用户名: 密码: 验证码:
基于GIS和遥感的东北地区水稻冷害风险区划与监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当生长季内热量条件不足或在关键生育期内遭遇持续低温就会发生低温冷害从而造成作物减产。研究表明,低温冷害在今后相当长的时期内仍然是影响东北地区水稻的主要农业气象灾害之一。对水稻冷害进行及时、准确地监测与预警,对稳定粮食生产意义重大。地理信息系统(GIS)与遥感(RS)技术为宏观和动态地监测农业气象环境和农业生产过程提供了良好的技术手段,是未来构建立体化农业气象服务体系的必然发展趋势。目前低温农业气象灾害遥感研究对象以作物冻害为主,直接利用遥感数据进行作物冷害监测与评价的研究尚不多见。
     本文选择东北三省为研究区,运用GIS空间分析方法和卫星遥感技术,以冷害综合风险评估与区划、基于全天候气温遥感估算的冷害遥感监测和水稻冷害产量损失量遥感预测为主要研究内容,对近13年东北地区水稻冷害开展了监测与评估研究,系统建立起基于GIS和遥感的水稻冷害监测与评估技术框架,为今后建立完整的农业气象灾害服务系统奠定理论基础。
     本文的主要研究工作成果如下:
     (1)依据自然灾害风险评估理论,以日平均温、水稻生长发育期及水稻产量和面积作为基础资料,借助GIS平台,对冷害致灾因子危险性、承灾体脆弱性和承灾体损失度三大风险要素的多个单项评价指标进行了年际统计与空间分析。采用加权综合分析法和基于熵值法和层次分析法的综合赋权法构建冷害各风险要素评估模型及东北地区水稻低温冷害综合风险评估模型。依据冷害综合风险评估指标数据大小,将东北地区划分为较低、低、中等、较高和高风险五个水稻综合冷害风险分区。分别对冷害综合风险评估指标及风险分区进行定量和定性验证,结果表明冷害综合风险评估指标与典型冷害年水稻平均减产率达到0.01水平极显著相关;风险区划结果也与任意冷害类型发生频率的空间分布特征一致,说明本文提出的冷害综合风险评估与区划方法具有一定的合理性和应用价值,能客观反映各地区水稻低温冷害风险等级差异。
     (2)在总结国内外气温遥感估算方法研究进展的基础上,本文提出了基于多平台MODIS地表温度(LST)数据的全天候平均气温遥感估算方法。首先采用高级统计法对多平台LST数据源晴空像元对应的平均气温分别进行估算。借助多平台MODIS数据的时间互补优势,构建了两种基于时间融合和局部窗口空间插补的全天候气温遥感估算方案。通过分析非晴空像元气温估算的误差来源及大小,得出LST产品的反演误差对气温估算精度引入的不确定性明显小于空间插补算法引入的误差,确定基于全幅LST的时间融合-空间插补方案为最优全天候气温估算方法。检验结果显示,2000-2012年晴空、非晴空及全天候8天平均气温遥感估算RMSE分别为1.4-1.8℃、1.6-2.3℃和1.4-2.0℃,13年间共有12年全天候气温估算误差绝对值小于3℃的样本百分数超过90%;与台站8天平均气温时间序列对比得出,遥感估算气温在夏季有理想结果,而在初春和秋末阶段存在普遍高估。同时对日LST产品运用改进的时间融合-空间插补算法计算日平均气温,并比较了全天候日气温和8天气温合成月平均气温的精度差异,结果显示由8天LST数据源估算的月平均气温与台站观测气温相比有更高的相关性和更小的RMSE,可为后续冷害遥感监测的温度指标计算提供有效的数据支持。本文提出的基于时间融合-空间插补的全天候平均气温遥感估算方法同样适用于全天候最低、最高气温数据的遥感估算。
     (3)参考现有气象行业标准中的冷害温度指标,以全天候8天平均气温时间序列和植被指数时间序列为基础数据,针对像元及县级两种空间尺度,分别构建了以T5.9距平和相对累积生长度日距平为温度指标的冷害遥感监测指标。经分析,遥感估算的两种冷害温度指标均与台站估算值之间具有高度一致的年际变化趋势,能有效反应水稻生长季内研究区热量条件空间分布的实际年际差异。以地面台站气温数据辨识的冷害发生地点对2000-2012年遥感监测结果进行验证,结果显示在发生大范围延迟型冷害的年份,遥感监测结果与实际灾情的空间一致性较高,像元尺度的一般延迟型冷害监测准确率超过均70%,严重冷害监测准确率超过80%,可用于计算冷害受灾面积。分生育阶段统计相对AGDD距平指标,可对县级尺度的水稻冷害区域进行遥感动态监测。
     (4)东北水稻冷害灾损遥感预测方法研究
     以水稻生育期降雨总量、不同水稻生育阶段有效积温(AGDD)、各月月平均气温及水稻关键生育期EVI平均值为驱动因子,预测水稻单产中的气象产量及随机产量,通过累加上一年真实趋势产量,得到预测年水稻单产。结果显示,基于水稻产量水平分区的遥感估产精度好于不分区估产精度;县级及地市级单产遥感估产精度R2均大于0.7,且地市级估产精度好于县级结果。在前面章节水稻面积和水稻关键生育期遥感识别、水稻生长季热量指标遥感估算及水稻冷害受灾区遥感监测等研究成果的基础上,利用水稻冷害灾损模型对冷害年份的水稻产量灾损量进行计算,预测2009年和2011年水稻冷害灾损量分别至少达到26.61和2.17万吨。
Chilling damage(also called as cold damage or chilling injury), which will occur when there is lack of accumulated temperature during the growing season or consecutive extreme low temperature below the optimum temperature at key development stage (booting, heading or flowering), is a main agro-meterological disaster for thermophilic crops in regions with low heat accumulation. Some studies have stated that Chilling damage is still a significant challenge for paddy rice in northeast China in the future. Therefore, to monitor and forecast the distribution and intensity of rice chilling damages timely and accurately is not support the local economic development but also stabilize the grain production safety. It must be the development trend for the agro-meteorological services system to using the advancemed technology such as Geographic Information System (GIS) and remote sensing (RS) to dynamically and preciously monitor the agro-meteorological environment and agricultural production at the regional scale in the future. There are several studies focusing on the freeze injury monitoring using remotely sensed data, while few application for chilling damage.
     In this paper, northeast China is selected to be study region since it is one of important production base for commodity rice but frequently occued low temperature weather in rice growth season.The main contents of the current study are including the risk assessment and risk zoning of rice chilling damage based on GIS, methodology to estimate the air temperature (Ta) under the all sky condition using Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) Land surface temperature (LST)data, monitoring the delayed-type chilling damage of rice based on the all sky Ta data estimated from MODIS LST. and predicting the rice production losses due to chilling damage by combining the identification of planting area and key development stages.
     The main research achievements in this dissertation were as follows:
     (1) On the basis of theory of risk evaluation for natural disaster, data including daily mean air temperature, development stages, yield and planting area of rice were employed to analyze the hazard of climate factors, rice vulnerability and yield losses in chilling damage risk in Northeast China. When after determining the integrated weight for each assessment indicator by using the combination of the Entropy Method and Analytic Hierarchy Process (AHP), a comprehensive risk assessment index of rice chilling damage and its zoning were established by weighted comprehensive analysis method (WCA) method. The result of risk assessment index and risk zoning was validated quantitatively and qualitatively in two ways:1) analyzing the correlation between integrated index of chilling damage risk and average reduction rate of rice yield in chilling damage years, which showed a significant correlation at0.01level;2) comparing the risk zoning and the distribution of occurrence frequency for any typed chilling damage, which reveals a strong spatial consistency. In conclusion, our method was proved to be scientific and reasonable to support the prevention and mitigation of chilling damage in northeast China.
