用户名: 密码: 验证码:
烟草微核心种质构建及相关性状数量遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微核心种质是核心种质的核心种质,是核心种质的代表性子集,具有最小的遗传重复,能够最大程度地代表原资源群体的遗传多样性和遗传结构。烟草微核心种质研究的最终目的是为了促进烟草种质资源的高效管理、深入评价和充分利用,最大程度地满足生产和科研的需要。本研究以烟草原核心种质为材料,比较研究数量性状数据和分子标记数据不同整合比例及不同抽样策略构建微核心种质的遗传多样性保有量,构建了烟草微核心种质。在烟草微核心种质的基础上,筛选2份有代表性的烤烟微核心种质,运用植物数量性状“主基因+多基因”混合遗传模型,进行烤烟重要植物学及生理性状的遗传研究,以期为烤烟数量遗传育种提供一定的理论指导。主要研究结论如下:
     (1)通过12份不同烟草种质类型,筛选均匀分布于烟草24条连锁群上的700对SSR标记,综合考虑PIC值、扩增带型统计的难易及引物的重复性,获得54对SSR核心引物,建立了核心引物数据库。本研究有利于规范引物筛选程序、提高引物筛选效率,对烟草种质资源的遗传多样性分析、核心种质构建、指纹图谱构建以及种子真伪性和纯度的鉴定等都具有现实意义。
     (2)以我国2001年构建的446份烟草核心种质为材料,根据23个数量性状资料和54对SSR引物的分子标记数据,开展微核心种质构建研究。不同取样比例(40%、30%、25%、20%、15%、10%和5%)分析表明,15%的取样比例可获得普通烟草90%以上的多态位点百分率,30%的取样比例可获得黄花烟草80%以上的多态位点百分率,是较好的微核心种质取样规模;表型数据和分子数据整合后的数据要比不整合好,且表型数据与分子数据的比例为0.1:0.9时,整合效果最好。对于连续型数据遗传距离估算的2种距离(欧氏距离和马氏距离)中,欧氏距离效果最优;对于离散型数据遗传距离估算的4种距离(Simple matching、Jaccard、Nei-Li和主成分距离)中,Jaccard距离效果最优。对4种分组取样策略(简单比例法、平方根比例法、对数比例法和多样性比例法)和3种取样方法(随机取样法、优先取样法和变异度取样法)比较表明,总体取样方法中变异度取样法最优,在组内样本含量较大时,简单比例法和多样性比例法获得的微核心种质代表性最好,为最优取样策略;而当组内样本含量较小时,对数比例法获得的微核心种质代表性最好,为最优取样策略。最后,在简单比例法和对数比例法取样筛选出的117份核心样品中,又通过定向选择补充了10份具有优异表型性状的材料,构建了含127份烟草的微核心种质。分子和表型检验都表明本研究所构建的微核心种质具有较好的代表性。
     (3)利用“主基因+多基因”混合遗传模型的6个世代联合分离分析方法,分析烤烟组合丸叶×Coker319几个重要植物学性状的遗传效应。结果表明,烤烟的株高、叶数、叶面积和鲜叶重受2对加性-显性-上位性主基因+加性-显性-上位性多基因控制,株高与叶数遗传以加性效应及显性×显性上位性效应为主,叶面积和鲜叶重各遗传效应相差不多,其上位性效应>加性效应>显性效应,F2世代的主基因遗传率分别为57.53%、42.63%、30.32%和44.26%。移栽至中心花开放天数受2对加性-显性-上位性主基因+加性-显性多基因控制,以加性×加性上位性效应、加性效应及显性×显性上位性效应为主,主基因遗传率为64.79%。茎围和比叶重均受1对完全显性主基因+加性-显性多基因控制,茎围遗传以多基因为主,其多基因加性效应和显性效应大小相当,比叶重遗传主基因、多基因的加性效应和显性效应大致相当,主基因遗传率分别为2.48%和38.71%。叶形指数受1对加性-显性主基因+加性-显性-上位性多基因控制,主基因加性效应与显性效应基本相当,主基因遗传率为49.64%。叶长、叶宽、节距和蒴果重受加性-显性-上位性多基因控制,多基因遗传率分别为60.75%、62.14%、75.08%和82.34%。
     (4)应用主基因+多基因6个世代联合分析方法对烤烟丸叶×Coker319组合的几个生理性状进行了分析。结果表明,丸叶×Coker319组合的总叶绿素含量受1对加性-显性主基因+加性-显性-上位性多基因控制,主基因加性效应为-5.89,主基因显性效应为-3.47;B1、B2和F2世代总叶绿素含量的主基因遗传率分别为3.61%、46.11%和48.94%;多基因遗传率分别为52.04%、8.25%和0.00%,说明F2世代总叶绿素含量表现出较高的主基因遗传率,并受环境影响。对烤烟总叶绿素含量的改良要以主基因为主,同时注意环境的影响。光合速率和蒸腾速率受加性-显性-上位性多基因控制,多基因遗传率分别为20.69%和13.56%。气孔导度受2对加性-显性-上位性主基因+加性-显性-上位性多基因控制,以显性×显性上位性效应为主,B1、B2和F2世代气孔导度的主基因遗传率分别为58.03%、35.11%和40.59%;多基因遗传率分别为1.43%、21.34%和2.03%。
Mini core collection is a core of the core collection and a representative subset of core collection,consisted of1imited accessions with minimum genetic redundantcy and retained most genetic diversityand genetic structure in initial collection. The ultimate goal of constructing mini core collection of to-bacco is to study its genetic diversity, promote its effective management, deeply evaluation and makingfull use of, thus it will meet the needs of production and scientific research to the greatest degree. Accu-rate measure in genetic similarity among accessions and specifying an appropriate samlpling stratey is akey step in developing a mini core collection. This study will focus on evaluating the properties of dif-ferent integrating ratio between molecular marker and quantitative trait and different sampling strategiesby comparing the genetic variation captured by subsets of tobacco, setting up a mini core collection oftobacco. Two accessions of flue-cured tobacco belong to mini core collection were screened to sudy theinheritance of important botany and physiological traits with the joint segregation analysis method ofmixed major gene plus polygene genetic mode, so as to provide some theoretical guidance for the quan-titative genetic breeding of flue-cured tobacco. The main conclusions of this study were as follows:
     (1)The conception of core primer was defined.12different tobacco accessions was used to screen700SSR primer pairs which were equally distributed in24linkage groups of tobacco, and finally54core primer pairs fitting for tobacco DNA fingerprint pool were screened. Here we publish54core pri-mer pairs and their polymorphic information, which will be helpful to regulate the procedure and pro-mote the efficiency for screening SSR primers, and will play an important role in tobacco genetic diver-sity evaluation, core collection construction, fingerprint construction, seed genuineness and purity iden-tification of the tobacco varieties.
