用户名: 密码: 验证码:
宁夏引黄灌区稻田氮素淋失特征与过程控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在提高氮肥利用效率和保证作物稳产高产条件下,减少农田氮素流失和对环境的压力,协调好粮食、资源和环境间的矛盾,是农业可持续发展面临的重要课题。宁夏引黄灌区水稻种植集约化程度高,因不合理施肥引起的农田面源污染较为严重。稻田淋洗损失是灌区氮素损失的主要途径,但稻田生态系统中氮素淋洗特征和过程控制技术研究尚未引起重视。因此,开展引黄灌区稻田退水污染特征与过程控制技术研究具有重要的科学价值和现实意义。
     2010-2012年,分别布置了两种类型试验。利用室内土柱模拟试验,研究了常规施肥(N_(300))、优化施肥(N_(240))和2倍施氮量(N_(600)、N_(480))处理条件下氮素在灌淤土中的迁移和淋失特征,并对不同形态氮素的累积淋失过程进行了拟合。同时,针对灌区稻田施肥环节存在的关键问题,从“源头合理减量和肥料高效利用”两个方面切入,对稻田氮素淋失过程控制技术进行了系统研究。利用田间小区试验,以常规施肥为对照,研究了缓释肥侧条施肥(低肥、中肥和高肥)、控释氮肥育苗箱全量施肥(中氮和高氮)和氮肥后移(3-4次)对水稻产量、氮肥利用率、氮素淋失和氮平衡的影响特征。取得以下主要研究结果:
     (1)土柱模拟试验表明:不同施肥处理下淋洗液中NO_3~--N浓度呈先升高后降低的趋势,淋洗峰值出现时间随施氮量增加后移。N-240、N_(300)、N_(480)和N_(600)处理NO_3~-N累积淋失量分别为68.37、86.22、146.26和170.68kg/hm~2,占施氮量的比例分别为28.49%、28.74%、30.47%和28.45%。NO_3~--N是氮素淋洗损失的主要形态。NO_3~--N累积淋失量Y_t与淋洗时间t(d)的拟合结果发现,N0、N_(240)和N_(300)处理以对数方程Y_t=a+blnt的拟合效果最好(R~2=0.897-0.915),随着施氮量增加,N_(480)和N_(600)处理则以幂函数方程lnY_t=a+blnt的拟合效果最好(R~2=0.917-0.913)。
     NH_4~+-N的淋失主要发生在淋洗前期。各施肥处理NH_4~+-N累积淋失量分别为18.60、25.07、37.77和45.96kg/hm~2,占施氮量的比例分别为7.75%、8.36%、7.87%和7.66%。NH_4~+-N累积淋失量Y_t与淋洗时间t(d)的拟合服从对数方程Y_t=a+blnt(R~2=0.898-0.966)。
     N_(240)、N_(300)、N_(480)和N_(600)处理总氮淋失量分别为94.53、128.02、222.06和268.6kg/hm~2,占施氮量的比例分别为39.38%、42.67%、46.26%和44.77%。施入灌淤土的氮肥有33.76%~46.26%通过淋洗损失。各施肥处理总氮累积淋失也都服从对数方程Y_t=a+blnt(R~2=0.927-0.975)。
     NO_3~--N淋失占总氮淋失量的62.40%~66.87%,NH_4~+-N占15.45%~16.55%,约20%左右的氮素以溶解性有机态的形式淋失。淋洗结束后,NO_3~--N残留高峰在0~20cm土层,NH_4~+-N主要累积在20~40cm土体中。
     (2)田间小区试验表明:与常规施肥相比,侧条施肥、育苗箱全量施肥和氮肥后移处理下,施氮量降低20%~60%,水稻产量没有显著降低,但显著提高了氮肥生产效率和利用率。侧条施肥高肥处理(N176kg/hm~2)氮肥偏生产力为49.3kg/kg,显著高于常规施肥处理的29.8kg/kg;育苗箱全量施肥高氮处理(N120kg/hm~2)和氮肥后移N_(240)/3(分3次施肥)处理的氮肥利用率分别比常规施肥处理提高了20.7%和8.0%。
     稻田氮素流失的关键控制期:以尿素为氮源,施肥后9d内是防止氮素流失的关键时期,侧条施肥处理30d内氮素都有流失的风险,育苗箱全量施肥田面水总氮浓度显著低于常规施肥处理,流失风险较低。
     常规施肥处理氮素的淋洗损失主要发生在水稻拔节期之前,侧条施肥、育苗箱全量施肥和氮肥后移处理淋失高峰后移至分蘖-开花期。NO_3~--N是氮素淋失的主要形态,常规施肥处理的NO_3~--N净淋失量占总氮流失量的66.3%。侧条施肥高肥处理、育苗箱全量施肥高氮处理和氮肥后移N240/3处理的总氮净淋失量分别比常规施肥处理减少了11.75、30.46和14.64kg/hm~2,淋失率分别比常规施肥处理降低了44.5%、51.8%和52.5%。侧条施肥高肥处理、育苗箱全量施肥高氮处理和氮肥后移N_(240)/3处理的总氮淋失量占施氮量的比例分别为7.93%、23.7%和6.74%,常规施肥处理平均比例为12.8%。
     (3)稻田氮素损失的途径分析:水稻收获后,土体中Nmin累积量显著低于播前水平,且向下淋洗趋势明显。常规施肥处理氮素表观损失量平均高达176.4kg/hm~2,表观损失率为57.7%;侧条施肥处理氮素表观损失率为19.6%~35.1%,育苗箱全量施肥各处理表观损失率为30.8%~35.1%,氮肥后移各处理表观损失率为32.2%~49.0%。以尿素和缓控释肥为氮源,氮素淋失量占表观损失量的比例分别为20%和50%左右,其余以氨挥发和反硝化途径损失。
     综合考虑水稻产量和环境效益,侧条施肥高肥处理、育苗箱全量施肥高氮处理、氮肥后移N240/3处理可作为减少稻田氮素流失的控制技术。