     (2) Numerous studies have developed frameworks to estimate near-surface air temperature from remote sensing for clear sky condition, which can not satisfy the need of data integrity in studies on low temperature disaster monitoring. To solve this critical problem in actual application, a novel spatio-temporal algorithm to estimate air temperature under the all sky condition from Terra and Aqua MODIS LST data is presented in current paper. Firstly, stepwise regression analysis was employed to estimate the four images of mean Ta with daytime and nighttime LST from two satellite platform and images of other factors for clear sky condition respectively.When after merging the four clear sky Ta images onto one Ta image, to estimate the cloudy sky Ta by applying a spatial interpolation algorithm based on the linear regression relationship between Ta and elevation in local sliding window. The methodology that applying the spatio-temporal algorithm in LST pixels under the all sky condition is determined to be the optimal method to estimate the mean air temperature under the all sky condition.The result reveals that. The root mean square errors (RMSE) of8-day mean MODIS_Ta under the clear, clouy and all sky condition comparing to ground-based measurements are1.4-1.8℃,1.6-2.3℃and1.4-2.0℃, respectively. There are over90%of all mean air temperature estimations under the all sky condition.were within3℃absolute bias of12years in total13years. There were big errors of MODIS_Ta estimation occurs in early spring and late autumn while quite small difference in summer days. Finally, we compared the estimation precious of monthly MODIS_Ta derived from the daily MODIS_Ta and8-day mean MODIS_Ta, and then choosed8-day mean MODIS_Ta as the optimal data source to eatimate the temperature indices of chilling damage monitoring.The spatio-temporal algorithm proposed in current paper for mean Ta is also an effective way to estimate the maximum and minimum Ta under the all sky condition.
     (3) According to the existing temperature indices of rice chilling damage, temperature indices with T5-9anomalies and relative accumulative growing degree day (AGDD) anomalies derived from the time series of8-day mean MODIS_Ta estimation under the all sky condition were proposed to monitor the area of chilling damage in northeast China at the pixel and county scales, respectively. The interannual variation trend of two categories of indices estimated from MODIS_Ta and ground observation are consistent.The significant sptio-temporal change of the heat accumulation in rice growing season from2000-2012are showed in forms with MODIS T5-9anomalies and MODIS rAGDD anomalies.The results reveal that it is an effective way to monitor the delayed chilling damage by using remotely sensed temperature indices when there is a wide range chilling damage occured. such as the northeast China in2003and2009. The precious of remotely sensed monitoring for moderately delayed chilling damage and seriously delayed chilling damage at the county scale are over70%and80%. respectively.
     (4) Taking total rainfall from May to Septermber, AGDDs over the different development stages periods and average EVI at different key development stages of rice as the predicting factors to estimate the meteorological yield by stepwise regression analysis, and then to predict the rice yield by adding the historical trend yield to the estimated meteorological yield.The result reveals that,the R2between predicting yield derived from MODIS data and actual statistics are all over the0.7at the county and prefecture levels, and the predicting precious is higher of prefecture levels than county levels.On the basis of research achievement with identification of rice key growth developments and the areas with different grades of chilling damage occurred; we used a losses evaluation model to predict the rice production losses caused by chilling damage.There are at least26.61and2.17million tons of rice production losses of northeast China in2009and2011, respectively.
引文
Ayres-Sampaio D, Teodoro A C, Freitas A, et al. The use of remotely sensed environmental data in the study of asthma disease[C]//SPIE Remote Sensing. International Society for Optics and Photonics,2012:853124-853124-13.Beck P S, Atzberger C, Hogda K A, et al. Improved monitoring of vegetation dynamics at very high latitudes:A new method using MODIS NDVI[J]. Remote sensing of Environment,2006,100 (3):321-334.
    Becker F. The impact of spectral emissivity on the measurement of land surface temperature from a satellite[J]. International Journal of Remote Sensing.1987,8 (10):1509-1522.
    Benali A, Carvalho A C, Nunes J P. et al. Estimating air surface temperature in Portugal using MODIS LST data[J]. Remote Sensing of Environment.2012.124:108-121.
    Boudhar A, Duchemin B, Hanich L, et al. Spatial distribution of the air temperature in mountainous areas using satellite thermal infra-red data[J]. Comptes Rendus Geoscience.2011. 343 (1):32-42.
    Chen E. Allen L H, Bartholic J F. et al. Comparison of winter-nocturnal geostationary satellite infrared-surface temperature with shelter-height temperature in Florida[J]. Remote Sensing of Environment.1983,13 (4):313-327.
    Chen J. Jonsson P. Tamura M. et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter[J]. Remote sensing of Environment.2004. 91 (3):332-344.
    Chronopoulos K I, Tsiros I X. Dimopoulos I F. et al. An application of artificial neural network models to estimate air temperature data in areas with sparse network of meteorological stations[J]. Journal of Environmental Science and Health Part A-toxic/Hazardous Substances & Environmental Engineering.2008,43 (14):1752-1757.
    Coll C, Caselles V, Galve J M. et al. Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data[J]. Remote Sensing of Environment.2005. 97 (3):288-300.
    Colombi A. De Michele C, Pepe M, et al. Estimation of daily mean air temperature from MODIS LST in Alpine areas[J].EARSeL eProceedings.2007,6 (1):38-46.
    Coops N C. Duro D C. Wulder M A. et al. Estimating afternoon MODIS land surface temperatures (LST) based on morning MODIS overpass, location and elevation information[J]. International Journal of Remote Sensing.2007,28 (10):2391-2396.
    Cresswell M P. Morse A P. Thomson M C. et al. Estimating surface air temperatures, from Meteosat land surface temperatures, using an empirical solar zenith angle model[J]. International Journal of Remote Sensing.1999,20 (6):1125-1132.
    Cristobal J, Jimenez-Munoz J C. Sobrino J A, et al. Improvements in land surface temperature retrieval from the Landsat series thermal band using water vapor and air temperature[J]. Journal of Geophysical Research-Atmospheres.2009,114 (D08103)
    Cristobal J, Ninyerola M, Pons X. Modeling air temperature through a combination of remote sensing and GIS data[J]. Journal of Geophysical Research-Atmospheres.2008,113 (D13106).
    Crosson W L, Al-Hamdan M Z, Hemmings S N J, et al. A daily merged MODIS Aqua-Terra land surface temperature data set for the conterminous United States[J]. Remote Sensing of Environment.2012,119:315-324.
    Czajkowski K P, Mulhern T, Goward S N, et al. Biospheric environmental monitoring at BOREAS with AVHRR observations][J]. Journal of Geophysical Research-Atmospheres.1997,102 (D24) 29651-29662.
    Czajkowski K P, Goward S N, Stadler S J, et al. Thermal remote sensing of near surface environmental variables:Application over the Oklahoma Mesonet[J]. Professional Geographer. 2000,52 (2):345-357.
    Daly C, Taylor G H, Gibson W P. The PRISM approach to mapping precipitation and temperature[C]//Proceedings,10th Conference on Applied Climatology, American Meteorology Society.1997:10-12.