     (2)446accessions of tobacco core collection which were constrcted in2001were characterized by23agronomic traits and molecular markers on54SSR core primers to establish a mini core collection.Seven different sampling ratios of accessions were tested, including5%to40%with an interval of5%.The results showed that15%and30%of samples could conserve more than90%and80%of variationsin N.tabacum and N.rustica respectively, which indicated that15%and30%was an adequate samplingratio for establishing the mini core collection in N.tabacum and N.rustica respectively. The intergratingdata between quantitative and molecular data is better than each other, and the proportion of quantitativeand molecular data for0.1:0.9was optimal. A comparision of the efficiencies of two genetic distance(Euclidean distance and Mahalanobis distance) for the continuous data and foue genetic distance (Sim-ple matching, Jaccard, Nei-Li and Principal component distance), showed that Euclidean distance andJaccard were optimal genetic distance. A comparison of the efficiencies of four sampling strategies bygeographical grouping (proportional, square root, logarithmic, and genetic diversity-depend) and threesampling mehtods (random sampling, preferred sampling and maximization), indicated proportional andlogarithmic strategy was optimal in term of establishing the most representative mini core collection,when the quantity of samples to be located is significant, the former is better, whereas the latter is better. Thus, a mini core collection of127accessions, including117selected based on proportional and loga-rithmic strategy and10accessions selected by their specific agro-morphological traits, was constructed.The tests on SSR data and agro-morphological characters demonstrated that the mini core collection hashigh genetic diversity and a good representative to the entire collection.
     (3)The joint segregation analysis method of mixed major gene plus polygene genetic model wasused to study the inheritance of important botanical traits in flue-cured tobacco. Six generations(P1, P2,F1, B1, B2and F2) from the crosses (Wanye×Coker319) were investigated. It was found that plantheight, leaf number, leaf area and fresh leaf weight in flue-cured tobacco appeared to be a quantitativetrait and their inheritances fitted to a mixed genetic model of two major genes with addi-tive-dominant-epistatic effects plus polygenes with additive-dominant-epistatic effects (E0model).Plant height and leaf number was chiefly controlled by the additive effect and the epistatic effect of do-minance×dominance. The additive, dominant and epistatic effects which the epistatic effect> the addi-tive effect> the dominance effect of leaf area and fresh leaf weight were all important. Heritabilities ofthe major genes were estimated to be57.53%,42.63%,30.32%and44.26%in F2. The inheritance ofdays of transplanting to flowering fitted to a mixed genetic model of two major genes with addi-tive-dominant-epistatic effects plus polygenes with additive-dominant effects (E1model) and it wasmainly dominated by the epistatic effect of additive×additive, the additive effect, and the epistatic ef-fect of dominance×dominance, the heritability of the major gene was64.79%in F2. The inheritance ofstem girth and leaf mass per area fitted to a mixed genetic model of one major gene with complete do-minant effects plus polygenes with additive-dominant effects (D3model), stem girth was principallycontrolled by polygenes which additive effect was equal to its dominance effect, the heritability of themajor gene was2.48%and38.71%in F2. The inheritance of leaf index fitted to a mixed genetic modelof one major gene with additive-dominant effects plus polygenes with additive-dominant-epistatic ef-fects (D0model), the additive effect and the dominance effect of the major gene was almost equal, theheritability of the major gene was49.64%in F2. Leaf length, leaf width, internodal distance and capsuleweight fitted to a mixed genetic model of polygenes with additive-dominant-epistatic effects (C0model), the heritability of the polygenes were60.75%,62.14%,75.08%and82.34%in F2.
     (4)The mixed major-gene plus polygene inheritance model in six generations (P1, P2, F1, B1, B2,and F2)was used to analyze the inheritance of several physiological traits in the flue-cured tobacco(N.tabacum) cross between WANYE and Coker319. The results showed that the SPAD reading wascontrolled by one gene with additive-dominance effect plus polygenes with addi-tive-dominance-epistatic effect (D0model). The additive effect for major gene was-5.89, the do-minant effect for major gene was-3.47. The major gene heritabilities in B1, B2and F2were3.61%,46.11%and48.94%, respectively, and the corresponding polygenic heritabilities were52.04%,8.25%and0.00%, respectively. These results indicated that major gene in F2was a key factor and environment fac-tor was also relatively important. This implies that in the genetic improvement of SPAD reading ma-jor-gene is a main factor whereas environmental effect should be taken care of. Photosynthetic rate andtranspiration rate fitted to a mixed genetic model of polygenes with additive-dominant-epistatic effects (C0model), the heritability of the polygenes were20.69%and13.56%in F2. It was also found thatstomatal conductance in flue-cured tobacco appeared to be a quantitative trait and their inheritances fit-ted to a mixed genetic model of two major genes with additive-dominant-epistatic effects plus poly-genes with additive-dominant-epistatic effects (E0model). Stomatal conductance was chiefly con-trolled by the epistatic effect of dominance×dominance. Heritabilities of the major genes were esti-mated to be58.03%,35.11%and40.59%in B1, B2and F2, and the heritabilities of the polygenes wereestimated to be1.43%,21.34%and2.03%in B1, B2and F2.
