用户名: 密码: 验证码:
黄体期不同饲喂量对湖羊卵泡发育、血液理化指标和卵泡内微环境的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了在同一生殖和营养生理状态下湖羊黄体期不同发育阶段卵泡内代谢产物和激素含量的变化关系,探讨了黄体期不同饲喂量对湖羊卵泡发育、血液和卵泡内代谢产物和激素浓度、卵泡和黄体细胞类固醇调节基因表达的影响,旨在揭示黄体期不同饲喂量影响卵泡发育的机制,为规模化羊场空怀母羊的科学饲养以及进一步研究营养影响绵羊繁殖性能的精细信号通路提供一定的参考。试验共分5个部分:
     试验一、湖羊不同发育阶段卵泡内代谢产物和激素含量的比较研究
     选择体重40kg左右的湖羊11头,同期发情结束后第12天屠宰,按不同大小卵泡分离卵泡液。试验结果显示,与≤2.5mm卵泡相比,>2.5mm卵泡内葡萄糖浓度显著提高(P<0.05),胰高血糖素浓度显著降低(P<0.05),乳酸脱氢酶活性和睾酮浓度极显著降低(P<0.01),雌二醇浓度极显著提高(P<0.01),血氨、游离脂肪酸、尿素、胰岛素和孕酮浓度差异不显著。雌二醇浓度与LDH活性极显著负相关(P<0.01),与葡萄糖浓度显著正相关(P<0.05),与胰高血糖素浓度显著负相关(P<0.05),与睾酮浓度极显著负相关(P<0.01),与孕酮浓度接近正相关(P=0.051)。试验结果表明,卵泡内代谢产物和激素共同参与调节卵泡发育。
     试验二、黄体期不同饲喂量对湖羊卵泡发育的影响
     选择体重40kg左右,3-4岁的经产健康母羊28头,随机分三组:R组(n=11),C组(n=6)和S组(n=11),同期发情结束后第6天分别按0.5倍体重维持需要量(0.5×M),1×M和1.5×M饲喂,第12天每组屠宰6只,分离不小于1.0mm的卵泡,分别计算每头羊卵泡直径为1.0-2.0mm,2.0-2.5mm,2.5-3.5mm和≥3.5mm卵泡数和卵泡体积,剩下的湖羊用于观察发情。分别在放栓、拆栓、不同饲喂量处理和屠宰时称重和评定体况。试验结果显示,整个试验过程中体重和体况无显著性差异。随着饲喂水平提高,≥3.5mm卵泡数显著增加(P<0.05),2.5-3.5mm卵泡数显著降低(P<0.05),平均发情周期缩短(P<0.05),>2.5mm卵泡平均体积显著增大(P<0.05)。试验结果表明,黄体溶解前限饲6天抑制卵泡发育。
     试验三、黄体期不同饲喂量对湖羊血液理化指标的影响
     发情周期第12天屠宰后,测量器官重量,在不同饲喂量处理期每天采血。试验结果显示,随着饲喂水平降低,血液尿素,胆固醇,低密度脂蛋白、游离脂肪酸、FSH、雌二醇和孕酮含量及孕酮与雌二醇比值和胰岛素和胰高血糖素比值显著升高(P<0.05),葡萄糖、甘油三酯、三碘甲状原氨酸、胰岛素和胰高血糖素含量显著降低(P<0.05);血液尿酸,血氨,高密度脂蛋白和谷草转氨酶和谷丙转氨酶活性差异不显著(P>0.05),但尿酸、血氨、低密度脂蛋白含量和谷草转氨酶活性具有时间效应(P<0.05)。R组亮氨酸、缬氨酸、异亮氨酸、酪氨酸、丝氨酸、乙醇胺、必须氨基酸、必须氨基酸衍生物、氨基酸代谢物和总氨基酸在饲喂期间低于S组,而牛磺酸、瓜氨酸和氨能代谢产物与总氨基酸比值高于S组。与S组相比,R组脾脏重,脾脏与体重比值显著升高(P<0.05),肝脏重、小肠重、肝脏与体重比和胃重与体重比显著降低(P<0.05)。试验结果表明,绵羊黄体期不同生理阶段具有不同的营养需求和代谢特点;黄体期限饲抑制卵泡发育与能量负平衡引起蛋白质和脂类合成降低,分解增强以及氨基酸代谢和内分泌激素分泌模式改变相关。
     试验四、黄体期不同饲喂量对湖羊卵泡液微环境的影响
     发情周期第12天屠宰后,取每头羊卵巢,分离1.0-2.0mm组,2.0-2.5mm组和单个>2.5mm卵泡卵泡液。试验结果显示,与S组相比,R组增加了卵泡内雌二醇、磷酸乙醇胺、尿素(P<0.05)和δ-羟赖氨酸浓度(P=0.085),减少了鸟氨酸浓度、必须氨基酸与必须氨基酸衍生物比值(P<0.05)和氨能代谢产物与总氨基酸比值(P=0.075)。限饲和补饲组卵泡内胰岛素水平相似,但高于对照组(P<0.05)。不同大小卵泡显著影响卵泡液葡萄糖、雌二醇、睾酮、胰岛素、胰高血糖素和乳酸脱氢酶水平(P<0.05),但仅在R组茎2.5mm卵泡液和>2.5mm卵泡液乳酸脱氢酶活性和睾酮浓度差异不显著。试验结果表明,黄体期限饲影响了发育后期卵泡内氨基酸代谢,增加雌二醇和睾酮浓度以及乳酸脱氢酶的活性,抑制了卵泡发育。
     试验五、黄体期不同饲喂量对湖羊卵泡细胞类固醇调节基因表达的影响
     发情周期第12天屠宰后,取每头羊卵巢,分离1.0-2.0mm组,2.0-2.5mm组和单个>2.5mm卵泡细胞以及黄体细胞。试验结果显示,不同饲喂量仅影响ESR1、CYP17A1和CYP19A1mRNA表达水平(P<0.05)。对>2.5mm卵泡细胞,R和C组CYP17A1mRNA表达水平显著低于S组(P<0.05),R组CYP19A1mRNA表达水平显著高于S组(P<0.05),ESR1mRNA表达水平显著低于C和S组(P<0.05)。不同大小卵泡显著影响VLDLR、ESR2、FSHR (P<0.05)、CYP17A1和CYP19A1(P <0.01) mRNA表达水平,在S组>2.5mm卵泡细胞ESR2mRNA表达水平显著低于≤2.5mm卵泡细胞。试验结果表明,黄体期限饲抑制卵泡发育的机制可能是限饲影响发育后期卵泡内CYP17A1、CYP19A1和ESR1mRNA表达水平。
The present paper comparatively studied the follicular fluid metabolites and hormones concentrations form different-sized follicles at the same reproductive and nutritional physiology, investigated the effects of short-term different nutritional intake on folliculogenesis, plasma and follicular fluid metabolites and hormones concentrations and sterol-regulatory genes expression of follicular and luteal cells during luteal phase in Hu sheep. The objectives of this study were to reveal the mechanism in which short-term different nutritional intake influenced folliculogenesis, and to provide certain references for scientifically rearing barren ewe in large-scale sheep farms and further studying precise signal pathway by which nutrition affected ovine reproductive performance. This study contained the following5parts:
     Experiment1. A comparative study of follicular fluid metabolites and hormones concentrations from different-sized follicles in Hu sheep
     11multiparous Hu sheep of proven fertility were used. After estrus synchronization, all ewes were slaughtered and follicular fluid was collected according to different-sized follicles on day12of estrous cycle. The results showed that there were no significant effects of follicle size on plasma serum ammonia, NEFA, urea, insulin and progesterone concentrations, however, compared with follicles<2.5mm in diameter, the follicular fluid glucose and estradiol concentrations in follicles>2.5mm in diameter were increased (P< 0.05) and the testosterone and glucagon concentrations and LDH activity were decreased (P<0.05). The follicular fluid concentration of estradiol was positively correlated with glucose (P<0.05) and progesterone (P=0.051) and negatively correlated with LDH (P<0.01), glucagon (P<0.05) and testosterone (P<0.01). In conclusion, follicle development was co-regulated by intrafollicular metabolites and hormones.
     Experiment2. Effect of different levels of short-term feed intake on folliculogenesis in Hu sheep during the luteal phase
     28multiparous Hu sheep (3-4years) weighed approximately40kg were selected and randomly assigned to3groups:the control group (n=6) received a maintenance diet (M) while the supplemented group (n=11) and restricted group (n=11) received1.5xM and0.5×M, respectively, on days6-12of their estrous cycle. After estrus synchronization,6ewes per group were slaughtered on day12of the estrous cycle. The ovarian follicles>1.0mm were dissected free and the number and volume of follicles1.0-2.0mm,2.0-2.5mm,2.5-3.5mm and>3.5mm per ewe were calculated, respectively. The remaining ewes were detected for estrous behavior. During the experimental period, body condition and body weight were measured four times:at pessary insertion, at pessary removal, at the start of different feeds and on the day they were killed. The results showed that there were no significant differences in the body weight and body condition score among times or treatments, however, compared with restriction, supplementation shortened the estrus length (P<0.05), decreased the number of follicles2.5-3.5mm (P<0.05), increased the number of follicles>3.5mm (P<0.05) and augmented the volume of follicles>2.5mm (P<0.05). In conclusion, short-term dietary restriction for6days before Iuteolysis inhibits folliculogenesis.
     Experiment3. Effect of different levels of short-term feed intake on plasma physiochemical indexes in Hu sheep during the luteal phase
     After estrus synchronization, all ewes were slaughtered on day12of the estrous cycle and live and organ weights were determined. Blood samples were taken during experiment period. The results showed that as dietary intake decreased, plasma urea, total cholesterol, LDL-C, NEFA, FSH, estradiol, progesterone concentrations and progesterone:estradiol ratio and insulin:glucagon ratio increased (P<0.05), and plasma glucose, triglyceride, insulin and glucagon concentrations decreased (P<0.05). There was no significant effect of treatment on plasma uric acid, plasma ammonia and high density lipoprotein and spartate transaminase, alanine transaminase activities (P>0.05), however, there were significant effect of day on plasma uric acid, ammonia, low density lipoprotein concentrations and aspartate transaminase activity (P<0.05). Plasma leucine, valine, isoleucine, tyrosine, serine, ethanol amine, essential amino acid (EAA), essential amino acid derivatives (EAAD), amino acid metabolites (AAM) and total amino acids (TAA) concentrations in R group ewes were lower, while plasma taurine and citrulline concentrations and ammonia/energy metabolites (AEM):TAA ratio than those in S group ewes during experiment period. Restricted group ewes exhibited greater spleen weight and spleen weight per live weight, and less liver and small intestine weights, liver and stomach weights per live weight than supplemented group ewes (P<0.05). In conclusion, different nutritional requirement and metabolic feature were present in different physiological periods during ovine luteal phase and the mechanism by which dietary restriction inhibited folliculogenesis may involve responses to increased the capacity of lipolysis and protein degradation, decreased the capacity of lipid and protein synthesis, changed amino acids metabolism and varied levels of metabolic and reproductive hormones.
     Experiment4. Effect of different levels of short-term feed intake on follicular fluid microenvironment in Hu sheep during the luteal phase
     6ewes per group were slaughtered on day12of the estrous cycle and the follicular fluid of follicles1.0-2.0mm,2.0-2.5mm,2.5-3.5mm and>3.5mm per ewe was collected, respectively. Compared with supplementation, restriction increased follicular fluid estradiol, phosphorylethanolamine, urea (P<0.05) and8-hydroxylysine (P=0.085) concentrations, decreased ornithine concentration, EAA:EAAD ratio (P<0.05) and AEM:TAA ratio (P=0.075). Restricted ewes had higher intrafollicular insulin concentration than C group ewes (P<0.05), but it was similar to that of supplemented ewes. There were significant follicle size effect on intrafollicular glucose, estradiol, testosterone, insulin, glucagon and lactate dehydrogenase activity (P<0.05), however, only in restricted ewes were intrafollicular lactate dehydrogenase and testosterone concentrations in follicles>2.5mm not different from those in follicles<2.5mm. In conclusion, the mechanism by which short-term dietary restriction inhibits folliculogenesis may involve responses to intrafollicular influenced amino acids metabolism, increased estradiol, testosterone and lactate dehydrogenase levels in late-stage follicles.
     Experiment5. Effect of different levels of short-term feed intake on sterol-regulatory gene expression of follicular and luteal cells in Hu sheep during the luteal phase
     6ewes per group were slaughtered on day12of the estrous cycle and the follicular and luteal cells of follicles1.0-2.0mm,2.0-2.5mm,2.5-3.5mm and>3.5mm per ewe was collected, respectively. The results showed that short-term different nutritional intake affected the genes expression of ESR1, CYP17A1and CYP19A1in follicular cell (P<0.05). Compared to S group ewes, R and C group ewes decreased the CYP17A1mRNA expression (P<0.05) and R group ewes increased CYP19A1mRNA expression (P<0.05) and decreased ESR1mRNA expression (P<0.05) in follicles>2.5mm. There is follicle size effect on VLDLR, ESR2, FSHR (P<0.05), CYP17A1and CYP19A1(P<0.01) mRNA expression, however, only in S group ewes, were follicles>2.5mm less ESR2mRNA expression than follicles≤2.5mm (P<0.05). In conclusion, the mechanism in which short-term restriction inhibited folliculogenesis during luteal phase is that restriction influenced CYP17A1, CYP19A1and ESR1mRNA expression in late-stage follicles.
引文
1. Vinoles C, Forsberg M, Banchero G, et al. Ovarian follicular dynamics and endocrine profiles in Polwarth ewes with high and low body condition [J]. Animal Science,2002,74:535-545.
    2. Zhengzhong X, McDonald M F, McCucheon S N. The effects of nutritionally-induced liveweight differences on follicular development, ovulation rate, oestrous activity and plasma follicle-stimulating hormone levels in the ewe [J]. Animal Reproduction Science,1989, 19(1-2):67-78.
    3. Rhind S M, McMillen S, McKelvey W A, et al. Effect of the body condition of ewes on the secretion of LH and FSH and the pituitary response to gonadotrophin-releasing hormone [J]. J Endocrinol,1989,120(3):497-502.
    4. Rhind S M, McNeilly A S. Follicle populations, ovulation rates and plasma profiles of LH, FSH and prolactin in Scottish Blackface ewes in high and low levels of body condition [J]. Animal Reproduction Science,1986,10:105-115.
    5. Coop E. effect of flushing on reproductive performance of ewes [J]. The Journal of Agricultural Science,1966,67:305-323.