    Davis P A, Tarpley J D. Estimation of shelter temperatures from operational satellite sounder data[J]. Journal of Climate and Applied Meteorology.1983,22 (3):369-376.
    Evrendilek F, Karakaya N, Gungor K, et al. Satellite-based and mesoscale regression modeling of monthly air and soil temperatures over complex terrain in Turkey[J]. Expert Systems With Applications.2012,39 (2):2059-2066.
    Feng M, Yang W, Cao L, et al. Monitoring winter wheat freeze injury using multi-temporal MODIS data[J]. Agricultural Sciences in China,2009,8(9):1053-1062.
    Flores F, Lillo M. Simple air temperature estimation method from MODIS satellite images on a regional scale[J]. Chilean Journal of Agricultural Research.2010,70 (3):436-445.
    Florio E N, Lele S R, Chang Y C, et al. Integrating AVHRR satellite data and NOAA ground observations to predict surface air temperature:a statistical approach[J]. International Journal of Remote Sensing.2004,25 (15):2979-2994.
    Fu G, Shen Z, Zhang X, et al. Estimating air temperature of an alpine meadow on the Northern Tibetan Plateau using MODIS land surface temperature[J]. Acta Ecologica Sinica.2011,31 (1) 8-13.
    Galford G L, Mustard J F, Melillo J, et al. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil [J]. Remote Sensing of Environment,2008,112 (2):576-587.
    Gao X, Huete A R, Ni W, et al. Optical-biophysical relationships of vegetation spectra without background contamination[J]. Remote Sensing of Environment,2000,74(3):609-620.
    Goetz S J. Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site[J]. International Journal of Remote Sensing.1997,18 (1):71-94.
    Gordon R, Bootsma A. Analyses of growing degree-days for agriculture in Atlantic Canada[J]. Climate. Research,1993,3:169-176.
    Green R M, Hay S I. The potential of Pathfinder AVHRR data for providing surrogate climatic variables across Africa and Europe for epidemiological applications[J]. Remote Sensing of Environment.2002,79 (2-3):166-175.
    Guangmeng G, Mei Z. Using MODIS land surface temperature to evaluate forest fire risk of northeast China[J]. Geoscience and Remote Sensing Letters, IEEE.2004,1(2):98-100.
    Hassan Q K, Rahman K M. Applicability of remote sensing-based surface temperature regimes in determining deciduous phenology over boreal forest[J]. Journal of Plant Ecology,2013,6 (1) 84-91.
    Horiguchi I, Tani H, Motoki T. Accurate estimation of 1.5 m-height air temperature by GMS IR data[C]//International Symposium on Remote Sensing of Environment,24 th, Rio de Janeiro, Brazil.1992:301-307.
    Hou P, Chen Y, Qiao W, et al. Near-surface air temperature retrieval from satellite images and influence by wetlands in urban region[J]. Theoretical and Applied Climatology.2013,111:109-118
    Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote sensing of environment,1988,25 (3):295-309.
    Huete A. Didan K. Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote sensing of environment,2002,83(1):195-213.
    Ignatov A. Gutman G. Diurnal cycles of land surface temperature[J]. Advances in Space Research. 1998.22 (5):641-644.
    Jacobs B C. Pearson C J. Cold damage and development of rice:a conceptual model[J]. Animal Production Science.1994.34 (7):917-919.
    Jang J D. Viau A A. Anctil F. Neural network estimation of air temperatures from AVHRR data[J]. International Journal of Remote Sensing.2004,25 (21):4541-4554.
    Jin M L. Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle 2. Cloudy-pixel treatment[J]. Journal of Geophysical Research-Atmospheres.2000. 105 (D3):4061-4076.
    Jones P. Jedlovec G. Suggs R, et al. Using MODIS LST to estimate minimum air temperatures at night[C]//13th Conference on Satellite Meteorology and Oceanography.2004:13-18.
    Jonsson P, Eklundh L. Seasonaliry extraction by function fitting to time-series of satellite sensor data[J]. Geoscience and Remote Sensing. IEEE Transactions on,2002,40(8):1824-1832.
    Jonsson P. Eklundh L. TIMESAT-A program for analyzing time-series of satellite sensor data[J]. Computers & Geosciences,2004,30 (8):833-845.
    Jordan C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology,1969: 663-666.
    Jurgens C. The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data[J]. International Journal of Remote Sensing,1997,18(17):3583-3594.
    Karnieli A, Agam N, Pinker R T, et al. Use of NDVI and land surface temperature for drought assessment:merits and limitations[J]. Journal of Climate.2010,23 (3):618-633.
    Kaufman Y J, Tanre D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS[J]. Geoscience and Remote Sensing, IEEE Transactions on,1992,30 (2):261-270.
    Kawashima S, Ishida T, Minomura M, et al. Relations between surface temperature and air temperature on a local scale during winter nights[J]. Journal of Applied Meteorology.2000.39 (9): 1570-1579.
    Kloog I, Chudnovsky A, Koutrakis P, et al. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA[J]. Science of the Total Environment.2012,432:85-92.
    Liang P, Hebin W, Hao Y. Monitoring of summer high temperature damage by using MODIS data to estimate air temperature[J]. Agricultural Science & Technology-Hunan.2012,13 (4):849-851,871.
    Lin S, Moore N J, Messina J P, et al. Evaluation of estimating daily maximum and minimum air temperature with MODIS data in east Africa[J]. International Journal of Applied Earth Observation and Geoinformation.2012,18:128-140.
    Liu H Q, Huete A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise[J]. Geoscience and Remote Sensing, IEEE Transactions on,1995,33 (2): 457-465.
    Lu L, Venus V, Skidmore A, et al. Estimating land-surface temperature under clouds using MSG/SEVIRI observations[J]. International Journal of Applied Earth Observation and Geoinformation.2011,13 (2):265-276.
    Lu X, Liu R, Liu J, et al. Removal of noise by wavelet method to generate high quality temporal data of terrestrial MODIS products[J]. Photogrammetric Engineering and Remote Sensing,2007, 73 (10):1129.
    Mao K B, Tang H J, Wang X F, et al. Near-surface air temperature estimation from ASTER data based on neural network algorithm[J]. International Journal of Remote Sensing.2008,29 (20) 6021-6028.
    Mcmaster G S, Wilhelm W W. Growing degree-days:one equation, two interpretations[J]. Agricultural and Forest Meteorology.1997,87 (4):291-300.
    Mendez A. Estimate ambient air temperature at regional level using remote sensing techniquesfD]. 86 p MSc. thesis. International Institute for Geo-Information Science and Earth Observation (ITC), Enschede, The Netherlands.2004.
    Meteotest,2003. Meteonorm handbook, Part III:Theory Part 2, http://www.meteotest.ch/pdf/am/theory_2.pdf]
    MOHAMED A G, HONGO C, ITOU A, et al. Utilization of remote sensing data for estimating damage ratio of rice crop-part 3[C]//Proceedings of the Conference of the Remote Sensing Society of Japan.2006,40:119-120.
    Moran M S, Inoue Y, Barnes E M. Opportunities and limitations for image-based remote sensing in precision crop management J]. Remote Sensing of Environment,1997,61 (3):319-346.
    Mostovoy G V, King R L, Reddy K R, et al. Statistical estimation of daily maximum and minimum air temperatures from MODIS LST data over the state of Mississippi [J]. Giscience & Remote Sensing.2006,43 (1):78-110.