引文
1.艾树理,王秀蓉.烤烟数量性状配合力和遗传力研究[J].烟草科技,1984(3):40-46.
    2.艾天成,李方敏,周治安,等.作物叶片叶绿素含量与SPAD值相关性研究[J].湖北农学院学报,2000,20(1):6-8.
    3.蔡长春,陈宝元,傅廷栋,等.甘蓝型油菜开花期和光周期敏感性的遗传分析[J].作物学报,2007,33(2):345-348.
    4.蔡长春,张俊杰,黄文昌,等.利用DH群体分析白肋烟黑胫病抗性的遗传规律[J].烟草科技,2009a,(1):54-59,63.
    5.蔡长春,张俊杰,黄文昌,等.利用DH群体分析白肋烟烟碱含量的遗传规律[J].中国烟草学报,2009b,15(4):55-60.
    6.柴家荣,雷丽萍,雷永和,等.白肋烟成熟度与产量、质量的关系[J].云南农业科技,1991,(4):11-14.
    7.陈亮,杨亚军,虞富莲.中国茶树种质资源研究的主要进展和展望[J].植物遗传资源学报,2004,5:389-392.
    8.陈顺辉,巫升鑫,倪金应,等.烤烟主要数量性状的配合力研究[J].中国烟草学报,2004,10(3):25-28.
    9.陈雨,潘大建,杨庆文,等.广东高州野生稻应用核心种质取样策略[J].作物学报,2009,35(3):459-466.
    10.崔艳华,邱丽娟,常汝镇,等.黄淮夏大豆(G.max)初选核心种质代表性检测[J].作物学报.2004,30:284-288.
    11.崔艳华,邱丽娟,常汝镇,等.利用SSR分子标记检测黄淮夏大豆(Glycine max)初选核心样本的代表性[J].植物遗传资源学报,2003,4:9-15.
    12.董玉深,曹永生,张学勇,等.中国普通小麦初选核心种质的产生.植物遗传资源学报[J],2003,4:1-8.
    13.方志伟,张荣铣,朱培仁.水稻叶片叶绿素含量的变化与光合作用的关系[J].南京农业大学学报,1987,4,18-22.
    14.盖钧镒,章元明,王建康.植物数量性状遗传体系[M].北京:科学出版社,2003.
    15.高加明,王志德,张兴伟,等.香料烟青枯病抗性基因的遗传分析[J].中国烟草科学,2010,31(1):1-4.
    16.高志红,章镇,韩振海,等.中国果梅核心种质的构建与检测[J].中国农业科学.2005,38:363-368.
    17.宫长荣,宋朝鹏,尹宏伟,等.调制过程中白肋烟某些衰老指标及色素含量的变化[J].中国烟草科学,2004,(1):7-9.
    18.龚明良,卜锅章,丁昌敏,等.烟草种间体细胞杂交育成新品系[J].中国烟草学报,1992,1(2):22-28.
    19.郭兆奎,杨谦,姚泉洪,等.转拟南芥Atkup1基因高含钾量烟草获得[J].中国生物工程杂志,2005,25(12):24-28.
    20.韩立德,胡晋,徐海明,等.夏播菜用大豆感官品质性状核心种质构建方法的研究[J].浙江大学学报(农业与生命科学版).2005,31:288-292.
    21.郝贤伟,徐秀红,许家来,等.烤烟品种耐烤性遗传分析[J].中国农业科学,2012,45(23):4939-4946.
    22.何余堂,涂金星,傅廷栋,等.陕西省白菜型油菜核心种质的初步构建[J].中国油料作物学报.2002,24:6-9.
    23.胡晋,徐海明,朱军.基因型值多次聚类法构建作物种质资源核心库[J].生物数学学报.2000,15:103-109.
    24.胡晋.多次聚类构建作物遗传资源核心种质库的方法研究[D].浙江大学博十学位论文.1999,4-6.
    25.贾继增,张启发.为第二次“绿色革命”发掘基因资源[J].中国基础科学,2001,7:4-8.
    26.兰海,余月,王凤格,等.玉米种子休眠性数量遗传体系的判别[J].玉米科学,2007,15(2):5-8.
    27.李长涛,石春海,吴建国,等.利用基因型值构建水稻核心种质的方法研究[J].中国水稻科学.2004,18:218-222.
    28.李佛琳,赵春江,王纪华,等.应用叶绿素计诊断烤烟氮素营养状况[J].植物营养与肥料学报,2007,13(1):136-142.
    29.李国民,田峰,李鸣,等.烤烟产量及其品质性状的双列杂交分析[J].中国烟草学报,1998,4(2):22-28.
    30.李华丽,陈美霞,周东新,等.烤烟六个重要性状的QTL定位[J].作物学报,2011,37(9):1577-1584.
    31.李慧峰,陈天渊,黄咏梅,等.基于形态性状的甘薯核心种质取样策略研究[J].植物遗传资源学报,网络出版时间,2012-12-14,17:11.
