮敏,黄河宁.超声提取、超滤分离香菇多糖工艺的研究.2004,4:16~18.
    [132]刘宇文,熊耀康,姚振生,等.云芝多糖超声提取方法的研究.江西科学,2006,24(4):179-181.
    [133]杨宇博,夏红梅,袁恒翼.植物多糖及其提取方法.中国甜菜糖业,2008,2:34~37.
    [134]刘四光,李文权,邓永智.海洋微藻多糖微波提取法研究.海洋通报,2007,26(4):105~110.
    [135]梁婷,赵亚男,刘爱丽,等.微波法提取姬松茸多糖的工艺研究.
    [136]殷涌光,韩玉珠,丁宏伟.动物多糖的研究进展.食品科学.2006,27(3):256~262.
    [137]吴永霞,吴皓,狄留庆.动物多糖的化学研究概况.时珍国医国药,2006,17(4):640~641.
    [138]王长云,管华诗,林洪.海湾扇贝肝素样多糖分离方法的研究.海洋与湖沼增刊,1995,26(5):66-69.
    [139]王宇,高宏建,刘东红.酶法提取河蛆多糖的研究.食品工业科技,2011,14:228~230.
    [140]程红兵,任盛,谢红,等.细菌胞外多糖提取优化及毒性试验研究.中国生物工程杂志.China Biotechnology,2008,28(3):74-78.
    [141]陈春阳,刘景圣.松茸胞外多糖提取条件的优化.中国食物与营养.2012,18(1):60~62
    [142]李志军.多糖脱蛋白质方法的比较.2009,2:24~25.
    [143]姚新生,吴立军,吴继洲,等.天然药物化学(第4版)[M].北京:人民卫生出版社,2006:102.
    [144]Fu XP, Yang XL THE STUDY ON DECOLORIZATION METHODS OF PLANTPOLYSACCHARIDE. Food Research and Development,2007,28(11):166~169.
    [145]吕磊.大枣多糖的提取分离与脱色研究:[硕士学位论文].西北大学,2003:35~36.
    [146]姚文华,尹卓容.大枣多糖脱色的工业化研究.天然产物分离,2006,4(1):6.
    [A] Nie SP, Xie MY. A review on the isolation and structure of tea polysaccharides and theirbioactivities. Food Hydrocolloids,2011,25:144~149.
    [147]Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulatingpolysaccharides. Applied Microbiology and Biotechnology,2002,60:258-274.
    [148]方积年,丁侃.天然药物-多糖的主要生物活性及分离纯化方法.中国天然药物.2007,5(5):338~347.
    [149]吴亚林,黄静,潘远江.无花果多糖的分离、纯化和鉴定.浙江大学学报,2004,31(2):177~187.
    [150]封聚强,赵骏.中药多糖的分子量及结构研究进展.时珍国医国药,2008,19(3):624~625.
    [151]刘国i全,余兆楼.色谱柱技术[M].北京:化学工业出版社,2006:29~179.
    [152]Zanetta JP, Breckenridge WC, Vincendon G. Analysis of monosaccharides by gas-liquidchromatography of the O-methyl glycosides as trifluoroacetate derivatives: Application toglycoproteins and glycolipids. Journal of Chromatography A,1972,69(2):291~304.
    [153]Rizzo AF, Korkeala H, Mononen I. Gas chromatography analysis of cellular fatty acids andneutral monosaccharides in the identification of lactobacilli. Applied and environmentalmicrobiology,1987,53(12):2883^2888.
    [154]Arland T, Hotehkiss Jr, Kevin B. Isolation of oligogalacturonic acids in gram quantities bypreparative HPLC.Carbohydrate Researeh,1991,215(11):84-90.
    [155]张惟杰.糖复合物生化研究技术.杭州:浙江大学出版社,1999.
    [156]Fu D, OTSFeill RA. Monosaccharide composition analysis of oligosaccharides and glycoproteinsby high-performance liquid chromatography. Analytical biochemistry,1995,227:377~384.
    [157]Hase S, Ikenaka T, Matsushima Y. Structure analyses of oligosaccharides by tagging of thereducing end sugars with a fluorescent compound. Biochemical and Biophysical ResearchCommunications,1978,85(1):257~263.
    [158]Tomiya N, Awaya J, Kurono M, et al. Analyses of N-linked oligosaccharides using atwo-dimensional mapping technique. Analytical biochemistry,1988,171(1):73~90.
    [159]Takahashi N, Tomiya N, Muramatsu T. Handbook of Endoglycosidases and Glycoamidases,CRC Press,8:1992.
    [160]Hirabayashi J, Kasai K. Separation technologies for glycomics. Journal of Chromatography B,2002,771(1-2):67~87.
    [161]Novotny M, Soini H, Stefansson M, et al. Separation through Capillary ElectromigrationMethods. Analytical chemistry,1994,66(11):646~655.
    [162]Coimbra MA, Gongalves F, Barros AS, et al. Fourier Transform Infrared Spectroscopy andChemometric Analysis of White Wine Polysaccharide Extracts. Journal of agricultural and foodchemistry,2002,50(12):3405~3411.
    [163]KacurakovaM, Wilson RH. Developments in mid-infrared FT-IR spectroscopy of selectedcarbohydrates. Carbohydrate Polymers,2001,44(4):291~303.
    [164]来鲁华,杨星婷.寡糖构象分析.生物化学与生物物理进展,1995,22(4):290~294.
    [165]Peters T, Meyer B, Stuike-Prill R, et al. A Monte Carlo method for conformational analysis ofsaccharides. Carbohydrate research,1993,238:49-73.
    [166]Imberty A, Perez S, Milos H, et al. Flexibility in a tetrasaccharide fragment from the highmannose type ofN-linked oligosaccharides. International journal of biological macromolecules,1993,15(1):17~23.
    [167]董群,方积年.寡糖及多糖甲基化方法的发展及现状.天然产物开发与究,1995,7(2):60~65.
    [168]周鹏,谢明勇,傅博强.多糖的结构研究.南昌大学学报,2001,25(2):197~204.
    [169]Abraham RJ, Fisher J, Loflus P. Introduction to NMR spectroscopy. Chichester etc.:Wiley,J1998,153~171.
    [170]Duus J, Gotfredsen CH, Bock K, et al. Carbohydrate structural determination by NMRspectroscopy: Modern methods and limitations. Chemical Review,2000,100:4589~4614.
    [171]Ning Y. Structural Identification of Organic Compounds and Organic Spectroscopy. Beijing:Science Press,1998,174~223.
    [172]Adeyeye J, Azurmendi HF, Stroop JM, et al. Conformation of the hexasaccharide repeatingsubunit from the Vibrio cholerae0139capsular polysaccharide. Biochemistry,2003,42:3979~3988.
    [173]Niedziela T, Dag S, Lukasiewicz J, et al. Complete lipopolysaccharide of Plesiomonasshigelloides074: H5(strain CNCTC144/92).1. Structural analysis of the highly hydrophobiclipopolysaccharide, including the O-Antigen, Its biological repeating unit, the core oligosaccharide,and the linkage between them. Biochemistry,2006,45:10422~10433.