    Nagatani I, Saito G, Toritani H, et al. Agricultural map of Asian region using time series AVHRR NDVI data[J]. Remote Sensing Unit, Ecosystems Group. Department of Global Resources, National Institute for Agro-Environmental Sciences, Tsukuba, Japan,2002.
    Nemani R R. Running S W. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal IR AVHRR data[J]. Journal of Applied Meteorology.1989.28 (4):276-284.
    Neteler M. Estimating Daily Land Surface Temperatures in Mountainous Environments by Reconstructed MODIS LST Data[J]. Remote Sensing.2010,2 (1):333-351.
    Nieto H. Sandholt I, Aguado I. et al. Air temperature estimation with MSG-SEVIRI data: Calibration and validation of the TVX algorithm for the Iberian Peninsula[J]. Remote Sensing of Environment.2011,115 (1):107-116.
    Ninyerola M, Pons X, Roure J M. A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques[J]. International Journal of Climatology. 2000.20 (14):1823-1841.
    Pape R. Loffler J. Modelling spatio-temporal near-surface temperature variation in high mountain landscapes[J]. Ecological modelling.2004,178 (3):483-501.
    Park J G. Tateishi R, Matsuoka M. A proposal of the Temporal Window Operation (TWO^ method to remove high-frequency noises in AVHRR NDVI time series data[J]. Journal of the Japan Society of Photogrammetry and Remote Sensing,1999,38 (5):36-47.
    Planck M. The theory of heat radiation[M]. Courier Dover Publications,1959
    Price J C. Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer[J]. Journal of Geophysical Research:Atmospheres (1984-2012).1984a,89 (D5):7231-7237
    Prihodko L, Goward S N. Estimation of air temperature from remotely sensed surface observations[J]. Remote Sensing of Environment.1997.60 (3):335-346.
    Prince S D. Goetz S J, Dubayah R O, et al. Inference of surface and air temperature, atmospheric precipitable water and vapor pressure deficit using Advanced Very High-Resolution Radiometer satellite observations:comparison with field observations[J]. Journal of Hydrology.1998.212: 230-249.
    Qu P, Shi R, Liu C, et al. Evaluation of MODIS data and geographic data to estimate near surface air temperature in Anhui province of China[C]//Proceedings of SPIE-The International Society for Optical Engineering. SPIE, P. O. BOX 10 Bellingham WA 98227-0010 USA,2010,7809.
    Roerink G J, Menenti M, Verhoef W. Reconstructing cloudfree NDVI composites using Fourier analysis of time series[J]. International Journal of Remote Sensing,2000,21 (9):1911-1917.
    Rouse Jr J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[J]. NASA special publication,1974,351:309.
    Sakamoto T, Yokozawa M, Toritani H, et al. A crop phenology detection method using time-series MODIS data[J]. Remote sensing of environment,2005,96 (3):366-374.
    Sarma A, Kumar T V L, Koteswararao K. Development of an agroclimatic model for the estimation of rice yield[J]. J. Ind. Geophys. Union,2008,12 (2):89-96.
    Savitzky A, Golay M J. Smoothing and differentiation of data by simplified least squares procedures.[J]. Analytical chemistry,1964,36 (8):1627-1639.
    Shen S H, Leptoukh G G. Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature[J]. Environmental Research Letters.2011,6 (0452064),
    Shiga H. and Asaka D.,1994,The Use of MOS-1 MESSR Data for Estimation of Rice Yield Damaged by Cold Weather in 1993, Journal of the Remote Sensing Society of Japan, Vol.14, No. 4, pp.54-60,1994
    Sobrino J, Coll C, Caselles V. Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5[J]. Remote Sensing of Environment,1991,38 (1):19-34.
    Stisen S, Sandholt I, Norgaard A, et al. Estimation of diurnal air temperature using MSG SEVIRI data in West Africa[J]. Remote Sensing of Environment.2007,110 (2):262-274.
    Sun Y J, Wang J F, Zhang R H, et al. Air temperature retrieval from remote sensing data based on thermodynamics [J]. Theoretical and applied climatology.2005,80 (1):37-48.
    Tan B, Morisette J T, Wolfe R E, et al. An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data[J]. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of,2011,4 (2):361-371.
    Teal R K, Tubana B, Girma K, et al. In-season prediction of corn grain yield potential using normalized difference vegetation index[J]. Agronomy Journal,2006,98 (6):1488-1494.
    Vancutsem C, Ceccato P, Dinku T, et al. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa[J]. Remote Sensing of Environment. 2010,114 (2):449-465.
    Verhoef W. Application of harmonic analysis of NDVI Time Series (HANTS) [J]. Fourier analysis of temporal NDVI in the Southern African and American continents. Report,1996,108: 19-24.
    Vermote E F, Kotchenova S Y, Ray J P. MODIS surface reflectance user's guide[J]. MODIS Land Surface Reflectance Science Computing Facility, version,2008,1.
    Viovy N, Arino O, Belward A S. The Best Index Slope Extraction (BISE):A method for reducing noise in NDVI time-series[J]. International Journal of Remote Sensing,1992,13(8):1585-1590.
    Vogt J V, Viau A A, Paquet F. Mapping regional air temperature fields using satellite-derived surface skin temperatures[J]. International Journal of Climatology,1997,17(14):1559-1579.
    Wan Z, Dozier J. A generalized split-window algorithm for retrieving land-surface temperature from space[J]. Geoscience and Remote Sensing. IEEE Transactions on,1996,34 (4):892-905.
    Wan Z. Li Z. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[J]. Geoscience and Remote Sensing. IEEE Transactions on,1997,35 (4): 980-996.
    Wan Z, Zhang Y, Zhang Q, et al. Quality assessment and validation of the MODIS global land surface temperature[J]. International Journal of Remote Sensing,2004,25 (1):261-274.
    Wan Z, Zhang Y, Zhang Q, et al. Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data[J]. Remote Sensing of Environment.2002,83 (1):163-180.
    Wan Z. Collection-5 MODIS Land Surface Temperature Products Users'Guide[J]. ICESS. University of California, Santa Barbara.2007.
    Wan Z.Land Surface Temperature and Emissivity Algorithms and Products.[Online] Available:http://modis.gsfc.nasa.gov/sci_team/meetings/c5meeting/pres/dayl/wan.pdf,.2007.1.17-18
    Wloczyk C. Borg E, Richter R. et al. Estimation of instantaneous air temperature above vegetation and soil surfaces from Landsat 7 ETM+data in northern Germany [J]. International Journal of Remote Sensing.2011.32 (24):9119-9136.
    Worthington C M, Hutchinson C M. Accumulated growing degree days as amodel to determine key developmental stages and evaluate yield and quality of potato in northeast Florida[C]//Proc Fla State Hortic Soc.2005,118:98-101.
    Xiao X, Boles S, Frolking S, et al. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images[J]. Remote Sensing of Environment,2006,100:95-113.
    Xiong J. Toller G. Chiang V. et al. MODIS level lb algorithm theoretical basis document[J]. NASA MODIS Characterization Support Team. Washington. DC.2005.
    Xu Y. Qin Z, Shen Y. Study on the estimation of near-surface air temperature from MODIS data by statistical methods[J]. International Journal of Remote Sensing.2012.33 (24):7629-7643.