It is an important subject for the sustainable agriculture development to improve nitrogen fertilizeruse efficiency and ensure crop high-yield stability, and then reduce nitrogen loss from farmlands andnegative effect on the environment, and need to coordinate the conflict between food safety, resourcesand environment. Due to the high intensive cultivation of paddy rice in the Yellow River Irrigated Areaof Ningxia, it causes even severe non-point source pollution by unreasonable fertilization and irrigationin the farmlands. Nitrogen leaching losses is the main nitrogen loss pathway, however, these researcheson the characteristics of nitrogen leaching losses and mechanisms of process controlling are notconcerned very much in the paddy rice farmland ecosystem. Therefore, it has important scientific andrealistic significance to study on the characteristics of water pollution in paddy rice field and thecontrolling technology of pollutant in the Yellow River Irrigated Area of Ningxia.
     There were two different kind of experiments conducted from2010to2012. The soil columnsimulation experiment in a laboratory was used to study the characteristics of soil nitrogen movementand leaching in Irrigation Silting Soils with these treatments of conventional fertilization (N_(300)),optimize fertilization (N_(240)), and twice as much as the nitrogen fertilizer rates (N_(600), N_(480)), and theaccumulated leaching process of different form of nitrogen were fitted with the equations. The fieldin-situ experiment was carried out to study the effects of side bar fertilization (low fertilizer rate, middlefertilizer rate and high fertilizer rate), seeding-box fertilization (middle N rate and high N rate), andpostponing N application (topdressing by3~4times) in contrast to conventional fertilization on the riceyield, nitrogen fertilizer use efficiency, nitrogen leaching loss and apparent nitrogen balance. The mainresults are as following:
     (1) Soil column simulation experiment indicated that NO_3~--N concentrations in leachate withdifferent fertilization treatments were increased firstly and then decreased, the leaching peak arose delaywith nitrogen rates increasing. The accumulated NO_3~--N leaching amounts were68.37,86.22,146.26,and170.68kg/hm~2in treatments N_(240), N_(300), N_(480), and N_(600), which accounted for nitrogen fertilizerapplication rates by28.49%,28.74%,30.47%, and28.45%, respectively. NO_3~--N was the predominantnitrogen leaching form, and accumulated NO_3~--N leaching amount Y_tand leaching time t(d) can befitting use equation, which could be described by the logarithmic equation of Y_t=a+blnt in treatmentsN0, N_(240), and N_(300); with nitrogen application rate increasing, the power function equations of lnY_t=a+blnt were found in treatments N_(480)and N_(600).