    32.李绅崇,曾亚文,申时全,等.云南地方稻核心种质孕穗期耐冷性及其地理分布[J].中国水稻科学.2004,18:401-406.
    33.李自超,张洪亮,曹永生,等.中国地方稻种资源初级核心种质取样策略研究[J].作物学报.2003,29:20-24.
    34.李自超,张洪亮,孙传淸,等.植物遗传资源核心种质研究现状与展望[J].中国农业大学学报,1999,4(5):51-62.
    35.刘峰,冯雪梅,钟文,等.适合棉花品种鉴定的SSR核心引物的筛选[J].分子植物育种,2009,7(6):1160-1168.
    36.刘遵春,刘大亮,崔美,等.整合农艺性状和分子标记数据构建新疆野苹果核心种质[J].园艺学报,2012,39(6):1045-1054.
    37.刘遵春,张春雨,张艳敏,等.利用数量性状构建新疆野苹果核心种质的方法[J].中国农业科学,2010,43(2):358-370.
    38.卢秀萍,肖炳光.烤烟株高的发育遗传研究[J].中国烟草学报,2006,12(4):31-34.
    39.卢忠恩,朴世领,金江山,等.烤烟主要农艺性状基因效应的分析[J].中国烟草学报,199,5(3):17-22.
    40.路颖.亚麻种质资源聚类分析及核心品种抽取方法[J].中国麻业.2005,27:66-69.
    41.马红勃,祁建民,李延坤,等.烟草SRAP和ISSR分子遗传连锁图谱构建[J].作物学报,2008,34(11):1958-1963.
    42.马雪霞,丁业掌,蒋峰,等.亚洲棉纤维品质和产量性状的主基因与多基因遗传分析[J].植物遗传资源学报,2008,9(2):212-217.
    43.孟军,陈温福,徐正进,等.水稻剑叶净光合速率与叶绿素含量的研究初报[J].沈阳农业大学学报,2001,32(4):247-249.
    44.明军,张启翔,兰彦平.梅花品种资源核心种质构建[J].北京林业大学学报.2005,27:65-69.
    45.牟建英,钱玉梅,张兴伟,等.烟草白粉病抗性基因的遗传分析[J].植物遗传资源学报,2013,13(4).
    46.倪超,徐秀红,张兴伟,等.烤烟品种易烤性相关性状的主基因+多基因遗传分析[J].中国烟草科学,2011,32(1):1-4,11.
    47.牛佩兰,刘洪祥,刘伟.烤烟几个主要数量性状相关遗传力的初步研究[J].中国烟草,1984,5(4):4-5.
    48.牛佩兰,佟道儒,骆启章.烤烟几个主要数量性状遗传力的估算[J].中国烟草,1980(1):13-14.
    49.牛佩兰,佟道儒.烟草几个主要农艺性状的基因效应分析[J].中国烟草,1989,10(1):9-12.
    50.祁建民,陈顺辉,周东新.部分烟草种质遗传多样性与亲缘关系的ISSR标记分析[J].作物学报,2006,32(3):373-378.
    51.齐永文,樊丽娜,罗青文,等.甘蔗细茎野生种核心种质构建[J].作物学报,网络出版时间,2013-01-28,09:19.
    52.秦鸿德,张天真.棉花叶绿素含量和光合速率的QTL定位[J].棉花学报,2008,20(5):394-398.
    53.邱丽娟,曹永生,常汝镇,等.中国大豆(Glycine max)核心种质构建1.取样方法研究[J].中国农业科学,2003,36:1442-1449.
    54.邱丽娟,李英慧,关荣霞,等.大豆核心种质和微核心种质的构建、验证与研究进展[J].作物学报,2009,35(4):571-579.
    55.任民,王志德,牟建民,等.我国烟草种质资源的种类与分布概况[J].中国烟草科学,2009,30(增刊):8-14.
    56.申时全,曾亚文,普晓英,等.云南地方稻核心种质耐低磷特性研究[J].应用生态学报,2005,16:1569-1572.
    57.孙玉合,丁昌敏,张历历,等.烟草新胞质雄性不育系86-6的创造及其利用[J].中国烟草学报,1999,5(1):20-23.
    58.佟道儒.烟草育种学[M].北京:中国农业出版社,1997.
    59.屠曾平,蔡惟涓,刘斌,等.杂种稻的光合适应性及光合生产力研究[J].中国水稻科学,1993,7(3):193-198.
    60.王春娥,盖钧镒,傅三雄,等.大豆豆腐和豆乳得率的遗传分析与QTL定位[J].中国农业科学,2008,41(5):1274-1282.
    61.王凤格,赵久然,戴景瑞,等.玉米通用SSR核心引物筛选及高通量多重PCR复合扩增体系建立[J].科学通报,2006,51(23):2738-2746.
    62.王凤格,易红梅,赵久然,等.适于玉米SSR核心引物的通用PCR扩增反应程序的建立[J].玉米科学,2008,16(3):19-21,25.
    63.王建成.构建植物遗传资源核心种质新方法的研究[D].浙江大学博士学位论文,2006.
    64.王建成,胡晋,黄歆贤,等.植物遗传资源核心种质新概念与应用进展[J].种子,2008,27(5):47-50.
    65.王金社,李海旺,赵团结,等.重组自交家系群体4对主基因加多基因混合遗传模型分离分析方法的建立[J].作物学报,2010,36(2):191-201.
    66.王娟,韩登武,任岗,等. SPAD值与棉花叶绿素和含氮量关系的研究[J].新疆农业科学,2006,43(3):167-170.
    67.王康,沈荣开,唐友生.用叶绿素测值(SPAD)评估夏玉米氮素状况的实验研究[J].灌溉排水,2002,21(4):1-4.