    [174]Yongye AB, Gonzalez-Outeirino J, Glushka J, et al. The Conformational Properties of Methyla-(2,8)-Di/Trisialosides and Their N-Acyl Analogues: Implications for Anti-Neisseria meningitidis BVaccine Design. Biochemistry,2008,47(47):12493~12514.
    [175]Suarez ER, Syvitski R, Kralovec JA, et al. Immunostimulatory polysaccharides from chlorellapyrenoidosa. A new Galactofuranan. Measurement of molecular weight and molecular weightdispersion by DOSY NMR. Biomacromolecules,2006,7:2368-2376.
    [176]Castro CD, Fregolino E, Gargiulo V, et al. A novel capsular polysaccharide from Rhizobiumrubi strain DSM30149. Carbohydrate Research,2008,343:1482-1485.
    [177]Leeuwen SS, Leeflang BR, Gerwig GJ, et al. Development of a1H NMRstructural-reporter-group concept for the primary structural characterisation of a-D-glucans.Carbohydrate Research,2008,343:1114~1119.
    [178]Duus J, Gotfredsen CH, Bock K, et al. Carbohydrate structural determination by NMRspectroscopy: Modern methods and limitations. Chemical Review,2000,100:4589~4614.
    [179]Liu C, Li X, Li Y, et al. Structural characterization and antimutagenic activity of a novelpolysaccharide isolated from Sepiella maindroniink. Food Chemistry,2008,110:807~813.
    [180]Bubb WA. NMR spectroscopy in the study of carbohydrates: Characterizing the structuralcomplexity. Concepts in Magnetic Resonance Part A,2003,19(1):1~19.
    [181]Cui H, Liu Q, Tao Y, et al. Structure and chain conformation of a (1^6)-a-D-glucan from theroot of Pueraria lobata (Willd.) Ohwi and the antioxidant activity of its sulfated derivative.Carbohydrate Polymers,2008,74:771~778.
    [182]Tada R, Harada T, Nagi-Miura N, et al. NMR characterization of the structure of a(3-(1—3)-D-glucan isolate from cultured fruit bodies of Sparassis crispa. Carbohydrate Research,2007,342:2611~2618.
    [183]Cui H, Liu Q, Tao Y, et al. Structure and chain conformation of a (1^6)-a-D-glucan from theroot of Pueraria lobata (Willd.) Ohwi and the antioxidant activity of its sulfated derivative.Carbohydrate Polymers,2008,74:771~778.
    [184]Maciel JS, Chaves LS, Souza BWS, et al. Structural characterization of cold extracted fractionof soluble sulfated polysaccharide from red seaweed Gracilaria birdiae. Carbohydrate Polymers,2008,71:559-565.
    [185]Leeuwen SS, Leeflang BR, Gerwig GJ, et al. Development of a XH NMRstructural-reporter-group concept for the primary structural characterisation of a-D-glucans.Carbohydrate Research,2008,343:1114~1119.
    [186]Zhang W. Biochemical technology of carbohydrate complexes. Hangzhou: Zhejiang UniversityPress.1994,193~200.
    [187]Mopper K, Stubbins A, Ritchie JD, et al. Advanced instrumental approaches forcharacterization of marine dissolved organic matter: extraction techniques, mass spectrometry, andnuclear magnetic resonance spectroscopy. Chemical Review,2007,107:419~442.
    [188]Allerdings E, Ralph J, Schatz P, et al. Isolation and structural identification of diarabinosyl8-0-4-dehydrodiferulate from maize bran insoluble fibre. Phytochemistry,2005,66:113~124.
    [189]Cox AD, Brisson JR, Varma V, et al. Structural analysis of the lip op oly s ac charide from Vibriocholerae0139. Carbohydrate Research,1996,290:43-58.
    [190]Xue Q. Spectroscopy in Polymer Characterization. Beijing: High Education Press.1993,263~277.
    [191]Mcbrierty VJ, Packer KJ. Nuclear Magnetic Resonance in Solid Polymers. New York:Cambridge University Press.1993,37~103.
    [192]Spevacek J, Brus J. Solid-state NMR studies of polysaccharide systems. MacromolecularSymposia,2008,265:69~76.
    [193]Pizzoferrato L, Manzi P, Bertocchi F, et al. Solid-State13C CP MAS NMR spectroscopy ofmushrooms gives directly the ratio between proteins and polysaccharides. Journal of AgricultureFood and Chemistry,2000,48:5484-5488.
    [194]Schmid F, Separovic F, Resck IS, et al. Characterisation of the extracellular polysaccharidesproduced by isolates of the fungus Acremonium. Carbohydrate Research,2007,342:2481-2483.
    [195]Goh KKT, Haisman DR, Singh H. Characterisation of a high acyl gellan polysaccharide usinglight scattering and rheological techniques. Food Hydrocolloids,2006,20:176~183.
    [196]Goh KKT, Hemar Y, Singh H. Viscometric and static light scattering studies on anexopolysaccharide produced by Lactobacillus delbrueckii subspecies bulgaricus NCFB2483.Biopolymers,2005,77:98~106.
    [197]Goh KKT, Pinder DN, Hall CE, et al. Rheological and light scattering properties of flaxseedpolysaccharide aqueous solutions. Biomacromolecules,2006,7:3098~3103.
    [198]McConaughy SD, Stroud PA, Boudreaux B, et al. Structural characterization and solutionproperties of a galacturonate polysaccharide derived from Aloe vera Capable of in situ gelation.Biomacromolecules,2008,9:472-480.
    [199]Tinland B, Rinaudo M. Dependence of the stiffness of the xanthan chain on the external saltconcentration. Macromolecules,1989,22:1863-1865.
    [200]Buffington LA, Pysh ES, Chakrabart B, et al. Far-ultraviolet circular dichroism ofN-acetylglukosamine, glucuronic acid, and hyaluronic acid. Journal of American Chemical Society,1977,99:1730~1734.
    [201]Southwick JG, McDonnell ME, Jamieson AM, et al. Solution studies of xanthan gumemploying quasielastic light scattering. Macromolecules,1979,12:305~311.
    [202]Sletmoen M, Maurstad G, Sikorski P, et al. Characterisation of bacterial polysaccharides: Stepstowards singlemolecular studies. Carbohydrate Research,2003,338:2459~2475.
    [203]Camesano TA, Wilkinson KJ. Single molecule study of xanthan conformation using atomicforce microscopy. Biomacromolecules,2001,2:1184~1191.
    [204]Balnois E, Wilkinson KJ. Sample preparation techniques for the observation of environmentalbiopolymers by atomic force microscopy. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2002,207:229~242.
    [205]Meunier F, Wilkinson KJ. Nonperturbing fluorescent labeling of polysaccharides.Biomacromolecules,2002,3:857-864.
    [206]Giannotti MI, Vancso BT. Interrogation of single synthetic polymer chains andpolysaccharides by AFM-based force spectroscopy. ChemPhysChem,2007,8:2290-2307.