     NH_4~+-N leaching loss occurred in the earlier period. The accumulated NH_4~+-N leaching amountwere18.60,25.07,37.77, and45.96kg/hm~2in treatments N_(240), N_(300), N_(480), and N_(600), which accountedfor nitrogen fertilizer application rates by7.75%,8.36%,7.87%, and7.66%, respectively. Theaccumulative NH_4~+-N leaching amount and leaching time t(d) was submit to the logarithmic equation ofY_t=a+blnt.
     Total N leaching losses were94.53,128.02,222.06, and268.6kg/hm~2in treatments N_(240), N_(300), N480, and N600, which accounted for nitrogen fertilizer application rates by39.38%,42.67%,46.26%,and44.77%, respectively. About33.76%~46.26%of fertilizer nitrogen applied in soil was lost byleaching. The accumulative total N leaching amount can be fitting use logarithmic equation of Y_t=a+blnt.
     NO_3~--N leaching amount accounted for total N was ranged from62.40%to66.87%, and NH_4~+-N tototal N was ranged from15.45%~16.55%, about20%of nitrogen leaching by dissolved organicnitrogen form. After the leaching experiment, NO_3~--N residual peak in the0~20cm soil, but NH_4~+-Nmainly accumulated in20~40cm soil.
     (2) The field in-site experiment showed that rice yields were not significantly decreased withtreatments side bar fertilization, seeding-box fertilization, and postponing N application comparing withtreatment conventional fertilization, however, there were20%~60%of nitrogen fertilizer rate reductionand significantly improved nitrogen fertilizer production and use efficiency.
     Partial factor productivity from applied nitrogen in treatment side bar fertilization of high fertilizerrate (N176kg/hm~2) was49.3kg/kg, which was significantly higher than29.8kg/kg in treatmentconventional fertilization. Nitrogen fertilizer use efficiency in treatments seeding-box fertilization ofhigh N rate (N120kg/hm~2) and postponing N application of N240/3(topdressing by3times) wasincreased by20.7%and8.0%in contrast to treatment conventional fertilization, respectively.
     The key control stage of nitrogen leaching in paddy rice field: as nitrogen source, during the first9days after urea fertilizer application is a critical period to prevent nitrogen leaching loss; there alwayshigh risk of leaching loss within30days after transplanting with the side bar fertilization treatment;however, the surface water total N concentration in treatment seeding-box fertilization was significantlylower than that in treatment side bar fertilization, and the risk of loss was lower.
     The nitrogen leaching mainly occurred before the rice jointing stage in treatment conventionalfertilization, but the leaching peak shift after the tiller-flowering stage in treatments side barfertilization, seeding-box fertilization, and postponing N application. NO_3~--N is the main form ofnitrogen leaching loss, NO_3~--N leaching amount accounted for total N by66.3%in treatmentconventional fertilization. Compared with treatment conventional fertilization, the net total N leachingamount were declined by11.75,30.46, and14.64kg/hm~2in treatments side bar fertilization,seeding-box fertilization, and postponing N application, the leaching ratio decreased by44.5%,51.8%and52.5%, respectively. Total N leaching amounts accounted for nitrogen fertilizer application ratewere7.93%,23.7%and6.74%in treatments side bar fertilization of high fertilizer rate (N176kg/hm~2)seeding-box fertilization of high N rate (N120kg/hm~2) and postponing N application of N240/3,respectively. The average total N leaching rates in treatment conventional fertilization was12.8%.
     (3) Nitrogen loss way in the paddy rice field: After the rice harvest, the soil Nminaccumulation wassignificantly lower than the level before transplanting and evidently leaching downward. The averageapparent loss amount was176.4kg/hm~2and was57.7%in treatment conventional fertilization, and theapparent nitrogen loss rate were19.6%~35.1%,30.8%~35.1%, and32.2%~49.0%in treatments sidebar fertilization, seeding-box fertilization, and postponing N application, respectively. Use urea as nitrogen source, the proportion of nitrogen leaching loss amount account for the apparent loss by about20%, use slow/control-released fertilizer as the nitrogen source, the proportion of nitrogen leaching lossamount account for the apparent loss of about50%, and the remaining losses by ammonia volatilizationand denitrification.
     Considering the rice yield and environmental benefits, these could be scientific process controltechnology for reduction of nitrogen losses in the paddy field with treatments side bar fertilization ofhigh N rate (N176kg/hm~2), seeding-box fertilization of high N rate (N120kg/hm~2), postponing Napplication of N240/3.