    6. Somchit A, Campbell B K, Khalid M, et al. The effect of short-term nutritional supplementation of ewes with lupin grain (Lupinus luteus), during the luteal phase of the estrous cycle on the number of ovarian follicles and the concentrations of hormones and glucose in plasma and follicular fluid [J]. Theriogenology,2007,68(7):1037-1046.
    7. Munoz-Gutierrez M, Blache D, Martin G B, et al. Folliculogenesis and ovarian expression of mRNA encoding aromatase in anoestrous sheep after 5 days of glucose or glucosamine infusion or supplementary lupin feeding [J]. Reproduction,2002,124(5):721-731.
    8. Downing J A, Joss J, Connell P, et al. Ovulation rate and the concentrations of gonadotrophic and metabolic hormones in ewes fed lupin grain [J]. J Reprod Fertil,1995,103(1):137-145.
    9. Nottle M B, Seamark R F, Setchell B P. Feeding lupin grain for six days prior to a cloprostenol-induced luteolysis can increase ovulation rate in sheep irrespective of when in the oestrous cycle supplementation commences [J]. Reprod Fertil Dev,1990,2(2):189-192.
    10. van Barneveld R J. Understanding the nutritional chemistry of lupin (Lupinus spp.) seed to improve livestock production efficiency [J]. Nutr Res Rev,1999,12(2):203-230.
    11. Vinoles C, Forsberg M, Martin G B, et al. Short-term nutritional supplementation of ewes in low body condition affects follicle development due to an increase in glucose and metabolic hormones [J]. Reproduction,2005,129(3):299-309.
    12. Munoz-Gutierrez M, Blache D, Martin G B, et al. Ovarian follicular expression of mRNA encoding the type I IGF receptor and IGF-binding protein-2 in sheep following five days of nutritional supplementation with glucose, glucosamine or lupins [J]. Reproduction,2004, 128(6):747-756.
    13. Munoz-Gutierrez M, Findlay P A, Adam C L, et al. The ovarian expression of mRNAs for aromatase, IGF-I receptor, IGF-binding protein-2,-4 and -5, leptin and leptin receptor in cycling ewes after three days of leptin infusion [J]. Reproduction,2005,130(6):869-881.
    14. Williams S A, Blache D, Martin G B, et al. Effect of nutritional supplementation on quantities of glucose transporters 1 and 4 in sheep granulosa and theca cells [J]. Reproduction,2001, 122(6):947-956.
    15. Downing J A, Joss J, Scaramuzzi R J. The effect of a direct arterial infusion of insulin and glucose on the ovarian secretion rates of androstenedione and oestradiol in ewes with an autotransplanted ovary [J]. J Endocrinol,1999,163(3):531-541.
    16. Kendall N R, Gutierrez C G, Scaramuzzi R J, et al. Direct in vivo effects of leptin on ovarian steroidogenesis in sheep [J]. Reproduction,2004,128(6):757-765.
    17. Alexander B M, Kiyma Z, McFarland M, et al. Influence of short-term fasting during the Iuteal phase of the estrous cycle on ovarian follicular development during the ensuing proestrus of ewes [J]. Anim Reprod Sci,2007,97(3-4):356-363.
    18. Kiyma Z, Alexander B M, Van Kirk E A, et al. Effects of feed restriction on reproductive and metabolic hormones in ewes [J]. J Anim Sci,2004,82(9):2548-2557.
    19. Sangsritavong S, Combs D K, Sartori R, et al. High feed intake increases liver blood flow and metabolism of progesterone and estradiol-17 beta in dairy cattle [J]. Journal of Dairy Science,2002,85(11):2831-2842.
    20. Parr R A, Davis I F, Miles M A, et al. Feed intake affects metabolic clearance rate of progesterone in sheep [J]. Res Vet Sci,1993,55(3):306-310.
    21. Adams N R, Briegel J R, Sanders M R, et al. Level of nutrition modulates the dynamics of oestradiol feedback on plasma FSH in ovariectomized ewes [J]. Anim Reprod Sci,1997, 47(1-2):59-70.
    1. Brand A, de Jong W H. Qualitative and quantitative micromorphological investigations of the tertiary follicle population during the oestrous cycle in sheep [J]. J Reprod Fertil,1973,33(3): 431-439.
    2. Turnbull K E, Braden A W5 Mattner P E. The pattern of follicular growth and atresia in the ovine ovary [J]. Aust J Biol Sci,1977,30(3):229-241.
    3. Tilly J L. Apoptosis and ovarian function [J]. Rev Reprod,1996,1 (3):162-172.
    4. Matsuda-Minehata F, Inoue N, Goto Y, et al. The regulation of ovarian granulosa cell death by pro-and anti-apoptotic molecules [J]. J Reprod Dev,2006,52(6):695-705.
    5.吴延光,于元松,谭景和.哺乳动物卵泡发育模式及其调控机理[J].动物学杂志,2002,37(06):83-87.
    6. De Pol A, Vaccina F, Forabosco A, et al. Apoptosis of germ cells during human prenatal oogenesis [J]. Hum Reprod,1997,12(10):2235-2241.
    7. Hirshfield A N. Development of follicles in the mammalian ovary [J]. Int Rev Cytol,1991, 124:43-101.
    8. Gougeon A. Regulation of ovarian follicular development in primates:facts and hypotheses [J]. Endocr Rev,1996,17(2):121-155.
    9.舒建洪,哈利,石玉强,et al.卵泡生长发育及其调控的研究进展[J].西北农林科技大学学报(自然科学版),2004,(06).
    10. Hirst R C, Abel M H, Wilkins V, et al. Influence of mutations affecting gonadotropin production or responsiveness on expression of inhibin subunit mRNA and protein in the mouse ovary [J]. Reproduction,2004,128(1):43-52.
    11. Kidder G M, Mhawi A A. Gap junctions and ovarian folliculogenesis [J]. Reproduction,2002, 123(5):613-620.
    12. Nilsson E E, Skinner M K. Kit ligand and basic fibroblast growth factor interactions in the induction of ovarian primordial to primary follicle transition [J]. Mol Cell Endocrinol,2004, 214(1-2):19-25.
    13. Parrott J A, Skinner M K. Kit ligand actions on ovarian stromal cells:effects on theca cell recruitment and steroid production [J]. Mol Reprod Dev,2000,55(1):55-64.
    14. Nilsson E E, Kezele P, Skinner M K. Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries [J]. Mol Cell Endocrinol,2002, 188(1-2):65-73.
    15. Dissen G A, Romero C, Hirshfield A N, et al. Nerve growth factor is required for early follicular development in the mammalian ovary [J]. Endocrinology,2001,142(5):2078-2086.
    16. Brankin V, Quinn R L, Webb R, et al. Evidence for a functional bone morphogenetic protein (BMP) system in the porcine ovary [J]. Domest Anim Endocrinol,2005,28(4):367-379.
    17. Kezele P R, Nilsson E E, Skinner M K. Insulin but not insulin-like growth factor-1 promotes the primordial to primary follicle transition [J]. Mol Cell Endocrinol,2002,192(1-2):37-43.
    18. Kezele P, Nilsson E E, Skinner M K. Keratinocyte growth factor acts as a mesenchymal factor that promotes ovarian primordial to primary follicle transition [J]. Biol Reprod,2005, 73(5):967-973.
    19. Weenen C, Laven J S, Von Bergh A R, et al. Anti-Mullerian hormone expression pattern in the human ovary:potential implications for initial and cyclic follicle recruitment [J]. Mol Hum Reprod,2004,10(2):77-83.
    20. Castrillon D H, Miao L, Kollipara R, et al. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a [J]. Science,2003,301(5630):215-218.
    21. McGee E A, Hsueh A J. Initial and cyclic recruitment of ovarian follicles [J]. Endocr Rev, 2000,21(2):200-214.
    22. Driancourt M A. Regulation of ovarian follicular dynamics in farm animals. Implications for manipulation of reproduction [J]. Theriogenology,2001,55(6):1211-1239.
    23. Fortune J E. Ovarian follicular growth and development in mammals [J]. Biol Reprod,1994, 50(2):225-232.
    24. Yu Y S, Sui H S, Han Z B, et al. Apoptosis in granulosa cells during follicular atresia: relationship with steroids and insulin-like growth factors [J]. Cell Res,2004,14(4):341-346.
    25. Burke C R, Cardenas H, Mussard M L, et al. Histological and steroidogenic changes in dominant ovarian follicles during oestradiol-induced atresia in heifers [J]. Reproduction, 2005,129(5):611-620.
    26. Billig H, Furuta I, Hsueh A J. Gonadotropin-releasing hormone directly induces apoptotic cell death in the rat ovary:biochemical and in situ detection of deoxyribonucleic acid fragmentation in granulosa cells [J]. Endocrinology,1994,134(1):245-252.
    27. Gharib S D, Merman M E, Shupnik M A, et al. Molecular biology of the pituitary gonadotropins [J]. Endocr Rev,1990,11(1):177-199.
    28. Sairam M R, Bhargavi G N. A role for glycosylation of the alpha subunit in transduction of biological signal in glycoprotein hormones [J]. Science,1985,229(4708):65-67.
    29. Braun T, Schofield P R, Sprengel R. Amino-tenninal leucine-rich repeats in gonadotropin receptors determine hormone selectivity [J]. EMBO J,1991,10(7):1885-1890.
    30. Meduri G, Charnaux N, Driancourt M A, et al. Follicle-stimulating hormone receptors in oocytes? [J]. J Clin Endocrinol Metab,2002,87(5):2266-2276.
    31. Cardenas H, Pope W F. Androgen receptor and follicle-stimulating hormone receptor in the pig ovary during the follicular phase of the estrous cycle [J]. Mol Reprod Dev,2002,62(1): 92-98.
    32. Liu J, Aronow B J, Witte D P, et al. Cyclic and maturation-dependent regulation of follicle-stimulating hormone receptor and luteinizing hormone receptor messenger ribonucleic acid expression in the porcine ovary [J]. Biol Reprod,1998,58(3):648-658.
    33. Rannikki A S, Zhang F P, Huhtaniemi I T. Ontogeny of follicle-stimulating hormone receptor gene expression in the rat testis and ovary [J]. Mol Cell Endocrinol,1995,107(2):199-208.
    34. Zachos N C, Billiar R B, Albrecht E D, et al. Developmental regulation of follicle-stimulating hormone receptor messenger RNA expression in the baboon fetal ovary [J]. Biol Reprod, 2003,68(5):1911-1917.
    35. Hussein M R. Apoptosis in the ovary:molecular mechanisms [J]. Hum Reprod Update,2005, 11(2):162-177
    36. Kim J M, Yoon Y D, Tsang B K. Involvement of the Fas/Fas ligand system in p53-mediated granulosa cell apoptosis during follicular development and atresia [J]. Endocrinology,1999, 140(5):2307-2317.
    37. Robles R, Tao X J, Trbovich A M, et al. Localization, regulation and possible consequences of apoptotic protease-activating factor-1 (Apaf-1) expression in granulosa cells of the mouse ovary [J]. Endocrinology,1999,140(6):2641-2644.
    38. Wang Y, Asselin E, Tsang B K. Involvement of transforming growth factor alpha in the regulation of rat ovarian X-linked inhibitor of apoptosis protein expression and follicular growth by follicle-stimulating hormone [J]. Biol Reprod,2002,66(6):1672-1680.
    39. Rosenfeld C S, Wagner J S, Roberts R M, et al. Intraovarian actions of oestrogen [J]. Reproduction,2001,122(2):215-226.
    40. Kobayashi J, Mizunuma H, Kikuchi N, et al. Morphological assessment of the effect of growth hormone on preantral follicles from 11-day-old mice in an in vitro culture system [J]. Biochem Biophys Res Commun,2000,268(1):36-41.
    41. Bachelot A, Monget P, Imbert-Bollore P, et al. Growth hormone is required for ovarian follicular growth [J]. Endocrinology,2002,143(10):4104-4112.
    42., Songsasen N, Yu I, Leibo S P. Nuclear maturation of canine oocytes cultured in protein-free media [J]. Mol Reprod Dev,2002,62(3):407-415.
    43. Danilovich N A, Bartke A, Winters T A. Ovarian follicle apoptosis in bovine growth hormone transgenic mice [J]. Biol Reprod,2000,62(1):103-107.
    44. Liu X, Andoh K, Yokota H, et al. Effects of growth hormone, activin, and follistatin on the development of preantral follicle from immature female mice [J]. Endocrinology,1998, 139(5):2342-2347.
    45. Xu Y P, Chedrese J, Thacker P A. Effects of GH on IGF-Ⅱ-induced progesterone accumulation by cultured porcine granulosa cells [J]. Endocrine,1997,7(2):157-163.
    46. Lebedeva I Y, Lebedev V A, Grossmann R, et al. Characterization of growth hormone binding sites in granulosa and theca layers at different stages of follicular maturation and ovulatory cycle in the domestic hen [J]. Biol Reprod,2004,71(4):1174-1181.
    47. Zhao J, Taverne M A, van der Weijden G C, et al. Immunohistochemical localisation of growth hormone (GH), GH receptor (GHR), insulin-like growth factor Ⅰ (IGF-Ⅰ) and type Ⅰ IGF-Ⅰ receptor, and gene expression of GH and GHR in rat pre-antral follicles [J]. Zygote, 2002,10(1):85-94.
    48. Marchal R, Caillaud M, Martoriati A, et al. Effect of growth hormone (GH) on in vitro nuclear and cytoplasmic oocyte maturation, cumulus expansion, hyaluronan synthases, and connexins 32 and 43 expression, and GH receptor messenger RNA expression in equine and porcine species [J]. Biol Reprod,2003,69(3):1013-1022.
    49. Chase C C, Jr., Kirby C J, Hammond A C, et al. Patterns of ovarian growth and development in cattle with a growth hormone receptor deficiency [J]. J Anim Sci,1998,76(1):212-219.
    50. Mendoza C, Cremades N, Ruiz-Requena E, et al. Relationship between fertilization results after intracytoplasmic sperm injection, and intrafollicular steroid, pituitary hormone and cytokine concentrations [J]. Hum Reprod,1999,14(3):628-635.
    51. Kolle S, Sinowatz F, Boie G, et al. Developmental changes in the expression of the growth hormone receptor messenger ribonucleic acid and protein in the bovine ovary [J]. Biol Reprod,1998,59(4):836-842.
    52. Srsen V, Kalous J, Nagyova E, et al. Effects of follicle-stimulating hormone, bovine somatotrophin and okadaic acid on cumulus expansion and nuclear maturation of blue fox (Alopex lagopus) oocytes in vitro [J]. Zygote,1998,6(4):299-309.