    [207]Zhang Q, Marszalek PE. Identification of sugar isomers by singlemolecule force spectroscopy.Journal of American Chemical Society,2006,128:5596-5597.
    [208]Lycknert K, Widmalm G. Dynamics of the Escherichia coli091O-antigen polysaccharide insolution as studied by carbon-13NMR relaxation. Biomacromolecules,2004,5:1015~1020.
    [209]Paradossi G, Chiessi E, Barbiroli A, et al. Xanthan and glucomannan mixtures: Synergisticinteractions and gelation. Biomacromolecules,2002,3:498-504.
    [210]Sun T,Hui N, Zhou DX, et al. Study on antioxidant activity of carrageenan oligosaccharidesby oxidation degradation and acidic degradation. Food Science and Technology,2009,30(8):111~113.
    [211]杨钊,范莹.利用Fenton试剂制备甘露糖醛酸系列寡糖研究.中国海洋药物,2011,30(3):43~46.
    [212]Liu ZC, Arthur S. Perlin. Evidence of a selective free radical degradation of heparin, mediatedby cupric ion. Carbohydrate Research,1994,255:183~191.
    [213]Pastell H, Tuomainen P, Virkki L, et al. Step-wise enzymatic preparation and structuralcharacterization of singly and doubly substituted arabinoxylo-oligosaccharides with non-reducingand terminal branches. Carbohydr Res,2008,343:3049~3057.
    [214]Roncal T, Oviedo A,de Armentia IL, et al. High yield production of monomer-free chitosanoligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan.Carbohydrate Research,2007,342:2750~2756.
    [215]Thippeswamy S,Mulimani VH. Enzymic degradation of raffinose family oligosaccharides insoymilk by immobilized a-galactosidase from Gibberella fujikuroi. Process Biochemistry,2002,38:635~640.
    [215]陈蕾,吴皓.多糖降解方法研究进展.中华中医药,2008,26(1):133~134.
    [216]GrOnroos A, Pirkonen P,Heikkinen J, et al. Ultrasonic depolymerization of aqueous polyvinylalcohol, Ultrason. Sonochem,2001,8:259~264.
    [217]Czechowska-Biskup R, Rokita B, Lotfy S,et al. Degradation of chitosan and starch by360-kHz ultrasound, Carbohydrate Polymer,2005,60:175~184.
    [218]Portenlanger G,Heusinger H. The influence of frequency on the mechanical and radical effectsfor the ultrasonic degradation of dextranes, Ultrasonics Sonochemistry,1997,4:127~130.
    [219]Koda S, Taguchi K, Futamura K. Effects of frequency and a radical scavenger on ultrasonicdegradation of water-soluble polymers. Ultrasonics Sonochemistry,2011,18(1):276~281.
    [220]牟世芬,于泓,蔡亚岐.糖的高效阴离子交换色谱-脉冲安培检测法分析.色谱,2009,27(5):667~674.
    [221]Fan JQ, Kondo A, Kato I, et al. High-performance liquid chromatography of glycopeptidesand oligosaccharides on graphitized carbon column. Analytical Biochemistry,1994,219(2):224~229.
    [222]El-Rassi Z. Carbohydrate analysis by modern chromatography and electrophoresis[M].Elsevier Science,2002
    [223]张建波,田庚元.寡糖分离和结构分析进展.生物化学与生物物理进展,1998,23(3):456-458.
    [224]段文录.寡糖的分离及结构研究.商丘职业技术学校学报,2003,6(2):35~38.
    [225]Garozzo D, Giuffrida M, Impallomeni G, et al. Determination of linkage position andidentification of the reducing end in linear oligosaccharides by negative ion fast atom bombardmentmass spectrometry. Analytical. Chemistry,1990,62:279~286.
    [226]Harvey DJ. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates andglycoconjugates. International Journal of Mass Spectrometry,2003,226:1~35.
    [227]Joseph Zaia. Mass spectrometry of oligosaccharides. Mass Spectrom reviews,2004,23(3):161~227.
    [228]Barber M, bordoli RS, Sedgwick RD, et al. Fast Atom Bombardment of Solids(F.A.B-): A NewIon Source for Mass Spectrometry. Journal of the Chemical Society, Chemical Communications,1981,(7):325~327.
    [229]Okamoto M. A comparative study on structural elucidation of sialyl oligosaccharides by massspectrometry with fast atom bombardment, electrospray ionization, and matrix assisted laserdesorption/ionization. Bioscience, biotechnology, and biochemistry,2001,65(11):2519-2527.
    [230]Suzuki S, Kakehi K, Honda S. Comparison of the Sensitivities of Various Derivatives ofOligosaccharides in LC/MS with Fast Atom Bombardment and Electrospray Ionization Interfaces.Analytical Chemistry,1996,68:2073-2083.
    [231]Saad OM, Leary JA. Delineating Mechanisms of Dissociation for Isomeric HeparinDisaccharides Using Isotope Labeling and Ion Trap Tandem Mass Spectrometry. Journal of theAmerican Society for Mass Spectrometry,2004,15:1274-1286.
    [232]Tissot B, Salpin JY, Martinez M, et al. Differentiation of the fucoidan sulfated1-fucose isomersconstituents by CE-ESIMS and molecular modeling. Carbohydrate Research,2006,341:598-609.
    [233]Ebel F, Schmitt E, Peter-Katalinic J, et al. Gangliosides: differentiation markers for murine Thelper lymphocyte subpopulations TH1and TH2. Biochemistry,1992,31(48):12190~12197.
    [234]Yu W, Vath JE, Huberty MC, et al. Identification of the facile gas-phase cleavage of theAsp-Pro and Asp-Xxx peptide bonds in matrix-assisted laser desorption time-of-flight massspectrometry. Analytical chemistry,1993,65(21):3015~3023.
    [235]Harvey DJ. Matrix-assisted laser desorption/ionisation mass spectrometry of oligosaccharidesand glycoconjugates. Journal of Chromatography A,1996,720(1-2):429~446
    [236]SinghB. Psyllium as therapeutic and drug delivery agent. International Journal ofPharmaceutics,2007,334:1-14.
    [237]Bennett N, Greco DS, Peterson ME, et al. Comparison of a low carbohydrate-low fiber diet anda moderate carbohydratehigh fiber diet in the management of feline diabetes mellitus. Journal ofFeline Medicine and Surgery,2006,8:73~84.
    [238]Voragen AGJ. Technological aspects of functional food-related carbohydrates. Trends in FoodScience and Technology,1998,9:328-335.
    [239]Hussain A, Claussen B, Ramachandran A, et al. Prevention of type2diabetes: A review.Diabetes Research and Clinical Practice,2007,76:317~326.
    [240]Manning TS, Gibson GR. Prebiotics. Best Practice and Research Clinical Gastroenterology,2004,18:287-298.
    [241]Monchois V, Willemot RM, Monsan P. Glucansucrases: Mechanism of action andstructure-function relationships. FEMS Microbiology Reviews,1999,23:131~151.
    [242]Ngo DN, Kim MM, Kim SK. Chitin oligosaccharides inhibit oxidative stress in live cells.Carbohydrate Polymers,2008,74:228-234.