引文
1.蔡贵信,朱兆良.稻田中化肥氮的气态损失[J].土壤学报,1995,32(增刊):128-134.
    2.蔡祖聪.尿素和KNO3对水稻土无机氮转化过程和产物的影响.I.无机氮转化过程[J].土壤学报,2003,40(2):239-245.
    3.曹艳春,冯永忠,杨引禄,等.基于GIS的宁夏灌区农田污染源结构特征解析[J].生态学报,2011,31(12):3468-3477.
    4.柴田义彦.水稻侧条施肥技术的概要[J].盐碱地利用,1986,6:38-47.
    5.陈建生,徐培智,唐拴虎,等.一次基施水稻控释肥技术的养分利用率及增产效果[J].应用生态学报,2005,16(10):1868–1871.
    6.陈伟伟,李强坤,胡亚伟,等.青铜峡灌区水稻田三氮变化特征试验研究[J].农业环境科学学报,2010,29(4):790-794.
    7.陈新平,张福锁.小麦-玉米轮作体系养分资源综合管理理论与实践[M].北京:中国农业大学出版社,2006.
    8.大山信雄.水稻侧条施肥在东北地区的效果[J].延边农学院学报,1988,1:140-144.
    9.杜军,杨培岭,李云开,等.不同灌期对农田氮素迁移及面源污染产生的影响[J].农业工程学报,2011,27(1):66-74.
    10.符建荣.控释氮肥对水稻的增产效应及提高肥料利用率的研究[J].植物营养与肥料学报,2001,7(2):145-152.
    11.高晓宇,韩晓日,刘宁,等.长期定位施肥对棕壤有机氮组分及剖面分布的影响[J].中国农业科学,2009,42(8):2820-2827.
    12.郭晞明,隋鹏举,刘亮,等.日本水稻控释肥应用效果试验[J].山东农业科学,2011,8:78–80.
    13.韩瑞琳.水稻侧条施肥技术[J].中国农学通报,1992,8(2):40-41.
    14.何绪生,李素霞,李旭辉,等.控效肥料的研究进展[J].植物营养与肥料学报,1998,4(2):97-106.
    15.何绪生,廖宗文,黄培钊,等.保水缓/控释肥料的研究进展[J].农业工程学报,2006,22(5):184-190.
    16.贺帆,黄见良,崔克辉,等.实时实地氮肥管理对水稻产量和稻米品质的影响[J].中国农业科学,2007,40(1):123-132.
    17.郝芳华,欧阳威,李鹏,等.河套灌区不同灌季土壤氮素时空分布特征分析[J].环境科学学报,2008,28(5):845-852.
    18.侯红乾,刘秀梅,刘光荣,等.有机无机肥配施比例对红壤稻田水稻产量和土壤肥力的影响[J].中国农业科学,2011,44(3):516-523.
    19.纪雄辉,郑圣先,鲁艳红,等.施用尿素和控释氮肥的双季稻田表层水氮素动态及其径流损失规律[J].中国农业科学,2006,39(12):2521-2530.
    20.纪雄辉,郑圣先,聂军,等.稻田土壤上控释氮肥的氮素利用率与硝态氮淋溶损失[J].土壤通报2007,38(3):467-471.
    21.纪雄辉,郑圣先,石丽红,等.洞庭湖区不同稻田土壤及施肥对养分淋溶损失的影响[J].土壤学报,2008,145(14):663-671.
    22.纪雄辉.洞庭湖区典型稻田土壤养分流失规律及流域模拟研究[D].长沙:湖南农业大学博士学位论文,2007.
    23.姜丽娜,敬岩,符建荣,等.有机肥提升高产稻田生产力及土壤生物活性作用研究[J].土壤通报,2010,41(4):892-897.
    24.金洁,杨京平.从水环境角度探析农田氮素流失及控制对策[J].应用生态学报,2005,16(3):579–582.
    25.巨晓棠,张福锁.关于氮肥利用率的思考[J].生态环境,2003,12(2):192-197.
    26.李成芳,曹凑贵,汪金平,等.稻鸭、稻鱼共作生态系统土壤溶解性有机N的动态和损失[J].生态学报,2009,29(5):2541-2550.
    27.李冬初,徐明岗,李菊梅,等.化肥有机肥配合施用下双季稻田氮素形态变化[J].植物营养与肥料学报,2009,15(2):303-310.