    Yan H, Zhang J H, Hou Y Y, et al. Estimation of air temperature from MODIS data in east China[J]. International Journal of Remote Sensing.2009,30 (23):6261-6275.
    Zaksek K, Schroedter-Homscheidt M. Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments[J]. ISPIS Journal of Photogrammetry and Remote Sensing.2009,64 (4):414-421.
    Zhang J H. Yao F M, Li B B, et al. Progress in monitoring high-temperature damage to rice through satellite and ground-based optical remote sensing[J]. SCIENCE CHINA Earth Sciences. 2011,54 (12):1801-1811.
    Zhang L W, Huang J F, Guo R F, et al. Spatio-Temporal Reconstruction of Air Temperature Maps and Their Application to Estimate Rice Growing Season Heat Accumulation Using Multi-Temporal MODIS Data[J]. Journal of Zhejiang University-Science B (Biomed & Biotechnol).2013,14 (2):144-161
    Zhang W, Huang Y, Yu Y Q, et al. Empirical models for estimating daily maximum, minimum and mean air temperatures with MODIS land surface temperatures[J]. International Journal of Remote Sensing.2011,32 (24):9415-9440.
    Zhang Y, Feng R, Ji R, et al. Application of Remote Sensing Technology in Crop Chilling Injury Monitoring[C]//Genetic and Evolutionary Computing (ICGEC),2010 Fourth International Conference on. IEEE,2010:375-378.
    Zhao D, Zhang W, Shijin X. A neural network algorithm to retrieve nearsurface air temperature from landsat ETM+imagery over the hanjiang river basin, china[C]//Geoscience and Remote Sensing Symposium,2007. IGARSS 2007. IEEE International. IEEE,2007:1705-1708.
    白建辉,王庚辰.影响太阳总辐射各主要因子的分析[J].高原气象,1994,13(4):483-488.
    蔡福,于贵瑞,祝青林,等.气象要素空间化方法精度的比较研究[J].资源科学,2005,27(5):173-179.
    蔡红艳,张树文,杨久春.基于遥感和GIS技术的区域农业自然灾害风险分区.以吉林省为例.中国灾害防御协会风险分析专业委员会第四届年会,中国吉林长春,2010.
    陈怀亮,张红卫,刘荣花,等.中国农业干旱的监测、预警和灾损评估[J].科技导报,2009,(11):82-92.
    陈家金,林晶,李丽纯,等.暴雨灾害对福建水稻产量影响的灾损评估方法[J].中国农业气象,2010,1.
    陈小敏,陈汇林,陶忠良.2008年初海南橡胶寒害遥感监测初探[J].自然灾害学报,2013,(01):24-28.
    陈修治,陈水森,苏泳娴,陈艳乔,李丹.利用AMSR-E遥感数据反演地表温度——以2008年广东省春季寒害为例[J].遥感信息,2011,(5):38-46.
    程勇翔,王秀珍,郭建平,等.农作物低温冷害监测评估及预报方法评述[J].中国农业气象,2012,33(2):297-303.
    崔读昌.关于冻害、寒害、冷害与霜冻[J].中国农业气象,1999, 1(20):56-57.
    单新兰,卫建国,韩颖娟.GIS和RS支持下宁夏水稻低温冷害监测预警[J].安徽农业科学,2011.39(3):1578-1581.
    邓国,李世奎.中国粮食作物产量风险评估方法[A].李世奎.中国农业灾害风险评价与对策[C].北京:气象出版社,1999:122-128.
    邓国,王昂生,周玉淑,李世奎.中国省级粮食产量的风险区划研究[J].南京气象学院学报, 2002,25(3):373-379.
    邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1988.
    丁士晟.东北地区夏季低温的气候分析及其对农业生产的影响[J].气象学报,1980,38(3):234-242.
    董春田,刘政国,吴文钧,刘恒吉.辽宁省水稻低温冷害及品种热量分区[J].中国农业科学,1982,(06):50-58.
    董燕生,陈洪萍,王慧芳,顾晓鹤,王纪华.基于多时相环境减灾卫星数据的冬小麦冻害评估[J].农业工程学报,2012,(20):172-179.
    段光耀,赵文吉,宫辉力.基于遥感数据的区域洪涝风险评估改进模型[J].自然灾害学报,2012.4:9.
    冯锐,张玉书,钱永兰,等.基于多时相MODIS数据的东北地区一季稻面积提取[J].生态学杂志,2011,30(11):2570-2576.
    符淙斌,马文林.东北低温长期预报研究的进展[J].气象,1982,(10):4-7.
    高晓容.东北地区玉米主要气象灾害风险评估研究[博士学位论文].南京:南京信息工程大学,2012
    高庆华,马宗晋,张业成.自然灾害评估[M].气象出版社,2007.
    葛全胜,邹铭,郑景云.中国自然灾害风险综合评估初步研究[M].北京:科学出版社,2008.
    郭家林、陈莉,李帅.西北太平洋大气海洋对东北亚冷夏形成的影响[J].自然灾害学报.2004.13(2):51-57.
    郭建平.田志会,左旭.东北地区水稻热量指数预测模型[J].自然灾害学报.2004,(3)
    郭晓丽,王立刚,邱建军,李金华,祝必琴,肖金香,高懋芳.基于GIS的东北地区水稻低温冷害区划研究[J].江西农业大学学报,2009,31(3):494-498.
    郝天依,三式功,尚可政,李景鑫.中国东北地区低温冷害研究进展与展望[J].安徽农业科学,2010,38(34):19626-19629.
    何燕,李政,徐世宏,欧钊荣,谭宗琨,丁美花.GIS支持下的广西早稻春季冷害区划研究[J].自然灾害学报,2009.18(5):178-182.
    何燕,李政,钟仕全,徐世宏.丁美花.欧钊荣,谭宗琨.广西晚稻低温冷害空间分析模型构建及其区划[J].地理研究,2010,(6):1037-1044.
    何燕,李政,徐世宏,王莹,欧钊荣,李玉红.GIS在水稻“寒露风”冷害监测预警中的应用[J].灾害学,2012.(1):68-72.
    何英彬.基于MODIS与TM的冷害影响水稻声量评估研究[博士学位论文]:中国农业科学院。2007:119
    何英彬,陈佑启,唐华俊.基于MODIS反演逐日LAI及SIMRIW模型的冷害对水稻单产的影响研究[J].农业工程学报,2007,23(11):188-194.
    何英彬,陈佑启,唐华俊.水稻冷害研究进展[J].中国农业资源与区划,2008,(2):33-38.
    侯英雨,张佳华,延昊,等.利用卫星遥感资料估算区域尺度空气温度[J].气象.2010,36(4):75-79.
    胡列群,武鹏飞,李新建,周立平.基于ETM+影像的棉花低温冷害遥感监测方法研究[J].中国农学通报,2011,27(4):459-463.
    黄崇福.自然灾害风险评价:理论与实践[M].北京:科学出版社,2005.
    霍治国,杜尧东,姜燕.香蕉,荔枝寒害等级(QX/T 80-2007)[S].中国气象局发布.气象出版社,发布日期,2007:6-22.
    霍治国,李世奎,王素艳,刘锦銮,薛昌颖.主要农业气象灾害风险评估技术及其应用研究[J].自然资源学报,2003,(6):692-703.
    霍治国,马树庆,柏秦凤,等.水稻、玉米冷害等级(QX/T 101-2009)[S].中国气象局发布.气象出版社,发布日期,2009:6-7.