    68.王丽侠,李英慧,李伟,等.长江春大豆核心种质构建及分析[J].生物多样性.2004,12:578-585.
    69.王日新,任民,张兴伟,等.普通烟草栽培种内株高性状主基因加多基因遗传分析[J].中国烟草科学,2009,30(2):15-20.
    70.王树声.烟叶色素与化学成分及评吸结果的相关分析[J].中国烟草科学,1990,(4):21-24.
    71.王新超,杨亚军,陈亮,等.构建茶树资源核心种质的设想[J].亚热带植物科学.2004,33:52-56.
    72.王英俊,倪超,翟明泉,等.烤烟易烤性遗传分析[J].作物研究,2011,25(1):42-46
    73.王志德,刘艳华,张兴伟,等.中国烟草种质资源平台建设项目验收报告[R].2012.
    74.王志德,牟建民,戴培刚,等.部分烟草核心种质RAPD分析[J].中国烟草学报,2003,9(4):21-25.
    75.王志德,王元英,牟建民.烟草种质资源描述规范和数据标准[M].北京:中国农业出版社,
    2006.
    76.魏亦勤,李红霞,张双喜,等.肥密处理对春小麦不同基因型产量及叶绿素荧光的影响[J].西北农业学报,2004,13(1):37-40.
    77.魏治中,魏克强.烟草远缘杂交育种[M].北京:中国农业科学技术出版社,2008.
    78.巫升鑫,潘建菁,陈顺辉,等.烤烟若干农艺性状的杂种优势及其遗传分析[J].中国烟草学报,2001,7(4):17-22.
    79.肖炳光,徐照丽,陈学军,等.利用DH群体构建分子标记遗传连锁图[J].中国烟草学报,2006,4:35-40.
    80.肖炳光,朱军,卢秀萍,等.烤烟主要农艺性状的遗传与相关分析[J].遗传,2006,28(3):317-323.
    81.徐海明.种质资源核心库构建方法的研究及其利用[D].浙江大学博士学位论文,2005.
    82.徐海明,胡晋,邱英雄.利用分子标记和数量性状基因型值构建作物核心种质库的研究[J].生物数学学报.2005a,20:351-355.
    83.徐海明,李晓玲,李金泉,等.整合质量数量性状构建作物核心种质的策略研究[J].浙江大学学报(农业与生命科学版).2005b,31:362-367.
    84.徐海明,邱英雄,胡晋,等.不同遗传距离聚类和抽样方法构建作物核心种质的比较[J].作物学报.2004,30:932-936.
    85.徐照丽,李天福. SPAD-502叶绿素仪在烤烟生产中的应用研究[J].贵州农业科学,2006,34(4):23-24.
    86.许健,杨德,张锦伟.烤烟亲本配合力的双列杂交分析[J]..烟草科技,2004,(l):29-32.
    87.许美玲,李永平.烟草种质资源图鉴[M].北京:科学出版社,2009.
    88.杨进文,杨俊仙,田晓东,等.新型香料烟杂交后代叶绿素含量及化学成分分析[J].山西农业科学,2007,35(10):9-10.
    89.杨生龙,张振海,雍瑞华.聚类分析在宁夏水稻核心种质研究中的应用[J].宁夏农林科技.2003:28-30.
    90.杨铁钊,丁永乐,吴军.烤烟(N.tabacum L.)主要性状的杂种优势及优势相关性分析[J].北京农业大学学报,1993,(增刊):139-143.
    91.尹天水,王树会,石磊.烤烟烟叶钾含量的遗传分析[J].烟草科技,2005,(5):34-38.
    92.袁有禄,张天真,郭旺珍,等.棉花高品质纤维性状的主基因与多基因遗传分析[J].遗传学报,2002,29(9):827-834.
    93.曾建敏,姚恒,李天福,等.烤烟叶片叶绿素含量的测定及其与SPAD值的关系[J].分子植物育种,2009,7(1):56-62.
    94.曾亚文,李绅崇,普晓英,等.云南稻核心种质孕穗期耐冷性状间的相关性与生态差异[J].中国水稻科学,2006,20(3):265-271.
    95.曾亚文,王象坤,杨忠义,等.云南稻种资源核心种质库构建及其利用前景[J].植物遗传资源科学.2000,l:12-16.
    96.张洪亮,李自超,曹永生,等.表型水平上检验水稻核心种质的参数比较[J].作物学报.2003,29:252-257.
    97.张金恒,王珂,王人潮.叶绿素计SPAD-502在水稻氮素营养诊断中的应用[J].西北农林科技大学学报:自然科学版,2003,31(2):177-180.
    98.张立平,赵昌平,单福华,等.小麦光温敏雄性不育系BS210育性的主基因+多基因混合遗传分析[J].作物学报,2007,33(9):1553-1557.
    99.张书芬,傅廷栋,朱家成,等.甘蓝型油菜芥酸含量的基因分析[J].中国农业科学,2008,41(10):3343-3349.
    100.张兴伟,王志德,牟建民,等.我国烟草种质资源现状与展望[J].中国烟草科学,2009,30(6):78-83.
    101.张兴伟,王志德,牟建民,等.烤烟叶绿素含量遗传分析[J].中国烟草学报,2011,17(3):48-52.
    102.张兴伟,王志德,孙玉合,等.烤烟叶数、叶面积的遗传分析[J].植物遗传资源学报,2012a,13(3):467-472.
    103.张兴伟,王志德,任民,等.烤烟几个植物学性状的遗传分析[J].中国烟草科学,2012b,33(5):1-8.