    28.李昊儒,梅旭荣,郝卫平,等.山东省夏玉米侧条施肥技术应用研究[J].中国农学通报2012,28(27):130-133.
    29.李菊梅,徐明岗,秦道珠,等.有机肥无机肥配施对稻田氨挥发和水稻产量的影响[J].植物营养与肥料学报,2005,11(1):51-56.
    30.李强坤,胡亚伟,李怀恩.农业非点源污染物在排水沟渠中的模拟与应用[J].环境科学,2011,32(5):1273-1278.
    31.李强坤,胡亚伟,罗良国.青铜峡灌区典型排水沟水污特征解析[J].环境科学,2012,33(5):1579-1586.
    32.李强坤,胡亚伟,孙娟,等.不同水肥条件下农业非点源田间产污强度[J].农业工程学报,2011,27(2):96-102.
    33.李强坤,李怀恩,胡亚伟,等.青铜峡灌区氮素流失试验研究[J].农业环境科学学报,2008,27(2):683–686.
    34.李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题[M].南昌:江西科技出版社,1998.
    35.李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失[J].应用生态学报,2000,11(2):240-242.
    36.李文军,夏永秋,杨晓云,等.施氮和肥料添加剂对水稻产量、氮素吸收转运及利用的影响[J].应用生态学报,2011,22(9):2331–2336.
    37.李宗新,董树亭,王空军,等.不同施肥条件下玉米田土壤养分淋溶规律的原位研究[J].应用生态学报,2008,19(1):65-70.
    38.梁新强,陈英旭,和苗苗,等.近沟渠稻田氮素多维通量模型开发及验证[J].浙江大学学报(农业与生命科学版),2007,33(6):671-676.
    39.梁新强,陈英旭,李华,等.雨强及施肥降雨间隔对油菜田氮素径流流失的影响[J].水土保持学报,2006,20(6):14-17.
    40.林清火,罗微,屈明,等.尿素在砖红壤中的淋失特征Ⅱ-NO-3-N的淋失[J].农业环境科学学报,2005,24(4):638-642.
    41.刘保存,徐明秋,邹国元,等.缓控释肥料理论与实践[M].中国农业科学技术出版社,2009,51-53.
    42.刘国强,杨世琦.宁夏引黄灌区农田退水污染现状分析[J].灌溉排水学报,2010,29(1):104-108.
    43.刘勤.宁夏引黄灌区节水农业技术模式研究[D].杨凌:西北农林科技大学硕士论文,2009.
    44.刘汝亮,李友宏,张爱平,等.育秧箱全量施肥对水稻产量和氮素流失的影响[J].应用生态学报,2012,23(7):1853-1860.
    45.刘汝亮,李友宏,张爱平,等.氮肥后移对引黄灌区水稻产量和氮素淋溶损失的影响[J].水土保持学报,2012,26(2):16-20.
    46.刘汝亮,李友宏,马世铭,等.供氮水平对引黄灌区春小麦氮平衡及产量和加工品质的影响[J].干旱地区农业研究,2011,29(4):94–98.
    47.刘汝亮,赵天成,李友宏,等.土壤淋洗溶液提取装置.中国,200920222111.1.2010-08-18.
    48.刘桃菊,唐建军,江绍琳,等.氮肥后移对超级稻扬两优6号产量及氮肥利用率的影响[J].东北农业大学学报,2012,43(7):57-60.
    49.刘忠翰,彭江燕.污水土地处理中水田氮素的迁移特征[J].土壤学报,2000,37(3):428-431.
    50.穆鑫,吕谋超,温随群,等.宁夏引黄灌区农田退水回灌对土壤盐分影响的试验研究[J].灌溉排水学报,2011,30(1):76-79.
    51.南方红壤退化机制与防治措施研究专题组.中国红壤退化机制与防治[M].北京:中国农业出版社,1999.
    52.宁夏回族自治区水文水资源勘测局.宁夏回族自治区水资源公报[M].宁夏回族自治区水利厅,2008.
    53.宁夏统计局.宁夏统计年鉴[M].北京:中国统计出版社,2008.
    54.裴雪霞,王秀斌,何萍,等.氮肥后移对土壤氮素供应和冬小麦氮素吸收利用的影响[J].植物营养与肥料学报,2009,5(1):9-15.
    55.邱卫国,唐浩,王超.稻作期氮素渗漏流失特性及控制对策研究[J].农业环境科学学报,2005,24(增刊):99-103.