    吉书琴,张玉书,关德新,张淑杰.辽宁地区作物低温冷害的遥感监测和气象预报[J].沈阳农业大学学报,1998,(1):16-20.
    江和文,张录军,曹士民,郭婷婷,廖晶晶,张丽敏.辽宁省主要粮食作物产量灾损风险评估[J].干旱地区农业研究,2011,29(4):238-244.
    姜丽霞,李帅,闫平,纪仰慧,朱海霞,王萍,郭建平.黑龙江水稻孕穗期障碍型冷害及其对产量的影响[J].中国农业气象,2009,(3).
    姜丽霞,季生太,李帅,王连敏,韩俊杰,王晾晾,朱海霞,纪仰慧.黑龙江省水稻空壳率与孕穗期低温的关系[J].应用生态学报,2010,21(7):1725-1730.
    金爱芬.延边地区粮豆作物延迟型冷害的地理分布规律研究[硕士学位论文].延边大学,2000:40
    柯灵红,王正兴,宋春桥,等.青藏高原东北部MODIS LST时间序列重建及与台站地温比较[J].地理科学进展.2011,30(7):819-826.
    匡昭敏,李强,尧永梅,丁美花.EOS/MODIS数据在甘蔗寒害监测评估中的应用[J].应用气象学报,2009,(3):360-364.
    李飞,王春,赵军,等.中国陆地多年平均积温空间化研究[J].自然资源学报,2010,(05)778-784.
    李刚.东北典型湿地生态环境演变及适应对策研究[硕士学位论文].沈阳:东北大学,2009:73
    李辉.基于GIS的潍坊市暴雨洪涝灾害风险区划[硕士学位论文]:南京信息工程大学,2012:64
    李军,游松财,黄敬峰.中国1961-2000年月平均气温空间插值方法与空间分布[J].生态环境,2006,15(1):109-114.
    李娜,刘焕军.东北地区农业灾害动态监测体系研究[J].商业经济,2012,(4):24-27.
    李世奎,霍治国,王素艳,刘荣花,盛绍学,刘锦銮,马树庆,薛昌颖.农业气象灾害风险评估体系及模型研究[J].自然灾害学报,2004,13(1):77-87.
    李世奎.农业气象灾害史料(1951-1994)[A].李世奎.中国农业灾害风险评价与对策[C].北京:气象出版社,1999:470-472.
    李维钧,张微微,武伟,刘洪斌.基于中巴资源卫星数据的水稻种植面积监测——以梁平县为例[J].西南大学学报(自然科学版),2009,31(1):179-184.
    李新建,毛炜峄,谭艳梅.新疆棉花延迟型冷害的热量指数评估及意义[J].中国农业科学,2005,(10):1989-1995.
    李祎君,王春乙.东北地区玉米低温冷害综合指标研究[J].自然灾害学报,2007,16(6)15-20.
    李章成.作物冻害高光谱曲线特征及其遥感监测[博士学位论文]:中国农业科学院, 2008:124
    李强子,张飞飞,杜鑫,等.汶川地震粮食受损遥感快速估算与分析[J].遥感学报,2009.13(5):928-939.
    梁顺林.定量遥感[M].北京:科学出版社,2009.
    廖顺宝,李泽辉.积温数据栅格化方法的实验[J].地理研究.2004,(05):633-640.
    林海荣,李章成,周清波,吕新.基于ETM植被指数和冠层温度差异遥感监测棉花冷害[J].棉花学报.2009,21(4):284-289.
    刘布春,王石立,庄立伟,卢志光,史学丽.宋永佳.基于东北玉米区域动力模型的低温冷害预报应用研究[J].应用气象学报.2003,14(5):616-625.
    刘海峰.全炳武,梁运江,魏铁铮,韩太日.1998年低温冷害对水稻生育的影响[J].延边大学农学学报,1999.(03):209-211.
    刘锦銮,杜尧东,毛慧琴.华南地区荔枝寒害风险分析与区划[J].自然灾害学报,2003,12(3):126-130.
    刘静,王连喜,马力文,等.中国西北里作小麦干旱灾害损失评估方法研究[J].中国农业科学,2004,37(2):201-207.
    刘景利,王志明,陈明,等.1951~2007年东北地区有效积温时空变化特征[J].安徽农业科学,2011.(25):15655-15656.
    刘玲,沙奕卓.白月明.中国主要农业气象灾害区域分布与减灾对策[J].自然灾害学报.2003.12(2):92-97.
    刘荣花,朱自玺,方文松,王友贺,许蓬蓬,师丽魁.华北平原冬小麦干旱灾损风险区划[J].生态学杂志,2006,25(9):1068-1072.
    刘晓菲,张朝.帅嘉冰.王品,史文娇.陈一,陶福禄.黑龙江省冷害对水稻产量的影响[J].ACTA GEOGRAPHICA SINICA,2012,67 (9).
    刘玉英,石大明、胡轶鑫,张晨琛,张婷.吉林省农业气象干旱灾害的风险分析及区划[J].生态学杂志.2013,(06):1518-1524.
    刘志红-Lingtao Li, Mcvicar Tim R.,等.专用气候数据空间插值软件ANUSPLIN及其应用[J]. 气象,2008,34(2):92-100.
    刘志明,晏明.关于建立吉林省重大气象灾害遥感监测评估系统的总体构想[J].灾害学,1998,13(1):62-65.
    刘志武,党安荣,雷志栋,黄聿刚.利用ASTER遥感数据反演地表温度的算法及应用研究[J].地理科学进展,2003,22(5):507-514.
    马树庆,袁福香,周淑香,等.2002年吉林省农业气候条件及其对农业生产的影响[J].吉林气象,2002,4:007.
    马树庆,王琪,沈享文,许英子,李哲.水稻障碍型冷害损失评估及预测动态模型研究[J].气象学报,2003,61(4):507-512.
    马树庆,袭祝香,王琪.中国东北地区玉米低温冷害风险评估研究[J].自然灾害学报,2003,12(3):137-141.
    马树庆.2005年吉林省农业气象条件及其对农业生产的影响[J].吉林气象,2006(4):20-23.
    马树庆,刘玉英,王琪.玉米低温冷害动态评估和预测方法[J].应用生态学报,2006,(10):1905-1910.
    马树庆,王琪,王春乙,霍治国.东北地区玉米低温冷害气候和经济损失风险分区[J].地理研究,2008,27(5):1169-1177.
    马树庆,王琪.2009年吉林省农业气象灾害及其对粮食生产的影响[J].吉林农业科学,2010,35(1):49-52
    马树庆,三琪,王春乙,霍治国.东北地区水稻冷害气候风险度和经济脆弱度及其分区研究[J].地理研究,2011,30(5):931-938.
    马树庆,陈正洪,王琪,等.水稻冷害评估技术规范(QX/T 182-2013)[S].中国气象局发布,气象出版社,发布日期,2013:1
    马晓群,姚筠,许莹.安徽省农作物干旱损失动态评估模型及其试用[J].灾害学,2010,25(001):13-17.
    马玉平,王石立,李维京.基于作物生长模型的东北玉米冷害监测预测[J].作物学报,2011,37(10):1868-1878.
    毛飞,高素华,庄立伟.近40年东北地区低温冷害发生规律的研究[A].王春乙,郭建平.农作物低温冷害综合防御技术研究[C].北京:气象出版社,1999:17-26.