    104.张永兵,伊鸿平,马新力,等.新疆甜瓜地方品种资源核心种质构建[J].植物遗传资源学报,2013,14(1):52-57.
    105.章元明,盖钧镒,王永军.利用P_1、P_2和DH或RIL群体联合分离分析的拓展[J].遗传,2001,23(5):467-470.
    106.赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].河南农业大学学报,2000,34(3):248-251.
    107.赵静,付家兵,廖红,等.大豆磷效率应用核心种质的根构型性状评价[J].科学通报.2004,49:1249-1257.
    108.赵久然,王凤格,郭景伦,等.中国玉米新品种DNA指纹库建立系列研究Ⅱ.适于玉米自交系和杂交种指纹图谱绘制的SSR核心引物的确定[J].玉米科学,2003,11(2):3-5,8.
    109.郑少清,叶定勇,杨俊.航天条件对烟草几个性状变异的影响[J].中国烟草科学,2004,(1):1-4.
    110.周冀衡,王勇,毛建华,等.烤烟和白肋烟及香料烟抗旱能力的比较研究[J].湖南农业大学学报(自然科学版),2005,31(1):15-19.
    111.周冀衡,朱晓平,王彦亭.烟草生理与生物化学[M].合肥:中国科学技术大学出版社,1996.
    112.朱军.遗传学[M].北京:中国农业出版社,2005.
    113.朱世杨,郭媛,洪德林.水稻种子抗老化遗传分析[J].遗传,2008,30(2):217-224.
    114. Akaike H. On entropy maximum principle[M]. In: Krishnaiah P R(ed.)Applications of Statistics.Amsterdam: NorthHolland Publishing Res.1977,27-41.
    115. Balakrishnan R., N.V. Nair, T.V. Sreenivasan. A method for establishing a core collection of Sac-charum officinarum L. germplasm based on quantitative-morphological data[J]. Genetic Resourceand Crop Evolution.2000,47:1-9.
    116. Baranger A, Aubert G, Arnau G, et al. Genetic diversity within Pisum sativum using portein andPCR-based markers[J]. Theoretical and Applied Genetics.2004,108:1309-1321.
    117. Basigalup DH, Barnes DK, Stucker RE. Development of a core collection for perennial Medicagoplant introductions[J]. Crop Science.1995,35:1163-1168.
    118. Bhattachar R, Bramel P, Hash C, et al. Assessmnet of genetic diversity within and between pearlmillet landraces[J]. Theoretical and Appleid Genetics.2002,105:666-673.
    119. Bhatt J G., Rao M R K. Heterosis in growth and photosynthetic rates in hybrids of cotton[J]. Eu-phytica,1980,30:129-133.
    120. Bombarely A., Rosli H.G., Vrebalov J., et al. A draft genome sequence of Nicotiana benthamianato enhance molecular plant-microbe biology research[J]. Mol. Plant Microbe Interct.,2012,25(12):1523-30.
    121. Borwn AHD, Spillane C. Implementing core collection-principles, Procedures, progress, problemsand promise[M]. In:Jhonson RC, Hodgkin T(des). Core Collection for today and tomorrow.IPGRI,Rome, Italy.1999:l-9.
    122. Borwn AHD. Core collection: A practical approach to genetic resources management[J]. Genome.1989,31:818-824.
    123. Borwn AHD. The core collection at the crossroads[M]. In:Hodgkin T, Borwn AHD, van HintumThJL, Morales EAV(eds). Core collections of plant genetic resources. John Wiley and Sons,Chichester, UK.1995:3-19.
    124. Brown A H D. The case for core collections[M]. In: Brown A H D,Frankel O H,Marshall R D,et al. eds. The Use of Plant Genetic Resources. Cambridge,England: Cambridge Univ Press,1989a,136-156.
    125. Campbell R J, Mobley K N, Marini R P, et al. Growing conditions alter relationship betweenSPAD-501values and apple leaf chlorophyll[J]. Hort. Sci.,1990,25:330-331.
    126. Carvalho VP, Ruas CF, Ferreira JM, et al. Genetic diversity among maiz(eZea mays, L.)landracesassessed by RAPD markers[J]. Genetics and Molecular Biology.2004,27:228-236
    127. Charmet G., Balfourier F., Ravel C. et al. Genotype×environment interactions in a core collectionof French perennial ryegrass populations[J]. Theoretical and Applied Genetics,1993,86:731-736.
    128. Chavariaga-Aquirre P, Maya MM, Tohme J, et al. Using microsatellites, isozymes and AFLPs toevaluate genetic diversity and redundancy in the cassava core collection and to assess the useful-ness of DNA-based markers to maintain germplasm collections[J]. Molecular Bereding.1999,5:26-273.
    129. Corssa J, DeLacy IH, Taba S.The use of multivariate methods in developing a core collection[M].In: Hodgkin T, Borwn AHD, Hintum van ThJL, Morales EAV (des).Core collections of plantgenetic resoucres. John Wiley and Sons, Chichester, UK.1995:77-89.
    130. Degreef J, Baudoin JP and Rocha OJ. Case studies on breeding systems and its consequences forgermplasm conservation[J]. Genetic Resources and Corp Evolution.1997,44:429-438.
    131. Diebeit I,Robert C P. Estimation of finite mixture distribution through bayesiant sampling[J]. J RStattist. Soc.,1994,B56:36-375.
    132. Diwan N, Mclntosh MS, Bauchan GR.Methods of developing a core collection of annual Medica-go species[J]. Theoretical and Applied Genetics.1995,90:755-761.
    133. Fernandez J, Toro MA, Caballero A.Managing individuals’ contributions to maximize the allelicdiversity maintained in small, conserved populations[J].Conservation Biology.2004,18:1358-1367.