    53. Kolodziejczyk J, Gregoraszczuk E L, Leibovich H, et al. Different action of ovine GH on porcine theca and granulosa cells proliferation and insulin-like growth factors .Ⅰ- and Ⅱ-stimulated estradiol production [J]. Reprod Biol,2001,1(1):33-41.
    54. Xu Y P, Chedrese P J, Thacker P A. Growth hormone as an amplifier of insulin-like growth factor-Ⅰ action:potentiated oestradiol accumulation [J]. J Endocrinol,1997,152(2):201-209.
    55. Welt C, Sidis Y, Keutmann H, et al. Activins, inhibins, and follistatins:from endocrinology to signaling. A paradigm for the new millennium [J]. Exp Biol Med (Maywood),2002,227(9): 724-752.
    56. Lin S Y, Morrison J R, Phillips D J, et al. Regulation of ovarian function by the TGF-beta superfamily and follistatin [J]. Reproduction,2003,126(2):133-148.
    57. Gregory S J, Kaiser U B. Regulation of gonadotropins by inhibin and activin [J]. Seminars in reproductive medicine,2004,22(3):253-267.
    58. Sadatsuki M, Tsutsumi O, Yamada R, et al. Local regulatory effects of activin A and follistatin on meiotic maturation of rat oocytes [J]. Biochem Biophys Res Commun,1993, 196(1):388-395.
    59. Pang Y, Ge W. Gonadotropin regulation of activin betaA and activin type IIA receptor expression in the ovarian follicle cells of the zebrafish, Danio rerio [J]. Mol Cell Endocrinol, 2002,188(1-2):195-205.
    60. Alak B M, Coskun S, Friedman C I, et al. Activin A stimulates meiotic maturation of human oocytes and modulates granulosa cell steroidogenesis in vitro [J]. Fertil Steril,1998,70(6): 1126-1130.
    61. Cho B N, McMullen M L, Pei L, et al. Reproductive deficiencies in transgenic mice expressing the rat inhibin alpha-subunit gene [J]. Endocrinology,2001,142(11):4994-5004.
    62. Harrington A E, Morris-Triggs S A, Ruotolo B T, et al. Structural basis for the inhibition of activin signalling by follistatin [J]. EMBO J,2006,25(5):1035-1045.
    63. Slot K A, Kastelijn J, Bachelot A, et al. Reduced recruitment and survival of primordial and growing follicles in GH receptor-deficient mice [J]. Reproduction,2006,131(3):525-532.
    64. Silva C C, Groome N P, Knight P G. Immunohistochemical localization of inhibin/activin alpha, betaA and betaB subunits and follistatin in bovine oocytes during in vitro maturation and fertilization [J]. Reproduction,2003,125(1):33-42.
    65. Zheng X, Price C A, Tremblay Y, et al. Role of transforming growth factor-betal in gene expression and activity of estradiol and progesterone-generating enzymes in FSH-stimulated bovine granulosa cells [J]. Reproduction,2008,136(4):447-457.
    66. Li A, Yang H, Wang F, et al. The expression of IGF-I, TGF beta and Fas-L in granulosa cells of ovarian follicle with relation to the onset of atresia in rats [J]. Hua Xi Yi Ke Da Xue Xue Bao,1999,30(2):158-161.
    67.李键,王建辰.IGFs对卵泡生长发育的影响[J].中国兽医学报,1996,(02).
    68. Zhou J, Kumar T R, Matzuk M M, et al. Insulin-like growth factor I regulates gonadotropin responsiveness in the murine ovary [J]. Mol Endocrinol,1997,11(13):1924-1933.
    69. Sekar N, Garmey J C, Veldhuis J D. Mechanisms underlying the steroidogenic synergy of insulin and luteinizing hormone in porcine granulosa cells:joint amplification of pivotal sterol-regulatory genes encoding the low-density lipoprotein (LDL) receptor, steroidogenic acute regulatory (stAR) protein and cytochrome P450 side-chain cleavage (P450scc) enzyme [J]. Mol Cell Endocrinol,2000,159(1-2):25-35.
    70. Pescador N, Stocco D M, Murphy B D. Growth factor modulation of steroidogenic acute regulatory protein and luteinization in the pig ovary [J]. Biol Reprod,1999,60(6): 1453-1461.
    71. Dierich A, Sairam M R, Monaco L, et al. Impairing follicle-stimulating hormone (FSH) signaling in vivo:targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance [J]. Proc Natl Acad Sci U S A,1998,95(23):13612-13617.
    72. Okada A, Sato T, Ohta Y, et al. Effect of diethylstilbestrol on cell proliferation and expression of epidermal growth factor in the developing female rat reproductive tract [J]. J Endocrinol, 2001,170(3):539-554.
    73. Murray J F, Downing J A, Evans G, et al. Epidermal growth factor acts directly on the sheep ovary in vivo to inhibit oestradiol-17 beta and inhibin secretion and enhance progesterone secretion [J]. J Endocrinol,1993,137(2):253-264.
    74. Westergaard L G, Yding Andersen C, Byskov A G. Epidermal growth factor in small antral ovarian follicles of pregnant women [J]. J Endocrinol,1990,127(2):363-367.
    75. Das K, Phipps W R, Hensleigh H C, et al. Epidermal growth factor in human follicular fluid stimulates mouse oocyte maturation in vitro [J]. Fertil Steril,1992,57(4):895-901.
    76. Matsumoto K, Nakayama T, Sakai H, et al. Neuronal apoptosis inhibitory protein (NAIP) may enhance the survival of granulosa cells thus indirectly affecting oocyte survival [J]. Mol Reprod Dev,1999,54(2):103-111.
    77. Yasuda K, Fukuoka M, Fujiwara H, et al. Effects of interferon on the steroidogenic functions and proliferation of immature porcine granulosa cells in culture [J]. Biol Reprod,1992,47(6): 931-936.
    78. Komatsu K, Manabe N, Kiso M, et al. Soluble Fas (FasB) regulates luteal cell apoptosis during luteolysis in murine ovaries [J]. Mol Reprod Dev,2003,65(4):345-352.
    79. Hakuno N, Koji T, Yano T, et al. Fas/APO-1/CD95 system as a mediator of granulosa cell apoptosis in ovarian follicle atresia [J]. Endocrinology,1996,137(5):1938-1948.
    80. Piatti V, Celis M E, Durando P E. The stimulatory effect of alpha-melanotropin on progesterone release from rat granulosa cells is inhibited by interleukin-lbeta and by tumour necrosis factor-alpha [J]. Acta physiologica Scandinavica,2004,182(2):145-149.
    81. Chun S Y, Eisenhauer K M, Kubo M, et al. Interleukin-1 beta suppresses apoptosis in rat ovarian follicles by increasing nitric oxide production [J]. Endocrinology,1995,136(7): 3120-3127.
    82. Li J, Kim J M, Liston P, et al. Expression of inhibitor of apoptosis proteins (IAPs) in rat granulosa cells during ovarian follicular development and atresia [J]. Endocrinology,1998, 139(3):1321-1328.
    83. Nandedkar T D, Dharma S J. Expression of bcl(xs) and c-myc in atretic follicles of mouse ovary [J]. Reproductive biomedicine online,2001,3(3):221-225.
    84. Gillio-Meina C, Hui Y Y, LaVoie H A. GATA-4 and GATA-6 transcription factors:expression, immunohistochemical localization, and possible function in the porcine ovary [J]. Biol Reprod,2003,68(2):412-422.
    85. LaVoie H A, Singh D, Hui Y Y. Concerted regulation of the porcine steroidogenic acute regulatory protein gene promoter activity by follicle-stimulating hormone and insulin-like growth factor I in granulosa cells involves GATA-4 and CCAAT/enhancer binding protein beta [J]. Endocrinology,2004,145(7):3122-3134.
    86. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death [J]. Am J Pathol, 1995,146(1):3-15.
    87. Schwartz L M, Smith S W, Jones M E, et al. Do all programmed cell deaths occur via apoptosis? [J].Proc Natl Acad Sci U S A,1993,90(3):980-984.
    88. Columbano A. Cell death:current difficulties in discriminating apoptosis from necrosis in the context of pathological processes in vivo [J]. J Cell Biochem,1995,58(2):181-190.
    89. Kaipia A, Hsueh A J. Regulation of ovarian follicle atresia [J]. Annu Rev Physiol,1997,59: 349-363.
    90. Matikainen T, Perez G I, Zheng T S, et al. Caspase-3 gene knockout defines cell lineage specificity for programmed cell death signaling in the ovary [J]. Endocrinology,2001,142(6): 2468-2480.
    91. Takagi K, Yamada T, Miki Y, et al. Histological observation of the development of follicles and follicular atresia in immature rat ovaries [J]. Acta medica Okayama,2007,61(5): 283-298.
    92. Elmore S. Apoptosis:a review of programmed cell death [J]. Toxicologic pathology,2007, 35(4):495-516.
    93. Tabarowski Z, Szoltys M, Bik M, et al. Atresia of large ovarian follicles of the rat [J]. Folia histochemica et cytobiologica/Polish Academy of Sciences, Polish Histochemical and Cytochemical Society,2005,43(1):43-50.
    94. Rajakoski E. The ovarian follicular system in sexually mature heifers with special reference to seasonal, cyclical, end left-right variations [J]. Acta endocrinologica Supplementum,1960, 34(Suppl 52):1-68.
    95. Tilly J L, Kowalski K I, Johnson A L, et al. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression [J]. Endocrinology,1991,129(5):2799-2801.
    96. Hughes F M, Jr., Gorospe W C. Biochemical identification of apoptosis (programmed cell death) in granulosa cells:evidence for a potential mechanism underlying follicular atresia [J]. Endocrinology,1991,129(5):2415-2422.
    97. McRae R S, Johnston H M, Mihm M, et al. Changes in mouse granulosa cell gene expression during early luteinization [J]. Endocrinology,2005,146(1):309-317.
    98. Hickey T E, Marrocco D L, Gilchrist R B, et al. Interactions between androgen and growth factors in granulosa cell subtypes of porcine antral follicles [J]. Biol Reprod,2004,71(1): 45-52.
    99. Murdoch W J. Programmed cell death in preovulatory ovine follicles [J]. Biol Reprod,1995, 53(1):8-12.
    100. Maxson W S, Haney A F, Schomberg D W. Steroidogenesis in porcine atretic follicles:loss of aromatase activity in isolated granulosa and theca [J]. Biol Reprod,1985,33(2):495-501.
    101. Weil S J, Vendola K, Zhou J, et al. Androgen receptor gene expression in the primate ovary: cellular localization, regulation, and functional correlations [J]. J Clin Endocrinol Metab, 1998,83(7):2479-2485.
    102. Wu J, Zhang L, Li T. The effect of sex steroids on human ovarian granulosa cell apoptosis] [J]. Zhonghua Fu Chan Ke Za Zhi,1998,33(3):157-159.
    103. Jolly P D, Tisdall D J, Heath D A, et al. Apoptosis in bovine granulosa cells in relation to steroid synthesis, cyclic adenosine 3',5'-monophosphate response to follicle-stimulating hormone and luteinizing hormone, and follicular atresia [J]. Biol Reprod,1994,51(5): 934-944.
    104. Carson R S, Findlay J K, Clarke I J, et al. Estradiol, testosterone, and androstenedione in ovine follicular fluid during growth and atresia of ovarian follicles [J]. Biol Reprod,1981, 24(1):105-113.
    105. Moor R M, Hay M F, Dott H M, et al. Macroscopic identification and steroidogenic function of atretic follicles in sheep [J]. J Endocrinol,1978,77(3):309-318.
    106. Franke R P, Fuhrmann R, Mrowietz C, et al. Reduced diagnostic value of lactate dehydrogenase (LDH) in the presence of radiographic contrast media [J]. Clin Hemorheol Microcirc,2010,45(2-4):123-130.
    107. Wise T. Biochemical analysis of bovine follicular fluid:albumin, total protein, lysosomal enzymes, ions, steroids and ascorbic acid content in relation to follicular size, rank, atresia classification and day of estrous cycle [J]. J Anim Sci,1987,64(4):1153-1169.
    108. Nandi S, Kumar V G, Manjunatha B M, et al. Biochemical composition of ovine follicular fluid in relation to follicle size [J]. Dev Growth Differ,2007,49(1):61-66.
    109. Besnard N, Pisselet C, Monniaux D, et al. Expression of messenger ribonucleic acids of insulin-like growth factor binding protein-2,-4, and -5 in the ovine ovary:localization and changes during growth and atresia of antral follicles [J]. Biol Reprod,1996,55(6): 1356-1367.
    110. Monget P, Mazerbourg S, Delpuech T, et al. Pregnancy-associated plasma protein-A is involved in insulin-like growth factor binding protein-2 (IGFBP-2) proteolytic degradation in bovine and porcine preovulatory follicles:identification of cleavage site and characterization of IGFBP-2 degradation [J]. Biol Reprod,2003,68(1):77-86.
    1. Hazeleger W, Soede N M, Kemp B. The effect of feeding strategy during the pre-follicular phase on subsequent follicular development in the pig [J]. Domest Anim Endocrinol,2005, 29(2):362-370.
    2. I'Anson H, Foster D L, Foxcroft G R, et al. Nutrition and reproduction [J]. Oxf Rev Reprod Biol,1991,13:239-311.
    3. Lucy M C. Mechanisms linking nutrition and reproduction in postpartum cows [J]. Reprod Suppl,2003,61:415-427.
    4. Coop E. effect of flushing on reproductive performance of ewes [J]. The Journal of Agricultural Science,1966,67:305-323.
    5. Vinoles C, Forsberg M, Martin G B, et al. Short-term nutritional supplementation of ewes in low body condition affects follicle development due to an increase in glucose and metabolic hormones [J]. Reproduction,2005,129(3):299-309.
    6. Munoz-Gutierrez M, Blache D, Martin G B, et al. Folliculogenesis and ovarian expression of mRNA encoding aromatase in anoestrous sheep after 5 days of glucose or glucosamine infusion or supplementary lupin feeding [J]. Reproduction,2002,124(5):721-731.
    7. Vinoles C, Forsberg M, Banchero G, et al. Ovarian follicular dynamics and endocrine profiles in Polwarth ewes with high and low body condition [J]. Animal Science,2002,74:535-545.
    8. Scaramuzzi R J, Campbell B K, Downing J A, et al. A review of the effects of supplementary nutrition in the ewe on the concentrations of reproductive and metabolic hormones and the mechanisms that regulate folliculogenesis and ovulation rate [J]. Reprod Nutr Dev,2006, 46(4):339-354.