    [243]Marionneau S, Cailleau-Thomas A, Rocher J, et al. ABH and Lewis histo-blood group antigens,a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie,2001,83:565~573.
    [244]耿美玉,李泽琳,等.海洋硫酸多糖类药物911抗艾滋病毒作用及其机理研究.中国药理学会通讯.2001,18(4):13~14.
    [245]Xue CH, Yu GL, B Takashi Hirata, et al. Antioxidative Activites of Several Marine Severalpolysaeeharides Evaluated in a Phosphotidyl-cholineliposomal Suspasion and organic Solvents.Biesei. Bioteeh. Bioehem,1998,62(2):206~209.
    [246]Zhao X,Lv ZH,Xu JM,et al. Preparation of carboxymethyl Sulfochitosans with differentiallysubstituted regions, oceanic and Coastal Researeh,2003,2(1):69-74.
    [247]Kim SK, Rajapakse N. Enzymatic production and biological activities of chitosanoligosaccharides (COS): A review. Carbohydrate Polymers,2005,62:357~368.
    [248]Wang W, Zhang P, Yu GL, et al. Preparation and anti-influenza A virus activity ofK-carrageenan oligosaccharide and its sulphated derivatives. Food Chemistry,2012,133:880-888.
    [249]Yuan HM, Song JM, Lia XG, et al. Immunomodulation and antitumor activity ofk-carrageenan oligosaccharides. Cancer Letters,2006,243:228-234.
    [1]张傯,张长生,田新朋,等.中国海洋微生物多样性研究.生物多样性保护,2010,25(6):651~657.
    [2]王安利,王维娜,张亚娟,等.海洋微生物是开发海洋药物的重要资源.海洋科学,2002,26(9):7-12.
    [3]郭守东.不同来源微生物胞外多糖的结构和抗氧化活性研究:[博士学位论文].青岛:中国海洋大学医药学院,2010
    [4]Chen Y, Mao WJ, Yang YP, et al,. Structure and antioxidant activity of an extracellularpolysaccharide from coral-associated fungus, Aspergillus versicolor LCJ-5-4. CarbohydratePolymers,2012,87:218~226
    [5]Chen Y, Mao WJ, Wang BF, et al. Preparation and characterization of an extracellularpolysaccharide produced by the deep-sea fungus Penicillium griseofulvum. Bioresource Technology,2013,132:178~181
    [6]Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugarsand related substances. Analytical Chemistry,1956,28(3):350-366.
    [7]Fei YN, Yu RM, Yin Y, et al. Structure characterization and antioxidant activity of a novelpolysaccharide isolated from Ginkgo biloba. International Journal of Biological Macromolecules,2010,46:436~439
    [8]Bradford, MM. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding. Anal Biochem.1976,72:248-254.
    [2] Bensadoun A, Weinstein D. Assay of proteins in presence of interfering materials. AnalyticalBiochemistry,1976,54:484-489.
    [9]Zhang XQ, Paul L. Bishop, Margaret J. Kupferle. Measurement of polysaccharides and proteinsin biofilm extracellular polymers. Water Science and Technology,1998,37(45):345-348
    [10]Bitter T, Muir HM. A modified uronic acid carbazole reaction. Analytical Biochemistry,1962,4:330~334.
    [11]HAUG A, LARSEN B. Quantitative Determination of the Uronic Acid Composition ofAlginates. LARSEN ACTA CHEMICA SCANDINAVICA,1962,16:1908~1918
    [12]Li HY, Mao WJ, Zhang XL, et al. Structural characterization of an anticoagulant-active sulfatedpolysaccharide isolated from green alga Monostroma latissimum. Carbohydrate Polymers,2011,85:394~400
    [13]张惟杰.糖复合物生化研究技术.杭州:浙江大学出版社,1999,16~20.
    [14]苏畅,夏文水,姚恵源.氨基葡萄糖和乙酰氨基葡萄糖的测定方法.食品工业科技,2003,6:74-75
    [15]Lv Y, Yang XB, Zhao Y, et al. Separation and quantification of component monosaccharides ofthe tea polysaccharides from Gynostemma pentaphyllum by HPLC with indirect UV detection. FoodChemistry,112(3):742~746
    [16]付海宁,赵峡,杨海,等.柱前衍生高效液相色谱法测定多糖类兽药中单糖组分的方法研究.中国兽药杂志,2010,44(6):9~12
    [17]Schadel C, Blochl A, Richter A, et al. Quantification and monosaccharide composition ofhemicelluloses from different plant functional types. Plant Physiology and Biochemistry,2010,48(1):1~8
    [18]Sun HH, Mao WJ, Chen Y, et al. Isolation, chemical characteristics and antioxidant properties ofthe polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydrate Polymers,2009,78:117~124
    [19]Qi XH, Mao WJ, Gao Y, et al. Chemical characteristic of an anticoagulant-active sulfatedpolysaccharide from Enteromorpha clathrata. Carbohydrate Polymers,2012,90:1804-1810
    [20]Rumpel C, Dignac MF. Gas chromatographic analysis of monosaccharides in a forest soil profile:Analysis by gas chromatography after trifluoroacetic acid hydrolysis and reduction—acetylation. SoilBiology and Biochemistry,2006,38(6):1478-1481
    [21]Zhang HJ, Mao WJ, Fang F, et al. Chemical characteristics and anticoagulant activities of asulfated polysaccharide and its fragments from Monostroma latissimum. Carbohydrate Polymers,2008,71:428~434
    [22]Aquino R, Morelli S, Lauro MR, et al. Phenolic constituents and antioxidant activity of anextract of Anthurium versicolor leaves. J Nat Prod,2001,64:1019.
    [23]Okusa PN, Penge O, Devleeschouwer M, et al. Direct and indirect antimicrobial effects andantioxidant activity of Cordia gilletii De Wild(Boraginaceae). Journal of Ethnopharmacology,2007,112(3):476.
    [24]翟庆洲,张晓霞,杨锡厅.蛋白质分析的进展.长春理工大学学报,2009,32(1):165~169.
    [25]王淡兮,孙秀兰.蛋白质定量检测方法的探讨.粮食与食品工业,2009,16(4):49~51.