    134. Frankel O H,Brown A H D. Current plant genetic resources-a critical appraisal[M]. In: Genetics:New Frontiers(vol.IV). New Delhi,India: Oxford and IBH Publishing,1984.
    135. Frankel OH, Borwn AHD.Plant genetics resources today:a critical appraisal[M].In:Holden HJW,Williams JT(eds).Crop genetic resources: conservation and evaluation.George Allen and UnwinLondon, UK.1984:249-257.
    136. Frankel OH.Genetic perspectives of germplasm conservation[M].In:ArberW, Llimensee K, Pea-cock WJ.Genetic Manipulation: Impact on Man and Society. Cambridge University Press,UK.1984,161-170.
    137. Ghislain M, Zhang D, Fajardo D, et al.Marker-assisted sampling of the cultivated Andean PotatoSolanum Phureja collection using RAPD makrers[J]. Genetic Resources and Crop Evolution.1999,46:547-555.
    138. Gregor Bindler, J rg Plieske, Nicolas Bakaher, et al. A high density genetic map of tobacco (Nico-tiana tabacum L.) obtained from large scale microsatellite marker development[J]. Theoretical andApplied Genetics,2011,122:11-22.
    139. Grenier C, Deu M, Kresovich S, et al.Assessment of genetic diversity in three subsets constitutedfrom the ICRISAT sorghum collection using random vs non-random sampling procedures.B.Usingmolecular makrers[J]. Theoretical and Applied Genetics.2000,101:197-202.
    140. Hapman S C, Barreto H J. Using a chlorophyll meter to estimate specific leaf nitrogen of tropicalmaize during vegetative growth[J]. Agron. J.,1997,89:557-562.
    141. Hintum van ThJL. Hierarchical approaches to the analysis of genetic diversity in cropplnats[M].In:HodgkinT, Brown AHD, Hintum vanThJL, Morales EAV(des).Core collections ofplant genetic resources.John Wiley and Sons, Chichester, UK.1995:23-34.
    142. Hou YC, Yan ZH, Wei YM,et al.Genetic diversity in barley from west China based on RAPD andISSR analysis[J]. Barley Genetics Newsletter.2005,35:9-22.
    143. Hu J, Zhu J, Xu HM.Methods of constructing corecollections by stepwise clustering with threesampling strategies based on the genotypic values of crops[J]. Theoretical and Applied Genetics.2000,101:264-268.
    144. Hu J, Zhu J, Xu HM.Studies on property of sample size and different traits for core collectionsbased genotypic values of cotton[J]. Journal of Zhejinag University(Science).2001,2:89-93.
    145. Huaman Z, Aguilar C and Ortiz R.Selecting a Peruvian sweepotato core collection on the basis ofmorphological, eco-geographical, and disease and pest reaction data[J]. Theoretical and AppliedGenetics.1999,98:840-844.
    146. Ingvarsson PK.Nucleotide polymorphism and linkage disequilibrium within and among nautarlpopulations of European aspen(populus tremula L.,Salicaceae)[J]. Genetics.2005,169:945-953.
    147. Jung M, Ching A, Bhattramakki D, et al.Linkage disequilibrium and sequence diversity in a500-kbp region around the adh1locus in elite maize germplasm[J]. Theoretical and Applied Ge-netics.2004,109:681-689.
    148. Krishna GK, Zhang JF, Burow M, et al.Genetic diversity analysis in valencia peanut (Arachishypogaea L.) using microsatellite markers[J]. Cellular&Moleuclar Biology Letters.2004,9:685-697.
    149. Landivar J A, Baker D N, Jenkins J N. Application of Gossym to genetic feasibility studies. Ⅱ.Analyses of increasing photosynthetic, specific leaf weight and longevity of leaves in cotton[J].Crop Science,1983,25:504-510.
    150. Lanteri S, Saba E, Cadinu M, et al.Amplified fragment length polymorphism for genetic diversityassessment in globe artichoke[J]. Theoretical and Applied Genetics.2004,108:1534-1544.
    151. Liu F, Sun GL, Salomon B, et al.Characterization of genetic diversity in core collection accessionsof wild barly, Hordeum vulgare ssp.spontaneum[J]. Hereditas.2002,136:67-73.
    152. Liu K, Muse S V. PowerMaker: an integrated analysis environment for genetic marker analysis[J].Bioinformatics,2005,21(9):2128–2129.
    153. Lixia Wang, Yuan Guan, Rongxia Guan, et al. Establishment of Chinese soybean(Glycinemax)core collections with agronomic traits and SSR markers[J]. Euphytica,2006,151:215–223.
    154. Li Z. C., Zhang H. L., Zeng Y. W., et al. Studies on sampling schemes for the establishment of corecollection of rice landraces in Yunnan, China[J]. Genetic resources and crop evolution,2002,49:67-74.
    155. Matzinger D F, Mann T J, Cocherham C C. Diallel crosses in Nicotiana tabacum[J]. Crop Science,1962,2(2):383-386.
    156. Maughan PJ, Bonifacio A, Jellen EN, et al. A genetic linkage map of quinoa (Chenopodiumquinoa) based on AFLP, RAPD and SSR markers[J]. Theoretical and Applied Genetics.2004,109:1188-1195.
    157. Meerow AW, Wisser RJ, Brown JS, et al. Analysis of genetic diversity and populations structutrewithin Florida coconut (Cocos nucifera L.) germplasm using microsatellite DNA, with specialemphasis on the Fiji Dwarf cultivar[J]. Theoretical and Applied Genetics.2003,106:715-726.
    158. Miklas PN, Delorme R, Hannan R, et al. Using a subsample of the core collection to identify newsources of resistance to white mold in common bean[J]. Crop Science.1999,39:569-573.