    9. Zhengzhong X, McDonald M F, McCucheon S N. The effects of nutritionally-induced liveweight differences on follicular development, ovulation rate, oestrous activity and plasma follicle-stimulating hormone levels in the ewe [J]. Animal Reproduction Science,1989, 19(1-2):67-78.
    10. Rhind S M, McMillen S, McKelvey W A, et al. Effect of the body condition of ewes on the secretion of LH and FSH and the pituitary response to gonadotrophin-releasing hormone [J]. JEndocrinol,1989,120(3):497-502.
    11. Rhind S M, McNeilly A S. Follicle populations, ovulation rates and plasma profiles of LH, FSH and prolactin in Scottish Blackface ewes in high and low levels of body condition [J]. Animal Reproduction Science,1986,10:105-115.
    12. Somchit A, Campbell B K, Khalid M, et al. The effect of short-term nutritional supplementation of ewes with lupin grain (Lupinus luteus), during the luteal phase of the estrous cycle on the number of ovarian follicles and the concentrations of hormones and glucose in plasma and follicular fluid [J]. Theriogenology,2007,68(7):1037-1046.
    13. Downing J A, Joss J, Scaramuzzi R J. Ovulation rate and the concentrations of gonadotrophins and metabolic hormones in ewes infused with glucose during the late luteal phase of the oestrous cycle [J]. J Endocrinol,1995,146(3):403-410.
    14. Teleni E, Rowe J B, Croker K P, et al. Lupins and energy-yielding nutrients in ewes. II. Responses in ovulation rate in ewes to increased availability of glucose, acetate and amino acids [J]. ReprodFertil Dev,1989,1(2):117-125.
    15. Downing J A, Scaramuzzi R J. Nutrient effects on ovulation rate, ovarian function and the secretion of gonadotrophic and metabolic hormones in sheep [J]. J Reprod Fertil Suppl,1991, 43:209-227.
    16. Downing J A, Joss J, Connell P, et al. Ovulation rate and the concentrations of gonadotrophic and metabolic hormones in ewes fed lupin grain [J]. J Reprod Fertil,1995,103(1):137-145.
    17. Nottle M B, Seamark R F, Setchell B P. Feeding lupin grain for six days prior to a cloprostenol-induced luteolysis can increase ovulation rate in sheep irrespective of when in the oestrous cycle supplementation commences [J]. Reprod Fertil Dev,1990,2(2):189-192.
    18. Nottle M B, Hynd P I, Seamark R F, et al. Increases in ovulation rate in lupin-fed ewes are initiated by increases in protein digested post-ruminally [J]. J Reprod Fertil,1988,84(2): 563-566.
    19. van Barneveld R J. Understanding the nutritional chemistry of lupin (Lupinus spp.) seed to improve livestock production efficiency [J]. Nutr Res Rev,1999,12(2):203-230.
    20. Teleni E, King W R, Rowe J B, et al. Lupins and energy-yielding nutrients in ewes. I. glucose and acetate biokinetics and metabolic hormones in sheep fed a supplement of lupin grain. [J]. Aust J Agric Res,1989, (40):913-924.
    21. Landau S, Bor A, Leibovich H, et al. The effect of ruminal starch degradability in the diet of Booroola crossbred ewes on induced ovulation rate and prolificacy [J]. Animal Reproduction Science,1995,38(1-2):97-108.
    22. Downing J A, Joss J, Scaramuzzi R J. A mixture of the branched chain amino acids leucine, isoleucine and valine increases ovulation rate in ewes when infused during the late luteal phase of the oestrous cycle:an effect that may be mediated by insulin [J]. J Endocrinol,1995, 145(2):315-323.
    23. Kendall N R, Gutierrez C G, Scaramuzzi R J, et al. Direct in vivo effects of leptin on ovarian steroidogenesis in sheep [J]. Reproduction,2004,128(6):757-765.
    24. Munoz-Gutierrez M, Findlay P A, Adam C L, et al. The ovarian expression of mRNAs for aromatase, IGF-I receptor, IGF-binding protein-2,-4 and-5, leptin and leptin receptor in cycling ewes after three days of leptin infusion [J]. Reproduction,2005,130(6):869-881.
    25. Vlfioles C. Effect of nutrition on follicle development and ovulation rate in ewe [J]. Doctoral Thesis Uppsala, Sweden:Department of Clinical Chemistry, Swedish University of Agricultural Sciences, Faculty of Veterinary Medicine,2003:P.109.
    26. Murphy M G, Enright W J, Crowe M A, et al. Effect of dietary intake on pattern of growth of dominant follicles during the oestrous cycle in beef heifers [J]. J Reprod Fertil,1991,92(2): 333-338.
    27. Blache D, Tellam R L, Chagas L M, et al. Level of nutrition affects leptin concentrations in plasma and cerebrospinal fluid in sheep [J]. J Endocrinol,2000,165(3):625-637.
    28. Gong J G. Influence of metabolic hormones and nutrition on ovarian follicle development in cattle:practical implications [J]. Domest Anim Endocrinol,2002,23(1-2):229-241.
    29. Lozano J M, Lonergan P, Boland M P, et al. Influence of nutrition on the effectiveness of superovulation programmes in ewes:effect on oocyte quality and post-fertilization development [J]. Reproduction,2003,125(4):543-553.
    30. Gong J G, Bramley T A, Webb R. The effect of recombinant bovine somatotrophin on ovarian follicular growth and development in heifers [J]. J Reprod Fertil,1993,97(1):247-254.
    31. Wade G N, Jones J E. Neuroendocrinology of nutritional infertility [J]. Am J Physiol Regul Integr Comp Physiol,2004,287(6):R1277-1296.
    32. Kiyma Z, Alexander B M, Van Kirk E A, et al. Effects of feed restriction on reproductive and metabolic hormones in ewes [J]. J Anim Sci,2004,82(9):2548-2557.
    33. Wathes D C, Taylor V J, Cheng Z, et al. Follicle growth, corpus luteum function and their effects on embryo development in postpartum dairy cows [J]. Reprod Suppl,2003,61: 219-237.
    34. Parr R A, Davis I F, Fairclough R J, et al. Overfeeding during early pregnancy reduces peripheral progesterone concentration and pregnancy rate in sheep [J]. J Reprod Fertil,1987, 80(1):317-320.
    35. Parr R A, Davis I F, Miles M A, et al. Feed intake affects metabolic clearance rate of progesterone in sheep [J]. Res Vet Sci,1993,55(3):306-310.
    36. Letelier C, Mallo F, Encinas T, et al. Glucogenic supply increases ovulation rate by modifying follicle recruitment and subsequent development of preovulatory follicles without effects on ghrelin secretion [J]. Reproduction,2008,136(1):65-72.
    37. Marshall S, Bacote V, Traxinger R R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance [J]. J Biol Chem,1991,266(8):4706-4712.
    38. Marshall S. Role of insulin, adipocyte hormones, and nutrient-sensing pathways in regulating fuel metabolism and energy homeostasis:a nutritional perspective of diabetes, obesity, and cancer [J]. Science's STKE:signal transduction knowledge environment,2006,2006(346): re7.
    39. Scaramuzzi R J, Campbell B K, Souza C J, et al. Glucose uptake and lactate production by the autotransplanted ovary of the ewe during the luteal and follicular phases of the oestrous cycle [J]. Theriogenology,2010,73(8):1061-1067.
    40. Williams S A, Blache D, Martin G B, et al. Effect of nutritional supplementation on quantities of glucose transporters 1 and 4 in sheep granulosa and theca cells [J]. Reproduction,2001, 122(6):947-956.
    41. Nishimoto H, Matsutani R, Yamamoto S, et al. Gene expression of glucose transporter (GLUT) 1,3 and 4 in bovine follicle and corpus luteum [J]. J Endocrinol,2006,188(1): 111-119.
    42. Poretsky L, Cataldo N A, Rosenwaks Z, et al. The insulin-related ovarian regulatory system in health and disease [J]. Endocr Rev,1999,20(4):535-582.
    43. Taniguchi C M, Emanuelli B, Kahn C R. Critical nodes in signalling pathways:insights into insulin action [J]. Nature reviews Molecular cell biology,2006,7(2):85-96.
    44. Yen H W, Jakimiuk A J, Munir I, et al. Selective alterations in insulin receptor substrates-1,-2 and-4 in theca but not granulosa cells from polycystic ovaries [J]. Mol Hum Reprod,2004, 10(7):473-479.
    45. Somchit A. The physiological regulation of folliculogenesis by the insulin-glucose system and by perturbation of the follicular negative feedback system [J]. PhD Thesis, University of London, London, UK,2008.
    46. Ehrmann D A, Tang X, Yoshiuchi I, et al. Relationship of insulin receptor substrate-1 and-2 genotypes to phenotypic features of polycystic ovary syndrome [J]. J Clin Endocrinol Metab, 2002,87(9):4297-4300.
    47. Ryan K E, Casey S M, Canty M J, et al. Akt and Erk signal transduction pathways are early markers of differentiation in dominant and subordinate ovarian follicles in cattle [J]. Reproduction,2007,133(3):617-626.
    48. Ryan K E, Glister C, Lonergan P, et al. Functional significance of the signal transduction pathways Akt and Erk in ovarian follicles:in vitro and in vivo studies in cattle and sheep [J]. J Ovarian Res,2008,1(1):2.
    49. Zeleznik A J, Saxena D, Little-Ihrig L. Protein kinase B is obligatory for follicle-stimulating hormone-induced granulosa cell differentiation [J]. Endocrinology,2003,144(9):3985-3994.
    50. Froment P, Bontoux M, Pisselet C, et al. PTEN expression in ovine granulosa cells increases during terminal follicular growth [J]. FEBS Lett,2005,579(11):2376-2382.
    51. Reddy P, Liu L, Adhikari D, et al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool [J]. Science,2008,319(5863):611-613.
    52. Yaba A, Bianchi V, Borini A, et al. A putative mitotic checkpoint dependent on mTOR function controls cell proliferation and survival in ovarian granulosa cells [J]. Reprod Sci, 2008,15(2):128-138.
    53. Adhikari D, Flohr G, Gorre N, et al. Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles [J]. Mol Hum Reprod,2009,15(12):765-770.
    54. Scaramuzzi R, J,, Brown H, M,, Dupont. Nutritional and metabolic mechanisms in the ovary and their role in mediating the effects of diet on folliculogenesis:a perspective [J]. Reprod Dom Anim,2010,45 (Suppl.3):32-41.
    55. Poretsky L, Kalin M F. The gonadotropic function of insulin [J]. Endocr Rev,1987,8(2): 132-141.
    56. Campbell B K, Scaramuzzi R J, Webb R. Induction and maintenance of oestradiol and immunoreactive inhibin production with FSH by ovine granulosa cells cultured in serum-free media [J]. J Reprod Fertil,1996,106(1):7-16.
    57. Campbell B K, Baird D T, Webb R. Effects of dose of LH on androgen production and luteinization of ovine theca cells cultured in a serum-free system [J]. J Reprod Fertil,1998, 112(1):69-77.
    58. Peluso J J, Delidow B C, Lynch J, et al. Follicle-stimulating hormone and insulin regulation of 17 beta-estradiol secretion and granulosa cell proliferation within immature rat ovaries maintained in perifusion culture [J]. Endocrinology,1991,128(1):191-196.
    59. Pisani L, Antonini S, Pocar P, et al. Effects of premating nutrition on mRNA levels of developmentally-relevant genes in sheep oocytes and granulosa cells [J]. Reproduction,2008.
    60. Zachow R J, Magoffin D A. Direct intraovarian effects of leptin:impairment of the synergistic action of insulin-like growth factor-I on follicle-stimulating hormone-dependent estradiol-17 beta production by rat ovarian granulosa cells [J]. Endocrinology,1997,138(2): 847-850.
    61. Sirotkin A V, Mlyncek M, Kotwica J, et al. Leptin directly controls secretory activity of human ovarian granulosa cells:possible inter-relationship with the IGF/IGFBP system [J]. Horm Res,2005,64(4):198-202.
    62. Spicer L J, Chamberlain C S, Francisco C C. Ovarian action of leptin:effects on insulin-like growth factor-I-stimulated function of granulosa and thecal cells [J]. Endocrine,2000,12(1): 53-59.
    63. Eckery D C, Moeller C L, Nett T M, et al. Localization and quantification of binding sites for follicle-stimulating hormone, luteinizing hormone, growth hormone, and insulin-like growth factor I in sheep ovarian follicles [J]. Biol Reprod,1997,57(3):507-513.
    64. del Rincon J P, Iida K, Gaylinn B D, et al. Growth hormone regulation of p85alpha expression and phosphoinositide 3-kinase activity in adipose tissue:mechanism for growth hormone-mediated insulin resistance [J]. Diabetes,2007,56(6):1638-1646.
    65. Wathes D C, Fenwick M, Cheng Z, et al. Influence of negative energy balance on cyclicity and fertility in the high producing dairy cow [J]. Theriogenology,2007,68 Suppl 1: S232-241.
    66. Scaramuzzi R J, Murray J F, Downing J A, et al. The effects of exogenous growth honnone on follicular steroid secretion and ovulation rate in sheep [J]. Domest Anim Endocrinol,1999, 17(2-3):269-277.
    67. Campbell B K, Scaramuzzi R J, Webb R. Control of antral follicle development and selection in sheep and cattle [J]. J Reprod Fertil Suppl,1995,49:335-350.
    68. Willis D, Franks S. Insulin action in human granulosa cells from normal and polycystic ovaries is mediated by the insulin receptor and not the type-I insulin-like growth factor receptor [J]. J Clin Endocrinol Metab,1995,80(12):3788-3790.
    69. Mihm M, Evans A C. Mechanisms for dominant follicle selection in monovulatory species:a comparison of morphological, endocrine and intraovarian events in cows, mares and women [J]. Reprod Domest Anim,2008,43 Suppl 2:48-56.
    70. Beam S W, Butler W R. Effects of energy balance on follicular development and first ovulation in postpartum dairy cows [J]. J Reprod Fertil Suppl,1999,54:411-424.
    71. Bondy C A, Chin E, Zhou J. Significant species differences in local IGF-I and -Ⅱ gene expression [J]. Adv Exp Med Biol,1993,343:73-77.
    72. Campbell B K. Factors affecting ovulation rate in sheep and cattle [J]. PhD thesis, University of Sydney,1988.
    73. Perks C M, Denning-Kendall P A, Gilmour R S, et al. Localization of messenger ribonucleic acids for insulin-like growth factor I (IGF-1), IGF-Ⅱ, and the type 1 IGF receptor in the ovine ovary throughout the estrous cycle [J]. Endocrinology,1995,136(12):5266-5273.