    [26]陈荫.四株不同来源海洋微生物胞外多糖的结构及抗氧化活性研.[博士学位论文].青岛:中国海洋大学医药学院,2012
    [1]傅秀梅,王长云,邵长伦,等.中国珊瑚礁资源状况及其药用研究调查I.珊瑚礁资源与生态功能.中国海洋大学学报,2009,39(4):676~684
    [2]Wang JF, Liu PP, Wang Y, et al. Antimicrobial Aromatic Polyketides fromGorgonian-Associated Fungus, Penicillium commune518#. China Journal of Chemistry,2012,30:1236~1242
    [3]Mao WJ, Fang F, Li HY, et al. Heparinoid-active two sulfated polysaccharides isolated frommarine green algae Monostroma nitidum. Carbohydrate Polymers,2008,74:834-839
    [4]Liu DM, Sheng JW, Li ZJ, et al. Antioxidant activity of polysaccharide fractions extracted fromAthyrium multidentatum (Doll.) Ching. International Journal of Biological Macromolecules,2013,56:1~5
    [5]Liu CH, Wang CH, Xu ZL, et al. Isolation, chemical characterization and antioxidant activities oftwo polysaccharides from the gel and the skin of Aloe barbadensis Miller irirgated with sea water.Process Biochemistry,2007,42(6):961~970
    [6]Chen Y, Mao WJ, Gao Y, et al. Structural elucidation of an extracellular polysaccharide producedby the marine fungus Aspergillus versicolor. Carbohydrate Polymers.2013,93:478-483
    [7]Wei YA, Fang JN, Yao XB, et al. Determination of purity and molecular weight ofpolysaccharides by high performance gel permeation chromatography. Acta Pharmaceutica Sinica.1989,24(7):532~536
    [8]Synytsya A, Copikova J, Matejka P, et al. Fourier transform Raman and infrared spectroscopy ofpectins. Carbohydrate Polymers.2003,54:97~106
    [9]Hakomori S. A rapid permethylation of glycolipid, and polysaccharide catalyzed bymethylsulfinyl carbanion in dimethyl sulfoxide. Journal of Biochemistry,1964,55:205-208.
    [10]Li HY, Mao WJ, Hou YJ, et al. Preparation, structure and anticoagulant activity of a lowmolecular weight fraction produced by mild acid hydrolysis of sulfated rhamnan from Monostromalatissimum. Bioresource Technology,2012,114:414—418
    [11]Gutierrez A, Prieto A, Martinez AT. Structural characterization of extracellular polysaccharidesproduced by fungi from genus Pleurotus. Carbohydrate Research,1996,281(1):143~154.
    [12]Mao WJ, Li HY, Li Y, et al. Chemical characteristic and anticoagulant activity of the sulfatedpolysaccharide isolated from Monostroma latissimum (Chlorophyta). International Journal ofBiological Macromolecules,2009,44:70~74
    [13]Zhang AQ, Xu M, Fu L, et al. Structural elucidation of a novel mannogalactan isolated fromthe fruiting bodies of Pleurotus geesteranus. Carbohydrate Polymers,2013,92:236~240
    [14]Yamamoto Y, Nunome T, Yamauchi R, et al. Structure of an extracellular polysaccharide ofLactobacillus helveticus TN-4, a spontaneous mutant strain of Lactobacillus helveticus TY1-2.Carbohydrate Research,1995,275:319~332.
    [15]Koo BG, Baek G, Choi DJ, et al. Characterization of a renewable extracellular polysaccharidefrom defatted microalga Dunaliella tertiolecta. Bioresource Technology,2012,129:343~350
    [16]Mathlouthi M, Koenig J. Vibrational spectra of carbohydrate. Advances in carbohydrate.Chemistry and Biochemistry,1986,44:7~89
    [17]Shingel KI. Determination of structural peculiarities of dextran, pullulan and y-irradiatedpullulan by Fourier-transform IR spectroscopy. Carbohydrate Research,2002,337:1445~1451
    [18]Zhang WJ. Techniques of Glycoconjugates in Biochemistry. Zhejiang University Press:Hangzhou,1994.271~279.
    [19]Wu YL, Hu N, Pan YJ, et al. Isolation and characterization of a mannoglucan from edibleCordyceps sinensis mycelium. Carbohydrate Research.2007,342:870-875
    [20]Ahrazem O, Prieto A, Leal JA, et al. Fungal cell wall galactomannan isolated from Apodusdeciduus~Carbohydrate Research,2002,337:1503~1506
    [21]Sassaki GL, Gorin PAJ, Souza LM, et al. Rapid synthesis of partially O-methylated alditolacetate standards for GC—MS: some relative activities of hydroxyl groups of methylglycopyranosides on Purdie methylation. Carbohydrate Research,2005,340(4):731~739
    [22]Vanhaverbeke C, Bosso C, Colin-Morel P, et al. Structure of an extracellular polysaccharideproduced by Lactobacillus rhamnosus strain C83. Carbohydrate Research,1998,314:211-220
    [23]Ahrazem O, Prieto A, San-Bias G, et al. Structural differences between the alkali-extractedwater-soluble cell wall polysaccharides from mycelial and yeast phases of the pathogenic dimorphicfungus Paracoccidioides brasiliensis. Glycobiology.2003,13(11):743~747,
    [24]Ahrazem O, Prieto A, Gimenez-Abian MI, et al. Structural elucidation of fungal polysaccharidesisolated from the cell wall of Plectosphaerella cucumerina and Verticillium spp. CarbohydrateResearch,2006,341:246~252
    [25]Ahrazem0, Gomez-Miranda B, Prieto A, et al. Structural characterization of a cell wallpolysaccharide from Penicillium v-rwo--/'/xhemotaxonomic application. Can. J. Bot.1999,77:961~968
    [26]Ahrazem O, Prieto A, Leal JA, et al. Structural elucidation of acidic fungal polysaccharidesisolated from the cell-wall of genera Cylindrocladium and Calonectria. Carbohydrate Research.1997,303:67~72
    [27]Chen Y, Mao WJ, Yang YP, et al. Structure and antioxidant activity of an extracellularpolysaccharide from coral-associated fungus, Aspergillus versicolor LCJ-5-4.Carbohydrate Polymers,2012,87:218-226
    [1]欧阳蒲月,刘楠,张伟伟,等.海滩植物厚藤(Ipomoeapescaprae)的生物学及生理生态特性.湖南科技大学学报,2011,26(4):117~121
    [2]陶洪文.厚藤、泽漆和肉豆蔻三种药用植物及厚藤共生真菌的活性次生代谢产物研究:[博士学位论文].青岛:中国海洋大学医药学院,2009
    [3]Brunati M, Rojas JL, Sponga F, et al. Diversity and pharmaceutical screening of fungi frombenthic mats of Antarctic lakes. Marine Genomics,2009,2:43~50.
    [4]Li ZY. Advances in Marine Microbial Symbionts in the China Sea and Related PharmaceuticalMetabolites. Marine Drugs,2009,7:113~129
    [5]Konig G.M., Kehraus S., Seibert S.F., et al. Natural products from marine organisms and theirassociated microbes. Chembiochem,2006,7(2):229-238
    [6]Wickens, AP. Ageing and the free radical theory. Respiration Physiology,2001,128:379~391.