    56.邵蕾,张民,王丽霞.不同控释肥类型及施肥方式对肥料利用率和氮素平衡的影响[J].水土保持学报,2006,20(6):115-119.
    57.邵晓梅,严昌荣.基于sufer7.0的黄河流域不同旱作类型区土壤水分动态变化的比较[J].自然资源学报,20(6):843-849.
    58.石玉,于振文.施氮量及底追比例对小麦产量土壤硝态氮含量和氮平衡的影响[J].生态学报,2006,26(11):3661-3669.
    59.史海滨.灌溉和排工程[M].北京:水利出版社,2005.
    60.司友斌,王慎强,陈怀满.农田氮磷的流失与水体富营养化[J].土壤,2000(4):188-193.
    61.宋歌,孙波.县域尺度稻麦轮作农田土壤无机氮的时空变化[J].农业环境科学学报,2008,28(2):636-642.
    62.苏成国,尹斌,朱兆良,等.稻田氮肥的氨挥发损失与稻季大气氮的湿沉降[J].应用生态学报,2003,14(11),1884-1888.
    63.苏胜齐,王正银,董燕,等.缓释复合肥条件下覆盖旱作对水稻氮素利用和稻米品质的影响[J].农业工程学报,2005,21(3):47-50.
    64.苏胜齐,王正银,张敏,等.缓释复合肥与覆膜旱作对水稻氮素营养的效应研究[J].水土保持学报,2006,20(1):44-48.
    65.唐拴虎,杨少海,陈建生,等.水稻一次性施用控释肥料增产机理探讨[J].中国农业科学,2006,39(12):2511-252.
    66.田玉华,贺发云,尹斌,等.不同氮磷配合下稻田田面水的氮磷动态变化研究[J].土壤,2006,38(6):727-733.
    67.田玉华,尹斌,贺发云,等.太湖地区水稻季氮肥的作物回收和损失研究[J].植物营养与肥料学报,2009,15(1):55–61.
    68.汪华,杨京平,金洁,等.不同氮素用量对高肥力稻田水稻-土壤-水体氮素变化及环境影响分析[J].水土保持学报,2006,20(1):50-54.
    69.汪文霞,周建斌,严德翼,等.黄土区不同类型土壤微生物量碳、氮和可溶性有机碳、氮的含量及其关系[J].水土保持学报,2006,20(6):103-107.
    70.王光火,张奇春,黄昌勇.提高水稻氮肥利用率、控制氮肥污染的新途径-SSNM[J].浙江大学学报(农业与生命科学版),2003,1:24-27.
    71.王静,郭熙盛,王允青,等.巢湖流域不同耕作和施肥方式下农田养分径流流失特征[J].水土保持学报,2012,26(1):6-11.
    72.王强,杨京平,陈俊,等.非完全淹水条件下稻田表面水体中三氮的动态变化特征研究[J].应用生态学报,2004,15(7):1182–1186.
    73.王小治,高人,朱建国,等.稻季施用不同尿素品种的氮素径流和淋溶损失[J].中国环境科学,2004,24:600–604.
    74.王秀斌,周卫,梁国庆,等.优化施肥下华北冬小麦/夏玉米轮作体系农田氨挥发特征[J].植物营养与肥料学报,2009,15(2):262-268.
    75.王永生,黄剑,杨世琦.宁夏黄灌区稻秆还田对硝态氮流失量的影响[J].农业环境科学学报,2011,30(4):697-703.
    76.王永生,杨世琦.宁夏黄灌区稻田冬春休闲期硝态氮淋失量[J].生态学报,2011,31(16):4653–4660.
    77.王智超.农田土壤硝态氮累积及干湿交替过程的影响[D].北京:中国农业大学硕士学位论文,2006.
    78.武美燕,蒿若超,田小海,等.添加纳米碳缓释肥料对超级杂交稻产量和氮肥利用率的影响[J].杂交水稻,2010,25(4):86-90.
    79.夏晓亮,石祖梁,荆奇,等.氮肥运筹对稻茬小麦土壤硝态氮含量时空分布和氮素利用的影响[J].土壤学报,2010,47(3):490-496.
    80.谢新民,装源生,秦大庸,等.二十一世纪初期宁夏所面临的挑战与对策[J].水利规划设计,2001,2:19-26.