    74. Perks C M, Peters A R, Wathes D C. Follicular and luteal expression of insulin-like growth factors Ⅰ and Ⅱ and the type 1 IGF receptor in the bovine ovary [J]. J Reprod Fertil,1999, 116(1):157-165.
    75. Leeuwenberg B R, Hurst P R, McNatty K P. Expression of IGF-I mRNA in the ovine ovary [J]. J Mol Endocrinol,1995,15(3):251-258.
    76. Mazerbourg S, Bondy C A, Zhou J, et al. The insulin-like growth factor system:a key determinant role in the growth and selection of ovarian follicles? a comparative species study [J]. Reprod Domest Anim,2003,38(4):247-258.
    77. Hernandez E R. Regulation of the genes for insulin-like growth factor (IGF) I and II and their receptors by steroids and gonadotropins in the ovary [J]. J Steroid Biochem Mol Biol,1995, 53(1-6):219-221.
    78. Zhou J, Adesanya O O, Vatzias G, et al. Selective expression of insulin-like growth factor system components during porcine ovary follicular selection [J]. Endocrinology,1996, 137(11):4893-4901.
    79. Samaras S E, Guthrie H D, Barber J A, et al. Expression of the mRNAs for the insulin-like growth factors and their binding proteins during development of porcine ovarian follicles [J]. Endocrinology,1993,133(5):2395-2398.
    80. Munoz-Gutierrez M, Blache D, Martin G B, et al. Ovarian follicular expression of mRNA encoding the type I IGF receptor and IGF-binding protein-2 in sheep following five days of nutritional supplementation with glucose, glucosamine or lupins [J]. Reproduction,2004, 128(6):747-756.
    81. Hardie D G. The AMP-activated protein kinase pathway--New players upstream and downstream [J]. J Cell Sci,2004,117(Pt 23):5479-5487.
    82. Carling D, Zammit V A, Hardie D G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis [J]. FEBS Lett,1987, 223(2):217-222.
    83. Tosca L, Chabrolle C, Dupont J. AMPK:a link between metabolism and reproduction? [J]. M S-Med Sci,2008,24(3):297-300.
    84. Kayampilly P P, Menon K M. Follicle-stimulating hormone inhibits adenosine 5'-monophosphate-activated protein kinase activation and promotes cell proliferation of primary granulosa cells in culture through an Akt-dependent pathway [J]. Endocrinology, 2009,150(2):929-935.
    85. Mitchell M, Armstrong D T, Robker R L, et al. Adipokines:implications for female fertility and obesity [J]. Reproduction,2005,130(5):583-597.
    86. Wang J, Liu R, Hawkins M, et al. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat [J]. Nature,1998,393(6686):684-688.
    87. McClain D A, Paterson A J, Roos M D, et al. Glucose and glucosamine regulate growth factor gene expression in vascular smooth muscle cells [J]. Proc Natl Acad Sci USA,1992, 89(17):8150-8154.
    88. Daniels M C, Kansal P, Smith T M, et al. Glucose regulation of transforming growth factor-alpha expression is mediated by products of the hexosamine biosynthesis pathway [J]. Mol Endocrinol,1993,7(8):1041-1048.
    89. Harlow C R, Cahill D J, Maile L A, et al. Time-dependent effects of transforming growth factor alpha on aromatase activity in human granulosa cells [J]. Hum Reprod,1995,10(10): 2554-2559.
    90. Scaramuzzi R J, Downing J A. The in vivo effects of fibroblast growth factor and epidermal growth factor on the secretion of oestradiol, androstenedione and progesterone by the autotransplanted ovary in the ewe [J]. J Endocrinol,1995,146(2):301-311.
    91. Campbell B K, Gordon B M, Scaramuzzi R J. The effect of ovarian arterial infusion of transforming growth factor alpha on ovarian follicle populations and ovarian hormone secretion in ewes with an autotransplanted ovary [J]. J Endocrinol,1994,143(1):13-24.
    92. Han I, Kudlow J E. Reduced O glycosylation of Spl is associated with increased proteasome susceptibility [J]. Mol Cell Biol,1997,17(5):2550-2558.
    93. Borroni R, Liu Z, Simpson E R, et al. A putative binding site for Sp1 is involved in transcriptional regulation of CYP17 gene expression in bovine ovary [J]. Endocrinology, 1997,138(5):2011-2020.
    94. Thompson J G, Lane M, Gilchrist R B. Metabolism of the bovine cumulus-oocyte complex and influence on subsequent developmental competence [J]. Society of Reproduction and Fertility supplement,2007,64:179-190.
    95. Staples C R, Burke J M, Thatcher W W. Influence of supplemental fats on reproductive tissues and performance of lactating cows [J]. J Dairy Sci,1998,81(3):856-871.
    96. Hinckley T, Sr., Clark R M, Bushmich S L, et al. Long chain polyunsaturated fatty acids and bovine luteal cell function [J]. Biol Reprod,1996,55(2):445-449.
    97. Komar C M. Peroxisome proliferator-activated receptors (PPARs) and ovarian function--implications for regulating steroidogenesis, differentiation, and tissue remodeling [J]. Reprod Biol Endocrinol,2005,3:41.
    98. Forman B M, Chen J, Evans R M. The peroxisome proliferator-activated receptors:ligands and activators [J]. Ann N Y Acad Sci,1996,804:266-275.
    99. Lee S S, Pineau T, Drago J, et al. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators [J]. Mol Cell Biol,1995,15(6):3012-3022.
    100. Barak Y, Liao D, He W, et al. Effects of peroxisome proliferator-activated receptor delta on placentation, adiposity, and colorectal cancer [J]. Proc Natl Acad Sci U S A,2002,99(1): 303-308.
    101.Dupont J, Chabrolle C, Rame C, et al. Role of the peroxisome proliferator-activated receptors, adenosine monophosphate-activated kinase, and adiponectin in the ovary [J]. PPAR research, 2008,2008:176275.
    102. Komar C M, Braissant O, Wahli W, et al. Expression and localization of PPARs in the rat ovary during follicular development and the periovulatory period [J]. Endocrinology,2001, 142(11):4831-4838.
    103. Mu Y M, Yanase T, Nishi Y, et al. Insulin sensitizer, troglitazone, directly inhibits aromatase activity in human ovarian granulosa cells [J]. Biochem Biophys Res Commun,2000,271(3): 710-713.
    104. Cui Y, Miyoshi K, Claudio E, et al. Loss of the peroxisome proliferation-activated receptor gamma (PPARgamma) does not affect mammary development and propensity for tumor formation but leads to reduced fertility [J]. J Biol Chem,2002,277(20):17830-17835.
    105. Kim J, Sato M, Li Q, et al. Peroxisome proliferator-activated receptor gamma is a target of progesterone regulation in the preovulatory follicles and controls ovulation in mice [J]. Mol Cell Biol,2008,28(5):1770-1782.
    106. Tisdall D J, Watanabe K, Hudson N L, et al. FSH receptor gene expression during ovarian follicle development in sheep [J]. J Mol Endocrinol,1995,15(3):273-281.
    107. Logan K A, Juengel J L, McNatty K P. Onset of steroidogenic enzyme gene expression during ovarian follicular development in sheep [J]. Biol Reprod,2002,66(4):906-916.
    108. Carson R S, Findlay J K, Burger H G, et al. Gonadotropin receptors of the ovine ovarian follicle during follicular growth and atresia [J]. Biol Reprod,1979,21(1):75-87.
    109. Hunzicker-Dunn M, Maizels E T. FSH signaling pathways in immature granulosa cells that regulate target gene expression:branching out from protein kinase A [J]. Cellular signalling, 2006,18(9):1351-1359.
    110. Gonzalez-Robayna I J, Falender A E, Ochsner S, et al. Follicle-stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-induced kinase (Sgk):Evidence for A kinase-independent signaling by FSH in granulosa cells [J]. Molecular Endocrinology,2000,14(8):1283-1300.
    111. Cottom J, Salvador L M, Maizels E T, et al. Follicle-stimulating hormone activates extracellular signal-regulated kinase but not extracellular signal-regulated kinase kinase through a 100-kDa phosphotyrosine phosphatase [J]. J Biol Chem,2003,278(9):7167-7179.
    112. Peter A T, Dhanasekaran N. Apoptosis of granulosa cells:a review on the role of MAPK-signalling modules [J]. Reprod Domest Anim,2003,38(3):209-213.
    113. Maizels E T, Cottom J, Jones J C, et al. Follicle stimulating hormone (FSH) activates the p38 mitogen-activated protein kinase pathway, inducing small heat shock protein phosphorylation and cell rounding in immature rat ovarian granulosa cells [J]. Endocrinology,1998,139(7): 3353-3356.
    114. Tosca L, Froment P, Solnais P, et al. Adenosine 5'-monophosphate-activated protein kinase regulates progesterone secretion in rat granulosa cells [J]. Endocrinology,2005,146(10): 4500-4513.
    115. Shiota M, Sugai N, Tamura M, et al. Correlation of mitogen-activated protein kinase activities with cell survival and apoptosis in porcine granulosa cells [J]. Zoolog Sci,2003, 20(2):193-201.
    116. Fan H Y, Huo L J, Chen D Y, et al. Protein kinase C and mitogen-activated protein kinase cascade in mouse cumulus cells:cross talk and effect on meiotic resumption of oocyte [J]. Biol Reprod,2004,70(4):1178-1187.
    117. Babu P S, Krishnamurthy H, Chedrese P J, et al. Activation of extracellular-regulated kinase pathways in ovarian granulosa cells by the novel growth factor type 1 follicle-stimulating hormone receptor. Role in hormone signaling and cell proliferation [J]. J Biol Chem,2000, 275(36):27615-27626.
    118. Scaramuzzi R J, Downing J A. The distribution of ovulations from the ovaries of merino and Border Leicester x merino ewes and its effect on the survival of their embryos [J]. Anim Reprod Sci,1997,47(4):327-336.
    119. Gallet C, Dupont J, Campbell B K, et al. The infusion of glucose in ewes during the luteal phase increases the number of follicles but reduces oestradiol production and some correlates of metabolic function in the large follicles [J]. Anim Reprod Sci,2011,127(3-4):154-163.
    1. Avery B, Strobech L, Jacobsen T, et al. In vitro maturation of bovine cumulus-oocyte complexes in undiluted follicular fluid:effect on nuclear maturation, pronucleus formation and embryo development [J]. Theriogenology,2003,59(3-4):987-999.
    2. Nandi S, Girish Kumar V, Manjunatha B M, et al. Follicular fluid concentrations of glucose, lactate and pyruvate in buffalo and sheep, and their effects on cultured oocytes, granulosa and cumulus cells [J]. Theriogenology,2008,69(2):186-196.
    3. Leroy J L, Vanholder T, Delanghe J R, et al. Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows [J]. Anim Reprod Sci,2004,80(3-4):201-211.
    4. Li R, Norman R J, Armstrong D T, et al. Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells [J]. Biol Reprod,2000, 63(3):839-845.
    5. Fortune J E, Rivera G M, Yang M Y. Follicular development:the role of the follicular microenvironment in selection of the dominant follicle [J]. Anim Reprod Sci,2004,82-83: 109-126.
    6. Searamuzzi R, J,, Brown H, M,, Dupont. Nutritional and metabolic mechanisms in the ovary and their role in mediating the effects of diet on folliculogenesis:a perspective [J]. Reprod Dom Anim,2010,45 (Suppl.3):32-41.
    7. Vifioles C. Effect of nutrition on follicle development and ovulation rate in ewe [J]. Doctoral Thesis Uppsala, Sweden:Department of Clinical Chemistry, Swedish University of Agricultural Sciences, Faculty of Veterinary Medicine,2003:P.109.
    8. Nandi S, Kumar V G, Manjunatha B M, et al. Biochemical composition of ovine follicular fluid in relation to follicle size [J]. Dev Growth Differ,2007,49(1):61-66.
    9. Carson R S, Findlay J K, Clarke I J, et al. Estradiol, testosterone, and androstenedione in ovine follicular fluid during growth and atresia of ovarian follicles [J]. Biol Reprod,1981, 24(1):105-113.
    10. Somchit A, Campbell B K, Khalid M, et al. The effect of short-term nutritional supplementation of ewes with lupin grain (Lupinus luteus), during the luteal phase of the estrous cycle on the number of ovarian follicles and the concentrations of hormones and glucose in plasma and follicular fluid [J]. Theriogenology,2007,68(7):1037-1046.
    11. Vinoles C, Forsberg M, Martin G B, et al. Short-term nutritional supplementation of ewes in low body condition affects follicle development due to an increase in glucose and metabolic hormones [J]. Reproduction,2005,129(3):299-309.
    12.周东胜,吴德,卓勇,etal.能量水平和来源对后备母猪血液代谢产物、激素分泌及卵泡液成分的影响[J].畜牧兽医学报,2009,40(5):683-690.
    13.高峰,侯先志,刘迎春.妊娠后期限饲母羊血液理化指标变化对其胎儿生长发育的影响[J].中国科学(C辑:生命科学),2007,37(5):562-567.
    14. Pisani L, Antonini S, Pocar P, et al. Effects of premating nutrition on mRNA levels of developmentally-relevant genes in sheep oocytes and granulosa cells [J]. Reproduction,2008.
    15.中华人民共和国农业行业标准.肉羊饲养标准NY/T 816-2004.
    16. Moor R M, Hay M F, Dott H M, et al. Macroscopic identification and steroidogenic function of atretic follicles in sheep [J]. J Endocrinol,1978,77(3):309-318.
    17. Williams S A, Blache D, Martin G B, et al. Effect of nutritional supplementation on quantities of glucose transporters 1 and 4 in sheep granulosa and theca cells [J]. Reproduction,2001, 122(6):947-956.
    18. Scaramuzzi R J, Campbell B K, Souza C J, et al. Glucose uptake and lactate production by the autotransplanted ovary of the ewe during the luteal and follicular phases of the oestrous cycle [J]. Theriogenology,2010,73(8):1061-1067.
    19. Bobe G, Ametaj B N, Young J W, et al. Exogenous glucagon effects on health and reproductive performance of lactating dairy cows with mild fatty liver [J]. Anim Reprod Sci, 2007,102(3-4):194-207.
    20. Hansen L H, Abrahamsen N, Nishimura E. Glucagon receptor mRNA distribution in rat tissues [J]. Peptides,1995,16(6):1163-1166.
    21. Munoz-Gutierrez M, Blache D, Martin G B, et al. Folliculogenesis and ovarian expression of mRNA encoding aromatase in anoestrous sheep after 5 days of glucose or glucosamine infusion or supplementary lupin feeding [J]. Reproduction,2002,124(5):721-731.