    毛克彪.针对热红外和被动微波数据的地表温度和土壤水分反演算法研究[博士学位论文].北京:中国科学院遥感应用研究所,2007
    莫建飞,陆甲,李艳兰,陈燕丽.基于GIS的广西洪涝灾害孕灾环境敏感性评估[J].灾害学,2010,25(4):33-37.
    潘铁夫,冯绍印,丁希泉,肖永瑚,郑秀梅.高粱低温冷害及其防御途径[J].农业气象,1979,(00):26-33.
    潘卫华,陈惠,张春桂,陈家金.基于MODIS数据的福建省农作物低温监测分析与风险评估 [J].中国农业气象,2012,(2):259-264.
    彭代亮.基于统计与MODIS数据的水稻遥感估产方法研究[博士学位论文].杭州:浙江大学,2009.
    齐述华,骆成凤,王长耀,等.气温与陆地表面温度和光谱植被指关系的研究[J].遥感技术与应用.2006,21(2):130-136.
    齐述华,王军邦,张庆员,骆成风,郑林.利用MOD IS遥感影像获取近地层气温的方法研究[J].遥感学报.2005,9(5):570-575.
    钱永兰,吕厚荃,张艳红.基于ANUSPLIN软件的逐日气象要素插值方法应用与评估[J].气象与环境学报,2010,26(2):7-15.
    曲思邈,李国春.利用MODIS红外资料反演大气温湿度廓线的研究[J].气象与环境学报.2012,28(3):21-24.
    任建强,刘杏认,陈仲新,等.基于作物生物量估计的区域冬小麦单产预测[J].应用生态学报,2009,20(4):872-878.
    石莉莉,乔建平.基于GIS和贡献权重迭加方法的区域滑坡灾害易损性评价[J].灾害学,2009,24(3):46-50.
    孙华生,利用多时相MODIS数据提取中国水稻种植面积和长势信息[博士学位论文]:浙江大学,2009:158
    孙建军,成颖.定量分析方法[M].南京:南京大学出版社,2005.
    孙伟.基于GIS的浙江省柑橘低温冻害风险分析[硕士学位论文]:新疆农业大学,2010:56
    孙玉亭,王书裕,杨永岐.东北地区作物冷害的研究[J].气象学报,1983,41(3):313-321.
    覃志豪,Zhang Minghua. Arnon Karnieli. Pedro Berliner.用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报,2001,(04):456-466.
    覃志豪,徐斌,李茂松,王道龙,张万昌,李文娟,黄建明,我国主要农业气象灾害机理与监测研究进展[J].自然灾害学报,2005,14(2):61-69.
    覃志豪Ming-Hua Zhang.Karnieli Arnon用NOAA-AVHRR热通道数据演算地表温度的劈窗算法[J].国土资源遥感.2001(2):33-42.
    谭宗琨,丁美花,杨鑫,欧钊荣,何燕,匡昭敏.利用MODIS监测2008年初广西甘蔗的寒害冻害[J].气象,2010,36(4):116-119.
    汤传勇,卢远.利用面向对象的分类方法提取水稻种植面积[J].遥感信息,2010,1:53-56.
    汤志成,孙涵.用NOAA卫星资料作冬作物冻害分析[J].遥感信息,1989,(4):39.
    陶炳炎,汤志成.水稻生长发育动态监测农业气象模式研究[J].南京气象学院学报,1992,15(2):82-91.
    涂丽丽,覃志豪,张军,等.基于空间内插的云下地表温度估计及精度分析[J].遥感信息.2011(4):59-63,106.
    王春林,唐力生,陈水森,黄珍珠,何健.寒冷灾害监测中的全天候地表温度反演方法研究[J].中国农业气象,2007,(01):80-87.
    王春乙,娄秀荣,王建林.中国农业气象灾害对作物产量的影响[J].自然灾害学报,2007,16(5):37-43.
    王春乙,王石立,霍治国,郭建平,李祎君.近10年来中国主要农业气象灾害监测预警与评估技术研究进展[J].气象学报,2005,63(5):659-671.
    王慧芳,顾晓鹤,董莹莹,等.冬小麦冻害灾情及长势恢复的变化向量分析[J].农业工程学报,2011,27(11):145-150.
    王建芳.遥感地表温度反演在寒害监测预警中的应用[硕士学位论文]:中国科学院研究生院(广州地球化学研究所),2006:70
    王建林.现代农业气象业务[M].北京:气象出版社,2010.
    王敬方,吴国雄.持续性东北冷害的变化规律及相关特征[J].大气科学,1997,5(21)523-532.
    王连喜,秦其明,张晓煜,等.遥感技术在水稻低温冷害灾损评估中的应用[J].新世纪气象科技创新与大气科学发展——中国气象学会2003年年会“农业气象与生态环境”分会论文集,北京:2003.
    王连喜,秦其明,张晓煜.水稻低温冷害遥感监测技术与方法进展[J].气象,2003,29(10)3-7.
    王晾晾,杨晓强,李帅,朱海霞,王萍,纪仰慧,姜丽霞.东北地区水稻霜冻灾害风险评估与区划[J].气象与环境学报,2012,28(5):40-45.
    王明田,张玉芳,马均,刘娟,李金建,陈东东.四川省盆地区玉米干旱灾害风险评估及区划[J].应用生态学报,2012,(10):2803-2811.
    王人潮,黄敬峰.水稻遥感估产[M].北京:中国农业出版社,2002.
    王绍武,马树庆,陈莉,王琪,黄建斌.低温冷害[M].北京:气象出版社,2009.
    王石立,马玉平,庄立伟.东北地区玉米冷害预测评估模型改进研究[J].自然灾害学报,2008,17(4):12-18.
    王书裕.东北地区水稻农业气候区划[J].吉林农业科学,1983,(1):13-21.
    王书裕.农作物冷害的研究[M].北京:气象出版社,1995.
    王素艳,霍治国,李世奎,卢志光,庄立伟,侯婷婷.干旱对北方冬小麦产量影响的风险评估[J].自然灾害学报,2003,12(3):118-125.
    王艳华,任传友,韩亚东,等.东北地区活动积温和极端持续低温的时空分布特征及其对粮食产量的影响[J].农业环境科学学报,2011,30(9):1742-1748.
    王育光,姜丽霞,石剑,杜春英.黑龙江省水稻生产区域划分的初步研究[J].黑龙江气象,2006,(1):13-17.
    王媛,方修琦,徐锬,等.气候变暖与东北地区水稻种植的适应行为[J].资源科学,2005,27 (1):121-127.
    邬明权,王长耀,牛铮.利用多源时序遥感数据提取大范围水稻种植面积[J].农业工程学报,2010,26(7):240-244.
    吴炳方,李强子,迟耀斌,黄进良,周万村,张维奇,吴双.2008年1-2月雪灾作物灾情遥感监测方法[J].中国工程科学,2008,(06):63-69.
    吴承杰,冯镇南.前期低温对水稻生育和产量形成的影响[J].农业气象,1982,(03):32-34.
    吴东丽,王春乙,薛红喜,张雪芬.华北地区冬小麦干旱风险区划[J].生态学报,2011,31(3):760-769.
    肖金香,穆彪,胡飞.农业气象学[M].第2版.北京:高等教育出版社,2009.
    肖静,李楠,姜会飞.作物发育期积温计算方法及其稳定性[J].气象研究与应用,2010,31(002):64-67.