    81.邢承华,章永松,林咸永.饱和铵贮库施肥法对降低土壤氮素挥发和淋失的作用研究[J].浙江大学学报(农业与生命科学版),2006,32(2):155-161.
    82.徐明岗,李冬初,李菊梅,等.化肥有机肥配施对水稻养分吸收和产量的影响[J].中国农业科学,2005,41(10):3133-3139.
    83.徐明岗,李菊梅,李东初,等.控释氮肥对双季水稻生长和氮肥利用率的影响[J].植物营养与肥料学报,2009,15(5):1010–1015.
    84.徐绍辉,刘建立.估计不同质地土壤水分特征曲线的分形方法[J].水利学报,2001,1:78-82.
    85.许秀成.包裹型缓释/控制释放肥料专题报告.第三报:包膜(包裹)型控制释放肥料各国研究进展[J].磷肥与复肥,2001,16(4):4-8.
    86.闫莉,黄锦辉,张建军,等.宁夏农灌退水对黄河水质的影响研究[J].人民黄河,2007,29(3):35-36.
    87.颜廷梅,杨林章,单艳红.稻田土壤养分的迁移规律及其环境风险[J].土壤学报,2008,45(6):1189-1193.
    88.晏娟,尹斌,张绍林,等.不同施氮量对水稻氮素吸收与分配的影响[J].植物营养与肥料学报,2008,14(5):835-839.
    89.杨俊刚,徐凯,佟二健,等.控释肥料与普通氮肥混施对春白菜产量、品质和氮素损失的影响[J].应用生态学报,2010,21(12):3147–3153.
    90.杨淑静.宁夏灌区农业氮磷流失污染负荷估算研究[D].北京:中国农业科学院硕士学位论文,2009.
    91.杨淑静,张爱平,杨正礼,等.宁夏灌区农业非点源污染负荷估算方法初探[J].中国农业科学,2009,42(11):3947-3955.
    92.杨引禄,冯永忠,杨世琦,等.宁夏黄河灌区农业非点源污染损失估算[J].干旱地区农业研究,2011,29(1):242-246.
    93.易军.宁夏引黄灌区稻田氮素迁移特征研究[D].北京:中国农业科学院硕士学位论文,2011.
    94.易军,张晴雯,王明.宁夏黄灌区灌淤土硝态氮运移规律研究[J].农业环境科学学报2011,30(10):2046-2053.
    95.易军,张晴雯,杨正礼.宁夏引黄灌区稻田氮素浓度变化与迁移特征[J].中国生态农业学报,2011,19(4):771-777.
    96.易琼,赵士诚,张秀芝,等.实时实地氮素管理对水稻产量和氮素吸收利用的影响[J].植物营养与肥料学报,2012,18(4):777-785.
    97.尹娟,费良,田军仓,等.水稻田中氮肥损失研究进展[J].农业工程学学报,2005,21(6):189-191.
    98.尹娟,费良军,勉韶平.宁夏银南灌区稻田控制排水条件下氮素淋失的研究[J].西北农林科技大学学报(自然科学版),2006,34(1):108-112.
    99.俞巧钢,陈英旭,张秋玲,等. DMPP对氮素垂直迁移转化及淋溶损失的影响[J].环境科学,2007,28(4):813–818.
    100.袁新民,同延安,杨学云,等.灌溉与降水对土壤NO-3-N累积的影响[J].水土保持学报,2000,14(3):71-74.
    101.曾曙才,吴启堂.华南赤红壤无机复合肥氮磷淋失特征[J].应用生态学报,2007,18(5):1015-1020.
    102.翟军海.控释/缓释肥料研究概述[J].干旱地区农业研究,2002,20(1):45-48.
    103.张爱平,杨世琦,张庆忠,等.宁夏灌区农田退水污染形成原因及防治对策[J].中国生态农业学报,2008,16(4):1037-1042.
    104.张爱平,杨世琦,易军,等.宁夏引黄灌区水体污染现状及污染源解析[J].中国生态农业学报,2010,18(6):1295-1301.
    105.张爱平.宁夏黄灌区稻田退水氮磷污染特征研究[D].北京:中国农业科学院博士学位论文,2009.
    106.张朝,车玉萍,李忠佩.水稻土模拟土柱中肥料氮素的迁移转化特征[J].应用生态学报,2011,22(12):3236-3242.
    107.张福锁,崔振岭,王激清,等.中国土壤和植物养分管理现状与改进策略[J].植物学通报,2007,24(6):687-694.