    22. Scaramuzzi R J, Campbell B K, Downing J A, et al. A review of the effects of supplementary nutrition in the ewe on the concentrations of reproductive and metabolic hormones and the mechanisms that regulate folliculogenesis and ovulation rate [J]. Reprod Nutr Dev,2006, 46(4):339-354.
    23. Campbell B K, Scaramuzzi R J, Webb R. Induction and maintenance of oestradiol and immunoreactive inhibin production with FSH by ovine granulosa cells cultured in serum-free media [J]. J Reprod Fertil,1996,106(1):7-16.
    24. Yen H W, Jakimiuk A J, Munir I, et al. Selective alterations in insulin receptor substrates-1,-2 and -4 in theca but not granulosa cells from polycystic ovaries [J]. Mol Hum Reprod,2004, 10(7):473-479.
    25. Matsuda-Minehata F, Inoue N, Goto Y, et al. The regulation of ovarian granulosa cell death by pro-and anti-apoptotic molecules [J]. J Reprod Dev,2006,52(6):695-705.
    26. Wise T. Biochemical analysis of bovine follicular fluid:albumin, total protein, lysosomal enzymes, ions, steroids and ascorbic acid content in relation to follicular size, rank, atresia classification and day of estrous cycle [J]. J Anim Sci,1987,64(4):1153-1169.
    27. Taniguchi F, Couse J F, Rodriguez K F, et al. Estrogen receptor-alpha mediates an intraovarian negative feedback loop on thecal cell steroidogenesis via modulation of Cyp17a1 (cytochrome P450, steroid 17alpha-hydroxylase/17,20 lyase) expression [J]. FASEB J,2007, 21(2):586-595.
    28. Laven R A, Wathes D C, Lawrence K E, et al. An analysis of the relationship between plasma urea and ammonia concentration in dairy cattle fed a consistent diet over a 100-day period [J]. J Dairy Res,2007,74(4):412-416.
    29. Downing J A, Joss J, Scaramuzzi R J. The effect of a direct arterial infusion of insulin and glucose on the ovarian secretion rates of androstenedione and oestradiol in ewes with an autotransplanted ovary [J]. J Endocrinol,1999,163(3):531-541.
    1. Scaramuzzi R J, Campbell B K, Downing J A, et al. A review of the effects of supplementary nutrition in the ewe on the concentrations of reproductive and metabolic hormones and the mechanisms that regulate folliculogenesis and ovulation rate [J]. Reprod Nutr Dev,2006, 46(4):339-354.
    2. van Barneveld R J. Understanding the nutritional chemistry of lupin (Lupinus spp.) seed to improve livestock production efficiency [J]. Nutr Res Rev,1999,12(2):203-230.
    3. Teleni E, Rowe J B, Croker K P, et al. Lupins and energy-yielding nutrients in ewes. Ⅱ. Responses in ovulation rate in ewes to increased availability of glucose, acetate and amino acids [J]. Reprod Fertil Dev,1989,1(2):117-125.
    4. Downing J A, Scaramuzzi R J. Nutrient effects on ovulation rate, ovarian function and the secretion of gonadotrophic and metabolic hormones in sheep [J]. J Reprod Fertil Suppl,1991, 43:209-227.
    5. Downing J A, Joss J, Connell P, et al. Ovulation rate and the concentrations of gonadotrophic and metabolic hormones in ewes fed lupin grain [J]. J Reprod Fertil,1995,103(1):137-145.
    6. Somchit A, Campbell B K, Khalid M, et al. The effect of short-term nutritional supplementation of ewes with lupin grain (Lupinus luteus), during the luteal phase of the estrous cycle on the number of ovarian follicles and the concentrations of hormones and glucose in plasma and follicular fluid [J]. Theriogenology,2007,68(7):1037-1046.
    7. Munoz-Gutierrez M, Blache D, Martin G B, et al. Folliculogenesis and ovarian expression of mRNA encoding aromatase in anoestrous sheep after 5 days of glucose or glucosamine infusion or supplementary lupin feeding [J]. Reproduction,2002,124(5):721-731.
    8. Williams S A, Blache D, Martin G B, et al. Effect of nutritional supplementation on quantities of glucose transporters 1 and 4 in sheep granulosa and theca cells [J]. Reproduction, 2001,122(6):947-956.
    9. Koyuncu M, Canbolat O. Effect of different dietary energy levels on the reproductive performance of Kivircik sheep under a semi-intensive system in the South-Marmara region of Turkey [J]. Journal of Animal and Feed Sciences,2009,18:620-627.
    10. Kiyma Z, Alexander B M, Van Kirk E A, et al. Effects of feed restriction on reproductive and metabolic hormones in ewes [J]. J Anim Sci,2004,82(9):2548-2557.
    11. Tanaka T, Fujiwara K, Kim S, et al. Ovarian and hormonal responses to a progesterone-releasing controlled internal drug releasing treatment in dietary-restricted goats [J]. Anim Reprod Sci,2004,84(1-2):135-146.
    12. Vinoles C. Effect of nutrition on follicle development and ovulation rate in ewe [J]. Doctoral Thesis Uppsala, Sweden:Department of Clinical Chemistry, Swedish University of Agricultural Sciences, Faculty of Veterinary Medicine,2003:P.109.
    13. Downing J A, Joss J, Scaramuzzi R J. Ovulation rate and the concentrations of gonadotrophins and metabolic hormones in ewes infused with glucose during the late luteal phase of the oestrous cycle [J]. J Endocrinol,1995,146(3):403-410.
    14. Munoz-Gutierrez M, Findlay P A, Adam C L, et al. The ovarian expression of mRNAs for aromatase, IGF-I receptor, IGF-binding protein-2,-4 and -5, leptin and leptin receptor in cycling ewes after three days of leptin infusion [J]. Reproduction,2005,130(6):869-881.
    15. Kendall N R, Gutierrez C G, Scaramuzzi R J, et al. Direct in vivo effects of leptin on ovarian steroidogenesis in sheep [J]. Reproduction,2004,128(6):757-765.
    16. Vinoles C, Forsberg M, Martin G B, et al. Short-term nutritional supplementation of ewes in low body condition affects follicle development due to an increase in glucose and metabolic hormones [J]. Reproduction,2005,129(3):299-309.
    17. Nottle M B, Armstrong D T, Setchell B P, et al. Lupin feeding and folliculogenesis in the Merino ewe [J]. Proceedings of the Nutrition Society of Australia,1985,10:145.
    18. Alexander B M, Kiyma Z, McFarland M, et al. Influence of short-term fasting during the luteal phase of the estrous cycle on ovarian follicular development during the ensuing proestrus of ewes [J]. Anim Reprod Sci,2007,97(3-4):356-363.
    1. Scaramuzzi R J, Campbell B K, Downing J A, et al. A review of the effects of supplementary nutrition in the ewe on the concentrations of reproductive and metabolic hormones and the mechanisms that regulate folliculogenesis and ovulation rate [J]. Reprod Nutr Dev,2006, 46(4):339-354.
    2. Koyuncu M, Canbolat O. Effect of different dietary energy levels on the reproductive performance of Kivircik sheep under a semi-intensive system in the South-Marmara region of Turkey [J]. Journal of Animal and Feed Sciences,2009,18:620-627.
    3. Kiyma Z, Alexander B M, Van Kirk E A, et al. Effects of feed restriction on reproductive and metabolic hormones in ewes [J]. J Anim Sci,2004,82(9):2548-2557.
    4. Tanaka T, Fujiwara K, Kim S, et al. Ovarian and hormonal responses to a progesterone-releasing controlled internal drug releasing treatment in dietary-restricted goats [J]. Anim Reprod Sci,2004,84(1-2):135-146.
    5. van Barneveld R J. Understanding the nutritional chemistry of lupin (Lupinus spp.) seed to improve livestock production efficiency [J]. Nutr Res Rev,1999,12(2):203-230.
    6. Teleni E, Rowe J B, Croker K P, et al. Lupins and energy-yielding nutrients in ewes. II. Responses in ovulation rate in ewes to increased availability of glucose, acetate and amino acids [J]. Reprod Fertil Dev,1989,1(2):117-125.
    7. Downing J A, Scaramuzzi R J. Nutrient effects on ovulation rate, ovarian function and the secretion of gonadotrophic and metabolic hormones in sheep [J]. J Reprod Fertil Suppl,1991, 43:209-227.
    8. Downing J A, Joss J, Connell P, et al. Ovulation rate and the concentrations of gonadotrophic and metabolic hormones in ewes fed lupin grain [J]. J Reprod Fertil,1995,103(1):137-145.
    9. Somchit A, Campbell B K, Khalid M, et al. The effect of short-term nutritional supplementation of ewes with lupin grain (Lupinus luteus), during the luteal phase of the estrous cycle on the number of ovarian follicles and the concentrations of hormones and glucose in plasma and follicular fluid [J]. Theriogenology,2007,68(7):1037-1046.
    10. Munoz-Gutierrez M, Blache D, Martin G B, et al. Folliculogenesis and ovarian expression of mRNA encoding aromatase in anoestrous sheep after 5 days of glucose or glucosamine infusion or supplementary lupin feeding [J]. Reproduction,2002,124(5):721-731.
    11. Williams S A, Blache D, Martin G B, et al. Effect of nutritional supplementation on quantities of glucose transporters 1 and 4 in sheep granulosa and theca cells [J]. Reproduction, 2001,122(6):947-956.
    12. Vifioles C, Forsberg M, Martin G B, et al. Short-term nutritional supplementation of ewes in low body condition affects follicle development due to an increase in glucose and metabolic hormones [J]. Reproduction,2005,129(3):299-309.
    13. Alexander B M, Kiyma Z, McFarland M, et al. Influence of short-term fasting during the luteal phase of the estrous cycle on ovarian follicular development during the ensuing proestrus of ewes [J]. Anim Reprod Sci,2007,97(3-4):356-363.
    14. Ying S, Wang Z, Wang C, et al. Effect of different levels of short-term feed intake on folliculogenesis and follicular fluid and plasma concentrations of lactate dehydrogenase, glucose, and hormones in Hu sheep during the luteal phase [J]. Reproduction,2011,142(5): 699-710.
    15. Campbell B K, Kendall N R, Onions V, et al. The effect of systemic and ovarian infusion of glucose, galactose and fructose on ovarian function in sheep [J]. Reproduction,2010,140(5): 721-732.
    16. Munoz-Gutierrez M, Blache D, Martin G B, et al. Ovarian follicular expression of mRNA encoding the type I IGF receptor and IGF-binding protein-2 in sheep following five days of nutritional supplementation with glucose, glucosamine or lupins [J]. Reproduction,2004, 128(6):747-756.
    17. Scaramuzzi R, J,, Brown H, M,, Dupont. Nutritional and metabolic mechanisms in the ovary and their role in mediating the effects of diet on folliculogenesis:a perspective [J]. Reprod Dom Anim,2010,45 (Suppl.3):32-41.
    18. Sutton-McDowall M L, Gilchrist R B, Thompson J G. The pivotal role of glucose metabolism in determining oocyte developmental competence [J]. Reproduction,2010, 139(4):685-695.
    19. Vinoles C. Effect of nutrition on follicle development and ovulation rate in ewe [J]. Doctoral Thesis Uppsala, Sweden:Department of Clinical Chemistry, Swedish University of Agricultural Sciences, Faculty of Veterinary Medicine,2003:P.109.
    20. Downing J A, Joss J, Scaramuzzi R J. Ovulation rate and the concentrations of gonadotrophins and metabolic hormones in ewes infused with glucose during the late luteal phase of the oestrous cycle [J]. J Endocrinol,1995,146(3):403-410.
    21. Chilliard Y, Bocquier F, Doreau M. Digestive and metabolic adaptations of ruminants to undernutrition, and consequences on reproduction [J]. Reprod Nutr Dev,1998,38(2): 131-152.
    22.高峰,侯先志,刘迎春.妊娠后期限饲母羊血液理化指标变化对其胎儿生长发育的影响[J].中国科学(C辑:生命科学),2007,37(5):562-567.
    23. Rhoads M L, Rhoads R P, Gilbert R O, et al. Detrimental effects of high plasma urea nitrogen levels on viability of embryos from lactating dairy cows [J]. Animal Reproduction Science, 2006,91(1-2):1-10.
    24. Dawuda P M, Scaramuzzi R J, Leese H J, et al. Effect of timing of urea feeding on the yield and quality of embryos in lactating dairy cows [J]. Theriogenology,2002,58(8):1443-1455.
    25. Alam G S, Ul-Azam S, Khan J. Supplementation with urea and molasses and body weight, milk yield and onset of ovarian cyclicity in cows [J]. Journal of Reproduction and Development,2006,52(4):529-535.
    26. Butler W R, Calaman J J, Beam S W. Plasma and milk urea nitrogen in relation to pregnancy rate in lactating dairy cattle [J]. J Anim Sci,1996,74(4):858-865.
    27. Ferreira F A, Gomez R G G, Joaquim D C, et al. Short-term urea feeding decreases in vitro hatching of bovine blastocysts [J]. Theriogenology,2011,76(2):312-319.
    28. Fahey J, Boland M P, O'Callaghan D. The effects of dietary urea on embryo development in superovulated donor ewes and on early embryo survival and development in recipient ewes [J]. Animal Science,2001,72:395-400.
    29. McEvoy T G, Robinson J J, Aitken R P, et al. Dietary excesses of urea influence the viability and metabolism of preimplantation sheep embryos and may affect fetal growth among survivors [J]. Anim Reprod Sci,1997,47(1-2):71-90.
    30. Santos P, Marques A, Antunes G, et al. Effects of Plasma Urea Nitrogen Levels on the Bovine Oocyte Ability to Develop After In vitro Fertilization [J]. Reproduction in Domestic Animals,2009,44(5):783-787.
    31. Bender K, Walsh S, Evans A C, et al. Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows [J]. Reproduction,2010, 139(6):1047-1055.
    32. Canfield R W, Butler W R. Energy balance and pulsatile LH secretion in early postpartum dairy cattle [J]. Domest Anim Endocrinol,1990,7(3):323-330.
    33. Miller W L, Auchus R J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders [J]. Endocr Rev,2011,32(1):81-151.
    34. Fouladi-Nashta A A, Gutierrez C G, Gong J G, et al. Impact of dietary fatty acids on oocyte quality and development in lactating dairy cows [J]. Biol Reprod,2007,77(1):9-17.
    35. Leroy J L, Vanholder T, Mateusen B, et al. Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro [J]. Reproduction,2005,130(4):485-495.
    36. Leroy J L, Vanholder T, Delanghe J R, et al. Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows [J]. Anim Reprod Sci,2004,80(3-4):201-211.