    [7]Tuba Ak, Giicin I. Antioxidant and radical scavenging properties of cur cumin. Chemico-Biological Interactions.2008,174:27~37
    [8]Qiao DL, Ke CL, Hu B, et al. Antioxidant activities of polysaccharides from Hyriopsis cumingii.Carbohydrate Polymers,2009,78:199~204
    [9]Ye SH, Liu F, Wang JH, et al. Antioxidant activities of an exopolysaccharide isolated andpurified from marine Pseudomonas PF-6. Carbohydrate Polymers,2012,87:764~770
    [10]Damien Dorman HJ, Bachmayer O, Kosar M, et al. Antioxidant Properties of Aqueous Extractsfrom Selected Lamiaceae Species Grown in Turkey. Journal Of Agricultural And Food Chemistry,2004,52(4):762~770
    [11]Zhang ZS, Wang XM, Zhang JJ, et al. Potential antioxidant activities in vitro of polysaccharidesextracted from ginger (Zingiber officinale). Carbohydrate Polymers,201186:448-452
    [12]Song HF, Zhang QB, Zhang ZS, et al. In vitro antioxidant activity of polysaccharides extractedfrom Bryopsis plumose. Carbohydrate Polymers,2010,80:1057~1061
    [13]Aruoma OI. Free radicals, oxidative stress, and antioxidants in human health and disease.Journal of the American Oil Chemists Society,1998,75:199~212.
    [14]Smirnoff N, Cumbes QJ. Hydroxyl radical scavenging activity of compatible solutes.Phytochemistry,1989,28,1057~1060.
    [15]SunHH, Mao WJ, Chen Y, Guo SD, Li HY, Qi XH, Chen YL, Xu J Isolation, chemicalcharacteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp.F23-2. Carbohydrate Polymer,2009,78:117~124
    [16]Sun HH, Mao WJ, Jiao JY, et al. Structural Characterization of Extracellular PolysaccharidesProduced by the Marine Fungus Epicoccum nigrum JJY-40and Their Antioxidant Activities. MarBiotechnol,2011,13:1048~1055
    [17]陈辉,李永辉,姚曲峋.离子交换技术在多糖分离纯化中的应用.河北农业科学,2008,12(7):168~172
    [18]李朝军,刘荣臻,王浩,等.大阪鱼即鱼两种卵黄蛋白紫外吸收特性的研究.南京大学学报.1993,29(3):429~438
    [19]Shingel KI. Determination of structural peculiarities of dextran, pullulan and y-irradiatedpullulan by Fourier-transform IR spectroscopy. Carbohydrate Research,2002,337:1445~1451.
    [20]Zhang WJ. Techniques of Glycoconjugates in Biochemistry; Zhejiang University Press:Hangzhou,1994.271~279
    [21]Mathlouthi M, Koenig J. Vibrational spectra of carbohydrate. Advances in carbohydrate.Chemistry and Biochemistry,1986,44,7~89
    [22]Guadalupe Z, Martmez-Pinilla O, Garirdo A, et al. Quantitative determination of winepolysaccharides by gas chromatography—mass spectrometry (GC-MS) and size exclusionchromatography (SEC). Food Chemistry,2012,131(1):367~374
    [23]Ahrazem O, Prieto A, Leal JA, et al. Structural elucidation of acidic fungal polysaccharidesisolated from the cell-wall of genera Cylindrocladium and Calonectria. Carbohydrate Research,1997,303:67~72
    [24]Ahrazem O, Prieto A, Gimenez-Abian MI, et al. Structural elucidation of fungal polysaccharidesisolated from the cell wall of Plectosphaerella cucumerina and Verticillium spp. CarbohydrateResearch,2006,341:246~252
    [25]Bi HT, Han H, Li ZH, et al. A Water-Soluble Polysaccharide from the Fruit Bodies of Bulgariainquinans (Fries) and Its Anti-Malarial Activity. Evidence-Based Complementary and AlternativeMedicine,2011, Article ID973460,12pages.
    [26]Takegawa K, Satoh K, RamLi N, et al. Production and Characterization of Extracellular UranicAcid-Containing Glycoproteins from Fusarium oxysporum. Journal of Fermentation andBioengineering,1997,83(2):197~200
    [27]Li J, Song GQ, Chen KS, et al. Separation, Purification and Structure Analysis of anExtracellular Polysaccharides from Antarctic Bacterium Pseudoalteromonas sp. S-15-13. ChemicalJournal of Chinese University,2008(6),29(6):1149~1152
    [28]Prieto A, Leal JA, Gimenez-Abian MI, et al. Isolation and structural determination of a uniquepolysaccharide containing mannofuranose from the cell wall of the fungus Acrospermumcompressum. Glycoconjugate Journal,2007,24:421-428
    [29]Chow JTN, Williamson DA, Yates KM et al. Chemical characterization of theimmunomodulating polysaccharide of A/oe vera L. Carbohydrate Research,2005,340:1131-1142
    [30]Brae a A, De Tommasi ND, Bari LD, et al. Antioxidant principles from Bauhinia terapotensis.Journal of Natural Products,2001,64:892-895.
    [31]Chen Y, Mao WJ, Yang YP, et al. Structure and antioxidant activity of an extracellularpolysaccharide from coral-associated fungus, Aspergillus versicolor LCJ-5-4. CarbohydratePolymers,2012,87:218~226
    [32]Sun HH, Mao WJ, Chen Y, et al. Isolation, chemical characteristics and antioxidant propertiesof the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydrate Polymers,2009,78:117~124
    [33]Aruoma OI. Free radicals, oxidative stress, and antioxidants in human health and disease.Journal of the American Oil Chemists Society,1998,75:199~212.
    [34]Wang HX, Ng TB, Liu WK, et al. Chang. Polysaccharide-peptide complexes from the culturedmycelia of the mushroom coriolus versicolor and their culture medium activate mouse lymphocytesand macrophages. The International Journal of Biochemistry and Cell Biology,1996(3),28(5):601~607
    [35]Chen Y, Mao WJ, Tao HW, et al. Structural characterization and antioxidant properties of anexopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp. Y16. BioresourceTechnology,2011,102:8179-8184
    [1]So M, Zhu R L. Mosses and liverworts of Hong Kong[M]. Hong Kong: Heavenly PeopleDepot,1996:2.
    [2]汪庆,贺善安,吴鹏程.苔藓植物的多样性研究.1999,7(4):332~339
    [3]汪庆,罗宣.苔藓植物的主要次生代谢产物与有害生物防治.2001,19(4):93~99
    [4]Borel C, Welti DH, Fernandez I, et al. Dicranin, an antimicrobial and15-lipoxygenase inhibitorfrom the moss Dicranum scoparium. Journal of natural products,1993,56(7):1071~1077.
    [5]Basile A, Giordano S, Lopez-Saez JA, et al. Antibacterial activity of pure flavonoids isolatedfrom mosses. Phytochemistry,1999,52(8):1479~1482.
    [6]Suwanborirux K, Chang CJ, Spjut RW, et al. Ansamitocin P-3, a maytansinoid, fromClaopodiumcrispifolium andAnomodon attenuatus or associated actinomycetes. Experientia,1990,46(1):117~120.
    [7]Ruperez P, Ahrazem O, Leal JA. Potential antioxidant capacity of sulfated polysaccharides fromthe edible marine brown seaweed Fucus vesiculosus. Journal of Agricultural and Food Chemistry,2002,50(4):840~845.