    159. Moghaddam ME, Trethowan RM, William HM, et al. Assessment of genetic diversity in breadw-heat genotypes for tolerance to drought using AFLPs and agronomic traits[J]. Euphytica.2005,141:147-156.
    160. Noirot M., S. Hamon, F. Anthony. The principal component scoring: a new method of construcinga core collection using quantitative data[J]. Genetic resources and crop evolution,1996,43:1-6.
    161. Ntundu WH, Bach IC, Christiansen JL, et al. Analysis of genetic diversity in bambara groundnut〔Vigna subterraea (L.)、Verdc] landraces using amplified fragment length polymorphism(ALFP) markers[J]. African Journal of Biotechnology.2004,3:220-225.
    162. Okpul T, Singh D, Gunua T, et al. Assessment of diversity using agro-morphological traits for se-lecting a core sample of Papua New Guinea taro (Colocasia esculenta L.) Schott) collection[J].Genetic Resources and Crop Evolution.2004,51:671-678.
    163. Pandeya R S, Dirks V A, Poushinsky G. Quantitative genetic studies in flue-cured (Nicotianatabacum)[J]. Ⅰ. Agronomic characters. Canadian Journal of Genetics and Cytology,1983,25(2):336-345.
    164. Pan H. Y., Zhu J., Han D. F. Genetic algorithms applied to multi-class clustering for gene expres-sion data[J]. Geno. Prot. and Bioinfo.,2003,1(4):279-287.
    165. PanYB, Burner DM, Legendre BL, et al. An assessment of the genetic diversity within a collectionof Saccharum spontaneum L. with RAPD-PCR[J]. Genetic Resources and Crop Evolution.2004,51:895-903.
    166. Quero-Garcia J, Noyer JL, Perrier X, et al. A germplasm stratification of taro (Colocasia escu-lenta) based on agro-morphological descriptors, validation by AFLP markers[J]. Euphytica.2004,137:387-395.
    167. Rodino AP, Santalla M, Ron AMD, et al. A core collection of common bean from the Iberian Pe-ninsula[J]. Euphytica.2003,131:165-175.
    168. Rohlf F J. Numerical taxonomy and multivariate analysis system, Version2.1, User Guider. ExeterSoftware, New York,2000.
    169. Royo JB, Itoiz R. Evaluation of the discriminnace capacity of RAPD, isoenzymes and morpho-logic markers in apple (Malus x domestica Borkh.) and the congruence among classifications[J].Genetic Resources and Crop Evolution.2004,51:153-160.
    170. Santos VSED, Gimenes MA, Valls JFM, et al. Genetic variation within and among species of fivesections of the genus Arachis L.(Leguminosae) using RAPDs[J]. Genetic Resources and CropEvolution.2003,50:841-848.
    171. Schoen DJ, Brown AH. Conservation of allelic richness in wild crop relatives is aided by assess-ment of genetic markers[J]. Proceedings of the National Academy of Sciences of the United Statesof America.1993,90:10623-10627.
    172. Sumarani GO, Pillai SV, Harisankar P, et al. Isozyme analysis of indigenous cassava germplasm foridentification of duplicates[J]. Genetic Resources and Crop Evolution.2004,51:205-209.
    173. Tanksley SD, McCouch SR. Seed bank and molecular maps: Unlocking genetic potential from thewild[J]. Science.1997,277:1063-1066.
    174. Upadhyaya HD, Gowda CLL, Pundir RPS, et al. Development of core subset of finger milletgermplasm using geographical origin and data on14quantitative traits[J]. Genetic Resources andCrop Evolution.2006,00: l-7(online).
    175. Upadhyaya HD, Ortiz R. A mini core subset for capturing diversity and promoting utilization ofchickpea genetic resources in crop improvement[J]. Theoretical and Applied Genetics.2001,102:1292-1298.
    176. Upadhyaya HD. Phenotypic diversity in groundnut (Arachis hypogaea L.) core collection as-sessed by morphological and agronomical evaluations[J]. Genetic Resources and Crop Evolution.2003,50:539-550.
    177. Wiklinson C A, Tilson W M. Diallel analysis of crosses among Virginia fire-cured tobacco culti-vars[J]. Tobacco Science,1994,38(1):21-24.
    178. Xia L, Peng KM, Yang SY, et al. DArT for high-throughput genotyping of Cassava (Manihotesculenta) and its wild relatives[J]. Theoretical and Applied Genetics.2005,110:1092-1098.
    179. Yonezawa K, Nomura T, Morishima H. Sampling strategies for use in stratified germplasm collec-tions.In:Hodgkin T, Brown AHD, Hintum van ThJL, Morales EAV(eds) Core collections of plantgenetic resources[M].John Wiley and Sons, Chichester, UK.1995:35-53.
    180. You GX, Zhang XY, Wang LF. An estimation of the minimum number of SSR loci needed to revealgenetic relationships in wheat varieties: Information from96random accessions with maximizedgenetic diversity[J]. Molecular Breeding.2004,14:397-406.
    181. Zeven A C, Waninge J, Hintum van Th, et al. Phenotypic variation in a core collection of commonbean (Phaseolus vulgaris L.) in the Netherlands[J]. Euphytica,1999,109:93-106.
    182. Zewdie Y, Tong NK, Bosland P. Establishing a core collection of Capsicum using a cluster analysiswith enlightened selection of accessions[J]. Genetic Resources and Crop Evolution.2004,51:147-151.
    183. Zhu J, Weir BS. Diallel analysis for sex-linked and maternal effects[J]. Theoretical and AppliedGenetics.1996,92: l-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700