    37. Jorritsma R, Cesar M L, Hermans J T, et al. Effects of non-esterified fatty acids on bovine granulosa cells and developmental potential of oocytes in vitro [J]. Anim Reprod Sci,2004, 81(3-4):225-235.
    38. Vanholder T, Leroy J L, Soom A V, et al. Effect of non-esterified fatty acids on bovine granulosa cell steroidogenesis and proliferation in vitro [J]. Anim Reprod Sci,2005,87(1-2): 33-44.
    39. Mu Y M, Yanase T, Nishi Y, et al. Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells [J]. Endocrinology,2001,142(8):3590-3597.
    40. Herdt T H, Wensing T, Haagsman H P, et al. Hepatic triacylglycerol synthesis during a period of fatty liver development in sheep [J]. J Anim Sci,1988,66(8):1997-2013.
    41. Arikan S, Kalender H, Simsek O. Effects of Cholesterol on Progesterone Production by Goat Luteal Cell Subpopulations at Two Different Stages of the Luteal Phase [J]. Reproduction in Domestic Animals,2010,45(6):e434-e439.
    42. Arikan S, Yigit A A. Effects of cholesterol and cAMP on progesterone production in cultured luteal cells isolated from pseudopregnant cat ovaries [J]. Animal Reproduction Science,2009, 115(1-4):238-246.
    43. Artie A D. A liver-high-density lipoprotein-ovarian axis of fertility [J]. Endocrinology,2006, 147(4):1575-1576.
    44. Arai T, Inoue A, Takeguchi A, et al. Comparison of enzyme activities in plasma and leukocytes in dairy and beef cattle [J]. J Vet Med Sci,2003,65(11):1241-1243.
    45. Kosior-Korzecka U, Bobowiec R. Changes in the level of endogenous leptin, FSH, 17beta-oestradiol and metabolites during lupin-induced increase in ovulation rate in ewes [J]. J Vet Med A Physiol Pathol Clin Med,2003,50(7):343-349.
    46. Rooke J A, Ainslie A, Watt R G, et al. Dietary carbohydrates and amino acids influence oocyte quality in dairy heifers [J]. Reprod Fertil Dev,2009,21(3):419-427.
    47. Downing J A, Joss J, Scaramuzzi R J. A mixture of the branched chain amino acids leucine, isoleucine and valine increases ovulation rate in ewes when infused during the late luteal phase of the oestrous cycle:an effect that may be mediated by insulin [J]. J Endocrinol,1995, 145(2):315-323.
    48. Downing J A, Joss J, Scaramuzzi R J. Ovulation rate and the concentrations of LH, FSH, GH, prolactin and insulin in ewes infused with tryptophan, tyrosine or tyrosine plus phenylalanine during the luteal phase of the oestrous cycle [J]. Anim Reprod Sci,1997,45(4):283-297.
    49. Wurtman R J, Hefti F, Melamed E. Precursor control of neurotransmitter synthesis [J]. Pharmacological reviews,1980,32(4):315-335.
    50. Wurtman R J. Effects of dietary amino acids, carbohydrates, and choline on neurotransmitter synthesis [J]. The Mount Sinai journal of medicine, New York,1988,55(1):75-86.
    51. Schneider J E. Energy balance and reproduction [J]. Physiol Behav,2004,81(2):289-317.
    52. Webb R, Garnsworthy P C, Gong J G, et al. Control of follicular growth:local interactions and nutritional influences [J]. J Anim Sci,2004,82 E-Suppl:E63-74.
    53. Downing J A, Scaramuzzi R J. The effect of the infusion of insulin during the luteal phase of the estrous cycle on the ovulation rate and on plasma concentrations of LH, FSH and glucose in ewes [J]. Theriogenology,1995,47(3):747-759.
    54. Downing J A, Joss J, Scaramuzzi R J. The effect of a direct arterial infusion of insulin and glucose on the ovarian secretion rates of androstenedione and oestradiol in ewes with an autotransplanted ovary [J]. J Endocrinol,1999,163(3):531-541.
    55. Campbell B K, Scaramuzzi R J, Webb R. Induction and maintenance of oestradiol and immunoreactive inhibin production with FSH by ovine granulosa cells cultured in serum-free media [J]. J Reprod Fertil,1996,106(1):7-16.
    56. Yen H W, Jakimiuk A J, Munir I, et al. Selective alterations in insulin receptor substrates-1,-2 and-4 in theca but not granulosa cells from polycystic ovaries [J]. Mol Hum Reprod,2004, 10(7):473-479.
    57. Bobe G, Ametaj B N, Young J W, et al. Exogenous glucagon effects on health and reproductive performance of lactating dairy cows with mild fatty liver [J]. Anim Reprod Sci, 2007,102(3-4):194-207.
    58. Hansen L H, Abrahamsen N, Nishimura E. Glucagon receptor mRNA distribution in rat tissues [J]. Peptides,1995,16(6):1163-1166.
    59. Heurich R O, Buggy J J, Vandenberg M T, et al. Glucagon induces a rapid and sustained phosphorylation of the human glucagon receptor in Chinese hamster ovary cells [J]. Biochem Biophys Res Commun,1996,220(3):905-910.
    60. Cascieri M A, Koch G E, Ber E, et al. Characterization of a novel, non-peptidyl antagonist of the human glucagon receptor [J]. J Biol Chem,1999,274(13):8694-8697.
    61. Wang J, Wang Y, Li X, et al. Cloning, tissue distribution, and functional characterization of chicken glucagon receptor [J]. Poult Sci,2008,87(12):2678-2688.
    62. Munoz-Gutierrez M, Findlay P A, Adam C L, et al. The ovarian expression of mRNAs for aromatase, IGF-I receptor, IGF-binding protein-2,-4 and-5, leptin and leptin receptor in cycling ewes after three days of leptin infusion [J]. Reproduction,2005,130(6):869-881.
    63. Vifioles C, Forsberg M, Banchero G, et al. Ovarian follicular dynamics and endocrine profiles in Polwarth ewes with high and low body condition [J]. Animal Science,2002,74: 535-545.
    64. Rhind S M, McNeilly A S. Follicle populations, ovulation rates and plasma profiles of LH, FSH and prolactin in Scottish Blackface ewes in high and low levels of body condition [J]. Animal Reproduction Science,1986,10:105-115.
    65. Rhind S M, McMillen S, McKelvey W A, et al. Effect of the body condition of ewes on the secretion of LH and FSH and the pituitary response to gonadotrophin-releasing hormone [J]. J Endocrinol,1989,120(3):497-502.
    66. Zhengzhong X, McDonald M F, McCucheon S N. The effects of nutritionally-induced liveweight differences on follicular development, ovulation rate, oestrous activity and plasma follicle-stimulating hormone levels in the ewe [J]. Animal Reproduction Science,1989, 19(1-2):67-78.
    67. Wade G N, Jones J E. Neuroendocrinology of nutritional infertility [J]. Am J Physiol Regul Integr Comp Physiol,2004,287(6):R1277-1296.
    68. Kuhara T, Ikeda S, Ohneda A, et al. Effects of intravenous infusion of 17 amino acids on the secretion of GH, glucagon, and insulin in sheep [J]. Am J Physiol,1991,260(1 Pt 1):E21-26.
    69. Calbet J A, MacLean D A. Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans [J]. J Nutr, 2002,132(8):2174-2182.
    70. Freetly H C, Ferrell C L. Kinetics of splanchnic progesterone metabolism in ewes fed two levels of nutrition [J]. J Anim Sci,1994,72(8):2107-2112.
    71. Parr R A, Davis I F, Miles M A, et al. Liver blood flow and metabolic clearance rate of progesterone in sheep [J]. Res Vet Sci,1993,55(3):311-316.
    72. Parr R A, Davis I F, Miles M A, et al. Feed intake affects metabolic clearance rate of progesterone in sheep [J]. Res Vet Sci,1993,55(3):306-310.
    73. Freetly H C, Ferrell C L. Net uptakes of estradiol-17-beta and progesterone across the portal-drained viscera and the liver of ewes [J]. Journal of Endocrinology,1994,141(2): 353-358.
    74. Sangsritavong S, Combs D K, Sartori R, et al. High feed intake increases liver blood flow and metabolism of progesterone and estradiol-17 beta in dairy cattle [J]. Journal of Dairy Science,2002,85(11):2831-2842.
    75. Cumming I A, Findlay J K, Baxter R B. Effect of live weight and plane of nutrition on FSH secretion and clearance in the ewe [J]. J Reprod Fertil,1975,43(2):399-400.
    76. Adams N R, Abordi J A, Briegel J R, et al. Effect of diet on the clearance of estradiol-17 beta in the ewe [J]. Biol Reprod,1994,51(4):668-674.
    1. Vinoles C, Forsberg M, Martin G B, et al. Short-term nutritional supplementation of ewes in low body condition affects follicle development due to an increase in glucose and metabolic hormones [J]. Reproduction,2005,129(3):299-309.
    2. Munoz-Gutierrez M, Blache D, Martin G B, et al. Folliculogenesis and ovarian expression of mRNA encoding aromatase in anoestrous sheep after 5 days of glucose or glucosamine infusion or supplementary lupin feeding [J]. Reproduction,2002,124(5):721-731.
    3. Vifioles C. Effect of nutrition on follicle development and ovulation rate in ewe [J]. Doctoral Thesis Uppsala, Sweden:Department of Clinical Chemistry, Swedish University of Agricultural Sciences, Faculty of Veterinary Medicine,2003:P.109.
    4. Fortune J E, Rivera G M, Yang M Y. Follicular development:the role of the follicular microenvironment in selection of the dominant follicle [J]. Anim Reprod Sci,2004,82-83: 109-126.
    5. Avery B, Strobech L, Jacobsen T, et al. In vitro maturation of bovine cumulus-oocyte complexes in undiluted follicular fluid:effect on nuclear maturation, pronucleus formation and embryo development [J]. Theriogenology,2003,59(3-4):987-999.
    6. Downing J A, Joss J, Scaramuzzi R J. Ovulation rate and the concentrations of gonadotrophins and metabolic hormones in ewes infused with glucose during the late luteal phase of the oestrous cycle [J]. J Endocrinol,1995,146(3):403-410.
    7. van Barneveld R J. Understanding the nutritional chemistry of lupin (Lupinus spp.) seed to improve livestock production efficiency [J]. Nutr Res Rev,1999,12(2):203-230.
    8. Teleni E, Rowe J B, Croker K P, et al. Lupins and energy-yielding nutrients in ewes. II. Responses in ovulation rate in ewes to increased availability of glucose, acetate and amino acids [J]. Reprod Fertil Dev,1989,1(2):117-125.
    9. Downing J A, Scaramuzzi R J. Nutrient effects on ovulation rate, ovarian function and the secretion of gonadotrophic and metabolic hormones in sheep [J]. J Reprod Fertil Suppl,1991, 43:209-227.
    10. Downing J A, Joss J, Connell P, et al. Ovulation rate and the concentrations of gonadotrophic and metabolic hormones in ewes fed lupin grain [J]. J Reprod Fertil,1995,103(1):137-145.
    11. Downing J A, Joss J, Scaramuzzi R J. A mixture of the branched chain amino acids leucine, isoleucine and valine increases ovulation rate in ewes when infused during the late luteal phase of the oestrous cycle:an effect that may be mediated by insulin [J]. J Endocrinol,1995, 145(2):315-323.
    12. Alexander B M, Kiyma Z, McFarland M, et al. Influence of short-term fasting during the luteal phase of the estrous cycle on ovarian follicular development during the ensuing proestrus of ewes [J]. Anim Reprod Sci,2007,97(3-4):356-363.
    13. Somchit A, Campbell B K, Khalid M, et al. The effect of short-term nutritional supplementation of ewes with lupin grain (Lupinus luteus), during the luteal phase of the estrous cycle on the number of ovarian follicles and the concentrations of hormones and glucose in plasma and follicular fluid [J]. Theriogenology,2007,68(7):1037-1046.
    14. Williams S A, Blache D, Martin G B, et al. Effect of nutritional supplementation on quantities of glucose transporters 1 and 4 in sheep granulosa and theca cells [J]. Reproduction,2001, 122(6):947-956.
    15. Sutton-McDowall M L, Gilchrist R B, Thompson J G The pivotal role of glucose metabolism in determining oocyte developmental competence [J]. Reproduction,2010,139(4):685-695.
    16. Downing J A, Scaramuzzi R J. The effect of the infusion of insulin during the luteal phase of the estrous cycle on the ovulation rate and on plasma concentrations of LH, FSH and glucose in ewes [J]. Theriogenology,1995,47(3):747-759.
    17. Brand A, de Jong W H. Qualitative and quantitative micromorphological investigations of the tertiary follicle population during the oestrous cycle in sheep [J]. J Reprod Fertil,1973,33(3): 431-439.
    18. Turnbull K E, Braden A W, Mattner P E. The pattern of follicular growth and atresia in the ovine ovary [J]. Aust J Biol Sci,1977,30(3):229-241.
    19. Carson R S, Findlay J K, Clarke I J, et al. Estradiol, testosterone, and androstenedione in ovine follicular fluid during growth and atresia of ovarian follicles [J]. Biol Reprod,1981, 24(1):105-113.
    20. Moor R M, Hay M F, Dott H M, et al. Macroscopic identification and steroidogenic function of atretic follicles in sheep [J]. J Endocrinol,1978,77(3):309-318.
    21. Franke R P, Fuhrmann R, Mrowietz C, et al. Reduced diagnostic value of lactate dehydrogenase (LDH) in the presence of radiographic contrast media [J]. Clin Hemorheol Microcirc,2010,45(2-4):123-130.
    22. Wise T. Biochemical analysis of bovine follicular fluid:albumin, total protein, lysosomal enzymes, ions, steroids and ascorbic acid content in relation to follicular size, rank, atresia classification and day of estrous cycle [J]. J Anim Sci,1987,64(4):1153-1169.
    23. Nandi S, Kumar V G, Manjunatha B M, et al. Biochemical composition of ovine follicular fluid in relation to follicle size [J]. Dev Growth Differ,2007,49(1):61-66.
    24. Hansen L H, Abrahamsen N, Nishimura E. Glucagon receptor mRNA distribution in rat tissues [J]. Peptides,1995,16(6):1163-1166.
    25. Heurich R O, Buggy J J, Vandenberg M T, et al. Glucagon induces a rapid and sustained phosphorylation of the human glucagon receptor in Chinese hamster ovary cells [J]. Biochem Biophys Res Commun,1996,220(3):905-910.