    [8]Lim JM, Joo JH, Kim HO, et al. Structural analysis and molecular characterization ofexopolysaccharides produced by submerged mycelial culture of Collybia maculata TG-1.Carbohydrate Polymers.2005.61(3):296~303
    [9]Nakashima H, Kido Y, Kobayashi N, et al. Purification and characterization of an avianmyeloblastosis and human immunodeficiency virus reverse transcriptase inhibitor, sulfatedpolysaccharides extracted from sea algae.1987,31(10):1524-1528
    [10]Kumar CG, Joo HS, Choi JW, et al. Purification and characterization of an extracellularpolysaccharide from haloalkalophilic Bacillus sp.1-450. Enzyme and Microbial Technology.2004.34(7):673~681
    [11]Levery SB, Toledo MS, Straus AH, et al. Structure elucidation of sphingolipids from themycopathogen Paracoccidioides brasiliensis: an immunodominant (3-galactofuranose residue iscarried by a novel glycosylinositol phosphorylceramide antigen. Biochemistry,1998,37(24):8764~8775.
    [12]Gimenez-Abian MI, Bernabe M, Leal JA, et al. Structure of a galactomannan isolated from thecell wall of the fungus Lineolata rhizophorae. Carbohydrate Research,2007.342:2599~2603
    [13]Tone-Shimokawa Y, Toida T, Kawashima T. Isolation and structural analysis of polysaccharidecontaining galactofuranose from the cell walls of Bifidobacterium infantis. Journal of bacteriology,1996,178(1):317-320.
    [14]陈荫.四株海洋微生物胞外多糖的结构和抗氧化活性研究:[博士学位论文].青岛:中国海洋大学医药学院,2012
    [15]Kuzma M, Clack B, Edwards J, et al. Structure and properties of the exopolysaccharidesproduced by Pseudomonas mutabilis T6and P. mutabilis ATCC31014. Carbohydrate Research,2012,348:84~90
    [16]Kobayash H, Watanabe M, Komido M, et al. Assignment of XH and13C NMR chemical shifts ofa D-mannan composed of a-(1→2) and a-(1→6) linkages obtained from Candida kefyr IFO0586strain. Carbohydrate Research,1995,267:299~306
    [17]Molinaro A, Piscopo V, Lanzetta R, et al. Structural determination of the complexexopolysaccharide from the virulent strain of Cryphonectria parasitica. Carbohydrate Research,2002,337:1707~1713
    [18]Shibata N, Suzuki A, Kobayashi H, et al. Chemical structure of the cell-wall mannan of Candidaalbicans serotype A and its difference in yeast and hyphal forms. Biochemical Journal,2007.404:365~372
    [19]Shibata N, Suzuki A, Kobayashi H, et al. Chemical structure of the cell-wall mannan of Candidaalbicans serotype A and its difference in yeast and hyphal forms. The Biochemical journal,2007.404:365~372
    [20]Ahrazem O, Prieto A, San-Bias G, et al. Structural differences between the alkali-extractedwater-soluble cell wall polysaccharides from mycelial and yeast phases of the pathogenic dimorphicfungus Paracoccidioides brasiliensis. Glycobiology,2003,13(11):743~747.
    [21]Martin-Pastor M, Bush CA. New strategy for the conformational analysis of carbohydratesbased on NOE and13C NMR coupling constants. Application to the flexible polysaccharide ofStreptococcus mitis J22. Biochemistry,1999,38(25):8045-8055.
    [1]Ortega-Morales BO, Chan-Bacab MJ, Rosa-Garcia SCD, et al. Valuable processes and productsfrom marine intertidal microbial communities. Current Opinion in Biotechnology,2010.21:346~352
    [2]曹启民,郑康振,陈耿,等.红树林生态系统微生物学研究进展.贵州农业科学.2011,39(2):110~113
    [3]Vo QT, Kuenzer C, Vo QM, et al. Review of valuation methods for mangrove ecosystem services.Ecological Indicators,2012.23:431~446
    [4]Lewis M, Pryor R, Wilking L. Fate and effects of anthropogenic chemicals in mangroveecosystems: A review. Environmental Pollution,2011,159:2328-2346
    [5]李玫,廖宝文,章金鸿.底泥微生物在红树林系统中的作用.广州环境科学.2006,21(4):21~25
    [6]于广利,嵇国利,冯以明,等.刺松藻水溶性多糖的提取分离及理化性质研究.中国海洋大学学报.2010,40(11):090~094
    [7]Anthon GE, Barrett DM. Modified method for the determination of pyruvic acid withdinitrophenylhydrazine in the assessment of onion pungency. Journal of the Science of Food andAgriculture,2003,83:1210~1213
    [8]Ponder GR. Arabinogalactan from Western larch. Part IV. Polymeric products of partial acidhydrolysis. Carbohydrate Polymer,1998,36:1~14
    [9]Pillon M, Pau-Roblot C, Lequart V, et al. Structural investigation of an exopolysaccharidesubstituted with a lactyl ether group produced by Raoultella terirgena Ez-555-6isolated in theChernobyl exclusion zone. Carbohydrate Research,2010.345:1163~1173
    [10]Zhang YJ, Zhang LX, Yang JF, et al. Structure analysis of water-soluble polysaccharide CPPS3isolated from Codonopsis pilosula. Fitoterapia,2010.81:157~161
    [Hi陈荫.四株不同来源海洋微生物胞外多糖的结构和抗氧化活性研究:[博士学位论文].青岛:中国海洋大学医药学院.2012
    [12]Li HY, Mao WJ, Hou YJ, et al. Preparation, structure and anticoagulant activity of a lowmolecular weight fraction produced by mild acid hydrolysis of sulfated rhamnan from Monostromalatissimum. Bioresource Technology,2012.114:414~418
    [13]Guo SD, Mao WJ, Li LY, et al. Preparation, structural characterization and antioxidant activityof an extracellular polysaccharide produced by the fungus Oidiodendron truncatum GW ProcessBiochemistry,2013,48(3):539~544
    [14]Qi XH, Mao WJ, Gao Y, et al. Chemical characteristic of an anticoagulant-active sulfatedpolysaccharide from Enteromorpha clathrata. Carbohydrate Polymers,2012,90:1804-1810
    [15]Shingel KI. Determination of structural peculiarities of dextran, pullulan and y-irradiatedpullulan by Fourier-transform IR spectroscopy. Carbohydrate Research,2002.337:1445~1451.
    [16]Sun HH, Mao WJ, Jiao JY, et al. Structural Characterization of Extracellular PolysaccharidesProduced by the Marine Fungus Epicoccum nigrum JJY-40and Their Antioxidant Activities. MarBiotechnol,2011,13:1048^1055
    [17]Nagaoka M, Hashimoto S, Shibata H, et al. Structure of a galactan from cell walls ofBifidobacterium catenulatum YIT4016. Carbohydrate Research,1996,281:285-291.
    [18]Omarsdottir S, Petersen BO, Paulsen BS, et al. Structural characterisation of novel lichenheteroglycans by NMR spectroscopy and methylation anaysis. Carbohydrate Research,2006,341:2449-2455.