    谢云峰,张树文.基于数字高程模型的复杂地形下的黑龙江平均气温空间插值[J].中国农业气象,2007,(02):205-211.
    徐新刚,吴炳方,蒙继华,等.农作物单产遥感估算模型研究进展[J].农业工程学报,2008,24(2):290-298.
    徐岩岩.张佳华,Limin Y.基于MODIS-EVI数据和Svmlet11小波识别东北地区水稻主要物候期[J].生态学报.2012.32(7):2091-2098.
    徐永明,覃志豪,沈艳.基于MODIS数据的长江三角洲地区近地表气温遥感反演[J].农业工程学报.2011.27(9):63-68.
    徐永明.覃志豪,万洪秀.热红外遥感反演近地层气温的研究进展[J].国土资源遥感.2011(1):9-14.
    薛昌颖,霍治国,李世奎,叶彩玲.华北北部冬小麦干旱和产量灾损的风险评估[J].自然灾害学报,2003,12(1):131-139.
    薛昌颖,霍治国,李世奎,庄立伟.王素艳,侯婷婷,叶彩玲.北方冬小麦产量灾损风险类型的地理分布[J].应用生态学报,2005,16(4):620-625.
    杨邦杰,三茂新,裴志远.冬小麦冻害遥感监测[J].农业工程学报,2002.18(2):136-140.
    杨霏云.高学浩,钟琦,郑秋红.作物模型、遥感和地理信息系统在国外农业气象服务中的应用进展及启示[J].气象科技进展,2012.02(3):34-38.
    杨凤海,杨凤江,苏琦,等.基于ArcGIS的黑龙江省活动积温空间插值与计算[J].东北农业大学学报,2010,(01):61-66.
    杨美华,王铭文,刘蕴薰.东北区农业气候的模糊聚类及其区划[J].东北师大学报(自然科学版),1982,(03):109-115.
    杨太明,李敬明,何彬方.基于改进模糊综合评价的旱情评估模型[J].计算机应用,2012,32(z2):41-44.
    杨宇.多指标综合评价中赋权方法评析[J].统计与决策,2006,(13):17-19.
    姚佩珍.近40年东北夏季低温冷害的气候特征[A].黄荣辉.中国气候灾害的分布的变化[c].北京:中国气候灾害的分布的变化,1996:156-162.
    姚永慧,张百平,韩芳.基于MODIS地表温度的横断山区气温估算及其时空规律分析[J].地理学报.2011,66(7):917-927.
    殷剑敏,辜晓青,林春.寒露风灾害评估的空间分析模型研究[J].气象与减灾研究,2006,29(3):30-33,封2.
    袁福香,马树庆.东北地区水稻生产的风险评估[J].吉林气象,2004,2:31-34.
    袁淑杰,谷晓平,向红琼,等.基于GIS的贵州高原复杂地形下积温的精细空间分布[J].资源科学,2010,(12):2427-2432.
    张爱民,盛绍学,马晓群,杨太明,刘文俊.基于GIS技术的安徽省重大农业气象灾害测评系统总体设计[J].光电子技术与信息,1998,11(5):48-52.
    张丹,邱新法,曾燕,等.两类不同月平均气温空间推算方法的对比[J].气象,2010,36(12):80-85.
    张凤英.利用NOAA-9垂直探测资料反演地面气温的初步试验[J].气象.1987,13(11):23-27.
    张继权,李宁.主要气象灾害风险评价与管理的数量化方法及其应用[M].北京:北京师范大学出版社,2007.
    张继权,严登华,王春乙,刘兴朋,佟志军.辽西北地区农业干旱灾害风险评价与风险区划研究[J].防灾减灾工程学报,2012,(03):300-306.
    张继权,崔亮,佟志军,等.基于格网GIS与最优分割法的呼伦贝尔草原火灾风险预警阈值研究[J].系统工程理论实践,2013,33(3):770-775.
    张建敏,李世奎.农业气象灾害风险辨识模型[A].李世奎.中国农业灾害风险评价与对策[c].北京:气象出版社,1999:38-41.
    张建敏.农业气象灾害风险估算方法初探[A].李世奎.中国农业灾害风险评价与对策[c].北京:气象出版社,1999:183-189.
    张建平,王春乙,赵艳霞,等.基于作物模型的低温冷害对我国东北三省玉米产量影响评估[J].生态学报,2012,32(13):4132-4138.
    张金恒,朱德柱.基于“3S”技术构建农业灾害监测信息系统[J].灾害学,2002,17(2):76-81.
    张文智,宋庆英,宋庆艳.我国东北地区水稻低温冷害防治中的几个关系[J].现代农业,2004,(04):42-43.
    张晓煜,陈豫英,苏占胜,等.宁夏主要作物霜冻遥感监测研究[J].遥感技术与应用,2001,16(1):32-36.
    张旭东,秘晓东,辛吉武,等.基于DEM的农业指标温度分析——以甘肃河东地区为例[J].冰川冻土,2009,(05):880-884.
    张雪芬冬小麦晚霜冻害遥感监测技术与方法研究[博士学位论文].南京:南京信息工程大学,2005
    张雪芬,陈怀亮,郑有飞,邹春辉,陈东,付祥建.冬小麦冻害遥感监测应用研究[J].南京气象学院学报,2006,(1):94-100.
    张雪芬,余卫东,王春乙,等.WOFOST模型在冬小麦晚霜冻害评估中的应用[J].自然灾害学报,2006(S1).
    张友贵,芦淑贤,王雁,等.山西省北(中)部作物冷害的初步研究[J].山西气象,2002,(03):15-18.
    章名立,符宗斌,曾昭美,彭小峡,郭家林,董洪年,于通江.我国夏季东北地区低温与全球气温的特征[J].科学通报,1980,(19):893-895.
    郑景云.自然灾害粮食损失的评估模型及我国粮食灾损量的估计[J].中国农业气象,1994,(06):7-10.
    郑维忠,倪允琪.热带和中纬太平洋海温异常对东北夏季低温冷害影响的诊断分析研究[J].应用气象学报,1999,10(4):394.
    周楠,王德胜,常建平,吴应天.基于综合赋权聚类分析的岩石爆破性分区评价[J].岩石力学与工程学报,2013,(z1):2817-2824.
    周义.覃志豪,包刚GIDS空间插值法估算云下地表温度[J].遥感学报.2012,16(3):492-504.
    竺可桢.论我国气候的几个特点及其与粮食作物生产的关系[J].地理学报,1964,01:1-13.
    朱求安,张万昌,赵登忠.基于PRISM和泰森多边形的地形要素日降水量空间插值研究[J].地理科学.2005,25(2):233-238.
    祝善友,张桂欣,尹球,等.基于多源极轨气象卫星热红外数据的近地表气温反演研究[J].遥感技术与应用.2009.24(1):27-31.
    邹陈,陈冬花.吉春容,杨举芳,尹育红,李新建.石河子棉区棉花阶段延迟型冷害指标研究[J].沙漠与绿洲气象,2012,(5):46-50.
    祖世亨.黑龙江省农作物冷害气候区划(一)——冷害指标分析[J].黑龙江气象,1995.(3)42-45
    中国气象局.中国气象统计年鉴2002[K].北京:气象出版社.2004
    中国气象局.中国气象统计年鉴2003[K].北京:气象出版社.2005
    中国气象局.中国气象统计年鉴2006[K].北京:气象出版社.2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700