    26. Cascieri M A, Koch G E, Ber E, et al. Characterization of a novel, non-peptidyl antagonist of the human glucagon receptor [J]. J Biol Chem,1999,274(13):8694-8697.
    27. Wang J, Wang Y, Li X, et al. Cloning, tissue distribution, and functional characterization of chicken glucagon receptor [J]. Poult Sci,2008,87(12):2678-2688.
    28. Bobe G, Ametaj B N, Young J W, et al. Exogenous glucagon effects on health and reproductive performance of lactating dairy cows with mild fatty liver [J]. Anim Reprod Sci, 2007,102(3-4):194-207.
    29. Harris S E, Gopichandran N, Picton H M, et al. Nutrient concentrations in murine follicular fluid and the female reproductive tract [J]. Theriogenology,2005,64(4):992-1006.
    30. Rhoads M L, Rhoads R P, Gilbert R O, et al. Detrimental effects of high plasma urea nitrogen levels on viability of embryos from lactating dairy cows [J]. Animal Reproduction Science, 2006,91(1-2):1-10.
    31. Dawuda P M, Scaramuzzi R J, Leese H J, et al. Effect of timing of urea feeding on the yield and quality of embryos in lactating dairy cows [J]. Theriogenology,2002,58(8):1443-1455.
    32. Alam G S, Ul-Azam S, Khan J. Supplementation with urea and molasses and body weight, milk yield and onset of ovarian cyclicity in cows [J]. Journal of Reproduction and Development,2006,52(4):529-535.
    33. Butler W R, Calaman J J, Beam S W. Plasma and milk urea nitrogen in relation to pregnancy rate in lactating dairy cattle [J]. J Anim Sci,1996,74(4):858-865.
    34. Ferreira F A, Gomez R G G, Joaquim D C, et al. Short-term urea feeding decreases in vitro hatching of bovine blastocysts [J]. Theriogenology,2011,76(2):312-319.
    35. Fahey J, Boland M P, O'Callaghan D. The effects of dietary urea on embryo development in superovulated donor ewes and on early embryo survival and development in recipient ewes [J]. Animal Science,2001,72:395-400.
    36. McEvoy T G, Robinson J J, Aitken R P, et al. Dietary excesses of urea influence the viability and metabolism of preimplantation sheep embryos and may affect fetal growth among survivors [J]. Anim Reprod Sci,1997,47(1-2):71-90.
    37. Santos P, Marques A, Antunes G, et al. Effects of Plasma Urea Nitrogen Levels on the Bovine Oocyte Ability to Develop After In vitro Fertilization [J]. Reproduction in Domestic Animals, 2009,44(5):783-787.
    38. Schneider J E. Energy balance and reproduction [J]. Physiol Behav,2004,81(2):289-317.
    39. Webb R, Garnsworthy P C, Gong J G, et al. Control of follicular growth:local interactions and nutritional influences [J]. J Anim Sci,2004,82 E-Suppl:E63-74.
    40. Downing J A, Joss J, Scaramuzzi R J. The effect of a direct arterial infusion of insulin and glucose on the ovarian secretion rates of androstenedione and oestradiol in ewes with an autotransplanted ovary [J]. J Endocrinol,1999,163(3):531-541.
    41. Campbell B K, Scaramuzzi R J, Webb R. Induction and maintenance of oestradiol and immunoreactive inhibin production with FSH by ovine granulosa cells cultured in serum-free media [J]. J Reprod Fertil,1996,106(1):7-16.
    42. Yen H W, Jakimiuk A J, Munir I, et al. Selective alterations in insulin receptor substrates-1,-2 and-4 in theca but not granulosa cells from polycystic ovaries [J]. Mol Hum Reprod,2004, 10(7):473-479.
    43. Scaramuzzi R, J,, Brown H, M,, Dupont. Nutritional and metabolic mechanisms in the ovary and their role in mediating the effects of diet on folliculogenesis:a perspective [J]. Reprod Dom Anim,2010,45 (Suppl.3):32-41.
    44. Munoz-Gutierrez M, Findlay P A, Adam C L, et al. The ovarian expression of mRNAs for aromatase, IGF-I receptor, IGF-binding protein-2,-4 and-5, leptin and leptin receptor in cycling ewes after three days of leptin infusion [J]. Reproduction,2005,130(6):869-881.
    45. Webb R, Campbell B K, Garverick H A, et al. Molecular mechanisms regulating follicular recruitment and selection [J]. J Reprod Fertil Suppl,1999,54:33-48.
    46. Rosenfeld C S, Wagner J S, Roberts R M, et al. Intraovarian actions of oestrogen [J]. Reproduction,2001,122(2):215-226.
    47. Vinoles C, Forsberg M, Banchero G, et al. Ovarian follicular dynamics and endocrine profiles in Polwarth ewes with high and low body condition [J]. Animal Science,2002,74:535-545.
    48. Rhind S M, McNeilly A S. Follicle populations, ovulation rates and plasma profiles of LH, FSH and prolactin in Scottish Blackface ewes in high and low levels of body condition [J]. Animal Reproduction Science,1986,10:105-115.
    49. Rhind S M, McMillen S, McKelvey W A, et al. Effect of the body condition of ewes on the secretion of LH and FSH and the pituitary response to gonadotrophin-releasing hormone [J]. JEndocrinol,1989,120(3):497-502.
    50. Zhengzhong X, McDonald M F, McCucheon S N. The effects of nutritionally-induced liveweight differences on follicular development, ovulation rate, oestrous activity and plasma follicle-stimulating hormone levels in the ewe [J]. Animal Reproduction Science,1989, 19(1-2):67-78.
    51. Chun S Y, Eisenhauer K M, Minami S, et al. Hormonal regulation of apoptosis in early antral follicles:follicle-stimulating hormone as a major survival factor [J]. Endocrinology,1996, 137(4):1447-1456.
    52. Kaipia A, Hsueh A J. Regulation of ovarian follicle atresia [J]. Annu Rev Physiol,1997,59: 349-363.
    53. Matsuda-Minehata F, Inoue N, Goto Y, et al. The regulation of ovarian granulosa cell death by pro-and anti-apoptotic molecules [J]. J Reprod Dev,2006,52(6):695-705.
    54. Yu Y S, Sui H S, Han Z B, et al. Apoptosis in granulosa cells during follicular atresia: relationship with steroids and insulin-like growth factors [J]. Cell Res,2004,14(4):341-346.
    55. Rieger D, Loskutoff N M. Changes in the metabolism of glucose, pyruvate, glutamine and glycine during maturation of cattle oocytes in vitro [J]. J Reprod Fertil,1994,100(1): 257-262.
    56. Lim J M, Lee B C, Lee E S, et al. In vitro maturation and in vitro fertilization of bovine oocytes cultured in a chemically defined, protein-free medium:effects of carbohydrates and amino acids [J]. Reprod Fertil Dev,1999,11(2):127-132.
    57. Sinclair K D, Lunn L A, Kwong W Y, et al. Amino acid and fatty acid composition of follicular fluid as predictors of in-vitro embryo development [J]. Reproductive biomedicine online,2008,16(6):859-868.
    58. Orsi N M, Gopichandran N, Leese H J, et al. Fluctuations in bovine ovarian follicular fluid composition throughout the oestrous cycle [J]. Reproduction,2005,129(2):219-228.
    59. Fozard J R, Part M L, Prakash N J, et al. L-Ornithine decarboxylase:an essential role in early mammalian embryogenesis [J]. Science,1980,208(4443):505-508.
    60. Kinoshita Y, Yokota A, Koga Y. Phosphorylethanolamine content of human brain tumors [J]. Neurologia medico-chirurgica,1994,34(12):803-806.
    61. Richards A A, Stephens T, Charlton H K, et al. Adiponectin multimerization is dependent on conserved lysines in the collagenous domain:evidence for regulation of multimerization by alterations in posttranslational modifications [J]. Mol Endocrinol,2006,20(7):1673-1687.
    1. Somchit A, Campbell B K, Khalid M, et al. The effect of short-term nutritional supplementation of ewes with lupin grain (Lupinus luteus), during the luteal phase of the estrous cycle on the number of ovarian follicles and the concentrations of hormones and glucose in plasma and follicular fluid [J]. Theriogenology,2007,68(7):1037-1046.
    2. Munoz-Gutierrez M, Blache D, Martin G B, et al. Folliculogenesis and ovarian expression of mRNA encoding aromatase in anoestrous sheep after 5 days of glucose or glucosamine infusion or supplementary lupin feeding [J]. Reproduction,2002,124(5):721-731.
    3. Vinoles C, Forsberg M, Martin G B, et al. Short-term nutritional supplementation of ewes in low body condition affects follicle development due to an increase in glucose and metabolic hormones [J]. Reproduction,2005,129(3):299-309.
    4. Downing J A, Joss J, Scaramuzzi R J. Ovulation rate and the concentrations of gonadotrophins and metabolic hormones in ewes infused with glucose during the late luteal phase of the oestrous cycle [J]. J Endocrinol,1995,146(3):403-410.
    5. van Barneveld R J. Understanding the nutritional chemistry of lupin (Lupinus spp.) seed to improve livestock production efficiency [J]. Nutr Res Rev,1999,12(2):203-230.
    6. Teleni E, Rowe J B, Croker K P, et al. Lupins and energy-yielding nutrients in ewes. II. Responses in ovulation rate in ewes to increased availability of glucose, acetate and amino acids [J]. Reprod Fertil Dev,1989,1(2):117-125.
    7. Downing J A, Scaramuzzi R J. Nutrient effects on ovulation rate, ovarian function and the secretion of gonadotrophic and metabolic hormones in sheep [J]. J Reprod Fertil Suppl,1991, 43:209-227.
    8. Downing J A, Joss J, Cornell P, et al. Ovulation rate and the concentrations of gonadotrophic and metabolic hormones in ewes fed lupin grain [J]. J Reprod Fertil,1995,103(1):137-145.
    9. Ying S, Wang Z, Wang C, et al. Effect of different levels of short-term feed intake on folliculogenesis and follicular fluid and plasma concentrations of lactate dehydrogenase, glucose, and hormones in Hu sheep during the luteal phase [J]. Reproduction,2011,142(5): 699-710.
    10. Kiyma Z, Alexander B M, Van Kirk E A, et al. Effects of feed restriction on reproductive and metabolic hormones in ewes [J]. J Anim Sci,2004,82(9):2548-2557.
    11. Williams S A, Blache D, Martin G B, et al. Effect of nutritional supplementation on quantities of glucose transporters 1 and 4 in sheep granulosa and theca cells [J]. Reproduction,2001, 122(6):947-956.
    12. Munoz-Gutierrez M, Blache D, Martin G B, et al. Ovarian follicular expression of mRNA encoding the type I IGF receptor and IGF-binding protein-2 in sheep following five days of nutritional supplementation with glucose, glucosamine or lupins [J]. Reproduction,2004, 128(6):747-756.
    13. Sutton-McDowall M L, GilcHrist R B, Thompson J G. The pivotal role of glucose metabolism in determining oocyte developmental competence [J]. Reproduction,2010,139(4):685-695.
    14. Webb R, Garnsworthy P C, Gong J G, et al. Control of follicular growth:local interactions and nutritional influences [J]. J Anim Sci,2004,82 E-Suppl:E63-74.
    15. Scaramuzzi R J, Adams N R, Baird D T, et al. A model for follicle selection and the determination of ovulation rate in the ewe [J]. Reprod Fertil Dev,1993,5(5):459-478.
    16. Downing J A, Joss J, Scaramuzzi R J. A mixture of the branched chain amino acids leucine, isoleucine and valine increases ovulation rate in ewes when infused during the late luteal phase of the oestrous cycle:an effect that may be mediated by insulin [J]. J Endocrinol,1995, 145(2):315-323.
    17. Scaramuzzi R J, Campbell B K, Downing J A, et al. A review of the effects of supplementary nutrition in the ewe on the concentrations of reproductive and metabolic hormones and the mechanisms that regulate folliculogenesis and ovulation rate [J]. Reprod Nutr Dev,2006, 46(4):339-354.
    18. Argov N, Sklan D. Expression of mRNA of lipoprotein receptor related protein 8, low density lipoprotein receptor, and very low density lipoprotein receptor in bovine ovarian cells during follicular development and corpus luteum formation and regression [J]. Mol Reprod Dev, 2004,68(2):169-175.
    19. Wiltbank M C, Diskin M G, Flores J A, et al. Regulation of the corpus luteum by protein kinase C. II. Inhibition of lipoprotein-stimulated steroidogenesis by prostaglandin F2 alpha [J]. Biol Reprod,1990,42(2):239-245.
    20. Miller W L, Auchus R J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders [J]. Endocr Rev,2011,32(1):81-151.
    21. Azhar S, Leers-Sucheta S, Reaven E. Cholesterol uptake in adrenal and gonadal tissues:the SR-BI and'selective'pathway connection [J]. Front Biosci,2003,8:s998-1029.
    22. Murphy B D, Silavin S L. Luteotrophic agents and steroid substrate utilization [J]. Oxf Rev Reprod Biol,1989,11:179-223.
    23. Taniguchi F, Couse J F, Rodriguez K F, et al. Estrogen receptor-alpha mediates an intraovarian negative feedback loop on thecal cell steroidogenesis via modulation of Cypl7al (cytochrome P450, steroid 17alpha-hydroxylase/17,20 lyase) expression [J]. FASEB J,2007, 21(2):586-595.
    24. Banks P K, Meyer K, Brodie A M. Regulation of ovarian steroid biosynthesis by estrogen during proestrus in the rat [J]. Endocrinology,1991,129(3):1295-1304.
    25. Sakaue M, Ishimura R, Kurosawa S, et al. Administration of estradiol-3-benzoate down-regulates the expression of testicular steroidogenic enzyme genes for testosterone production in the adult rat [J]. J Vet Med Sci,2002,64(2):107-113.
    26. Govoroun M, McMeel O M, Mecherouki H, et al.17beta-estradiol treatment decreases steroidogenic enzyme messenger ribonucleic acid levels in the rainbow trout testis [J]. Endocrinology,2001,142(5):1841-1848.
    27. Erickson G F, Magoffin D A, Dyer C A, et al. The ovarian androgen producing cells:a review of structure/function relationships [J]. Endocr Rev,1985,6(3):371-399.
    28. Rosenfeld C S, Wagner J S, Roberts R M, et al. Intraovarian actions of oestrogen [J]. Reproduction,2001,122(2):215-226.
    29. Drouilhet L, Taragnat C, Fontaine J, et al. Endocrine characterization of the reproductive axis in highly prolific lacaune sheep homozygous for the FecLL mutation [J]. Biol Reprod,2010, 82(5):815-824.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700