    [19]Stahl B, Steup M, Karas M, et al. Analysis of neutral oligosaccharides by matrix-assisted laserdesorption ionization mass spectrometry. Analytical Chemistry,1991.63(14):1463~1466
    [20]Cancilla MT, Wong AW, Voss LR, et al. Fragmentation Reactions in the Mass SpectrometryAnalysis ofNeutral Oligosaccharides. Analytical Chemistry,1999,71(15):3206-3218
    [21]Chai WG,. Lawson AM, Piskarev V. Branching pattern and sequence analysis of underivatizedoligosaccharides by combined MS/MS of singly and doubly charged molecular ions in negative-ionelectrospray mass spectrometry. Journal of the American Society for Mass Spectrometry,2002,13(6):670~679
    [22]Mock KK, Davey M, Cottrell JS. The analysis of underivatised oligosaccharides byMatrix-Assisted Laser Desorption Mass Spectrometry. Biochemical and Biophysical ResearchCommunications,1991(4),177(2):644~651
    [23]Li HY, Mao WJ, Chen Y, et al. Sequence analysis of the sulfated rhamno-oligosaccharidesderived from a sulfated rhamnan. Carbohydrate Polymers,2012,90:1299~1304
    [24]Bahr U, Pfenninger A, Karas M, et al. High-Sensitivity Analysis of Neutral UnderivatizedOligosaccharides by Nanoelectrospray Mass Spectrometry. Analytical. Chemistry,1997,69(22):4530~4535
    [25]Reinhold VN, Reinhold BB, Costello CE. Carbohydrate molecular weight profiling, sequence,linkage, and branching data: ES-MS and CID. Analytical. Chemistry,1995,67:1772~1784.
    [26]Yuan H, Zhang W, Li X, et al. Preparation and in vitro antioxidant activity of k-carrageenanoligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives. CarbohydrateResearch,2005,340,685-692.
    [27]Wickens, AP. Ageing and the free radical theory. Respiration Physiology,2001,128:379~391.
    [28]Meyer AS, Isaksen A. Application of enzymes as food antioxidants. Trends in Food Science&Technology,1995,6(9):300~304.
    [29]Chen XP, Chen Y, Li SB, et al. Free radical scavenging of Ganoderma lucidum polysaccharidesand its effect on antioxidant enzymes and immunity activities in cervical carcinoma rats.Carbohydrate Polymers,2009,77:389~393
    [30]Sun HH, Mao WJ, Chen Y, et al. Isolation, chemical characteristics and antioxidant propertiesof the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydrate Polymers,2009,78:117~124
    [31]Chen Y, Mao WJ, Yang YP, et al. Structure and antioxidant activity of an extracellularpolysaccharide from coral-associated fungus Aspergillus versicolor LCJ-5-4. Carbohydrate Polymers,2012.87:218^226
    [1]徐雅娟,陈森洲,骆耐香,等.广西红树林放线菌的分离和DNA的提取.安黴农业科学,2009,37(31):15155~15156
    [2]周志权,黄泽余.广西红树林的病原真菌及其生态学特点.广西植物,2001,21(2):157-162
    [3]Ponder GR. Arabinogalactan from Western larch. Part IV. Polymeric products of partial acidhydrolysis. Carbohydrate Polymers,1998,36:1~14
    [4]Ganter JL, Heyraud A, Petkowicz CLO, et al. Galactomannans from Brazilian seeds:characterization of the oligosaccharides produced by mild acid hydrolysis. International Journal ofBiological Macromolecules,1995,17(1):13~19
    [5]Kohno M, Suzuki S, Kanaya T, et al. Structural characterization of the extracellularpolysaccharide produced by Bifidobacterium longum JBL05. Carbohydrate Polymers,2009,77(2):351~357
    [6]Ahrazem O, Gomez-miranda B, Prieto A, et al. An acidic water-soluble cell wall polysaccharide:a chemotaxonomic marker for Fusarium and Gibberella. Mycological Research,2000,104(5):603~610
    [7]Preston JF III, Gander JE. Isolation and partial characterization of the extracellularpolysaccharides of Penicillium charlesiv. I. Occurrence of galactofuranose in high molecularweight polymers. Archives of Biochemistry and Biophysics,1968,124:504-512
    [8]Ahrazem O, Prieto A, Leal JA, et al. Fungal cell wall polysaccharides isolated from Disculadestructiva spp. Carbohydrate Research,1997,342:1138~1143
    [9]Gimenez-Abian MI, Bernabe M, Leal JA, et al. Structure of a galactomannan isolated from thecell wall of the fungus Lineolata rhizophorae. Carbohydrate Research,2007,342:2599~2603
    [10]Leal JA, Jimenez-Barbero J, Bernabe M, et al. Structural elucidation of a cell wall fungalpolysaccharide isolated from Ustilaginoidea virens, a pathogenic fungus of Oriza sativa and Zeamays. Carbohydrate Research,2008,343:2980-2984
    [11]Chen Y, Mao WJ, Tao HW, et al. Structural characterization and antioxidant properties of anexopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp. Y16. BioresourceTechnology,2011,102:8179-8184
    [12]Soares JR, Dins TCP, Cunha AP, et al. Antioxidant activity of some extracts of Thymus zygis.Free Radical Research,1997,26:469~478
    [13]Oyaizu M. Studies on product of browning reaction prepared from glucose amine. JapaneseJournal of Nutrition,1986,44:307~315
    [14]Qiao DL, Ke CL, Hu B, et al. Antioxidant activities of polysaccharides from Hyriopsis cumingii.Carbohydrate Polymers,2009,78(2):199~200
    [15]Aruoma OI. Free radicals, oxidative stress, and antioxidants in human health and disease.Journal of the American Oil Chemists' Society,1998,75(2):199~212
    [16]Liu J, Luo JG, Ye H, et al. Preparation, antioxidant and antitumor activities in vitro of differentderivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3. Food and ChemicalToxicology,2012,50:767~772
    [17]Banerjee A, Dasgupta N, De B. In vitro study of antioxidant activity of Syzygium cumini fruit.Food Chemistry,2005,90(4):727~733
    [18]Song HF, Zhang QB, Zhang ZS, et al. In vitro antioxidant activity of polysaccharides extractedfrom Bryopsis plumose. Carbohydrate Polymers,2010,80:1057~1061
    [19]Gimenez-AbianM.I., Bernabe M., Leal J.A., et al. Structure of a galactomannan isolated fromthe cell wall of the fungus Lineolata rhizophorae. Carbohydrate Research,2007.342:2599~2603
    [20]Chen Y, Mao WJ, Wang BF, et al. Preparation and characterization of an extracellularpolysaccharide produced by the deep-sea fungus Penicillium griseofulvum. Bioresource Technology,2013,132:178~181
    [21]Sun HH, Mao WJ, Chen Y, et al. Isolation, chemical characteristics and antioxidant properties ofthe polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydrate Polymer,2009,78:117~124
    [22]Chen Y, MaoWJ, YangYP, et al. Structure and antioxidant activity of an extracellularpolysaccharide from coral-associated fungus, Aspergillus versicolor LCJ-5-4. Carbohydrate Polymers,2012,87:218~226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700