    108.张福锁.我国肥料产业与科学施肥战略研究报告[M].北京:中国农业大学出版社,2008.
    109.张惠,杨正礼,罗良国,等.黄河上游灌区稻田N2O排放特征[J].生态学报,2011,31(21):6606-6615.
    110.张惠.黄河上游灌区稻田系统氮素气态损失及平衡研究[D].北京:中国农业科学院博士学位论文,2011.
    111.张静,王德建.太湖地区乌栅土稻田氨挥发损失的研究[J].中国生态农业学报,2007,11(15):84-87.
    112.中华人民共和国环境保护部、中华人民共和国国家统计局、中华人民共和国农业部.第一次全国污染源普查公报[M].北京:2010.
    113.张晴雯,张惠,易军,等.青铜峡灌区水稻田化肥氮去向研究[J].环境科学学报,2010,30(8):1707-1714.
    114.张晴雯,杜春祥,李晓伟,等.控释肥条件下沿南四湖农田水稻吸氮特征[J].环境科学,2011,32(7):1908–1915.
    115.张树兰,同延安,梁东丽,等.氮肥用量及施用时间对土体中硝态氮移动的影响[J].土壤学报,2004,41(2):270-277.
    116.张维理,田哲旭,张宁,等.我国北方农田氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87.
    117.张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策.Ⅰ.21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008-1033.
    118.张小莉,孟琳,王秋君,等.不同有机无机复混肥对水稻产量和氮素利用率的影响[J].应用生态学报,2009,20(3):624-630.
    119.张学军,赵营,陈晓群,等.氮肥施用量对设施番茄氮素利用及土壤NO3--N累积的影响[J].生态学报,2007,27(9):3761-3768.
    120.张学军,赵营,陈晓群,等.滴灌施肥中施氮量对两年蔬菜产量、氮素平衡及土壤硝态氮累积的影响[J].中国农业科学,2007,40(11):2535-2545.
    121.张学军,赵营,任福聪,等.滴灌条件下施氮量对黄瓜-番茄种植体系中土体NO-3-N淋洗的影响[J].干旱地区农业研究,2007,25(4):157-162.
    122.赵满兴, Kalbitz K,周建斌.黄土区几种土壤培养过程中溶解性有机氮的变化及其与土壤矿化氮的关系[J].水土保持学报,2008,22(4):122-127.
    123.赵满兴,周建斌,陈竹君,等.有机肥中可溶性有机碳、氮含量及其特性[J].生态学报,2007,27(1):397-403.
    124.赵士诚,裴雪霞,何萍,等.氮肥减量后移对土壤氮素供应和夏玉米氮素吸收利用的影响[J].植物营养与肥料学报,2010,16(2):19-25.
    125.赵营,同延安,张树兰,等.氮磷钾施用量对灌淤土水稻产量及肥料利用率的影响[J].西北农业学报,2010,19(2):118-121.
    126.赵营,王世荣,郭鑫年,等.施肥对水旱轮作作物产量、氮素吸收与土壤肥力的影响[J].中国土壤与肥料,2012,17(6):24-27.
    127.赵营,张学军,罗健航,等.施肥对设施番茄-黄瓜养分利用与土壤氮素淋失的影响[J].植物营养与肥料学报,2011,17(2):374-383.
    128.赵营,周涛,郭鑫年,等.优化施肥对春小麦产量、氮素利用及平衡的影响[J].干旱地区农业研究,2011,29(6):119-124.
    129.中华人民共和国国家统计局.2009年中国统计年鉴[M].北京:中国统计出版社,2010.
    130.钟雪梅,朱义年,刘杰,等.竹炭包膜对肥料氮淋溶和有效性的影响[J].农业环境科学学报2006,25(增刊):154-157
    131.朱涛.宁夏引黄灌区退水量影响因素及预测方法研究[D].西安:西安理工大学硕士论文,2010.
    132.朱兆良,范晓晖,孙永,等.太湖地区水稻土上稻季氮素循环及其环境效应[J].作物研究,2004,4:187-191.
    133.朱兆良,文启孝.中国土壤氮素-农田生态系统中化肥氮的去向和氮素管理[M].南京:江苏科学技术出版社,1992.
    134.朱兆良,张福锁.主要农田生态系统氮素行为与氮肥高效利用的基础研究[M].北京:科学出版社,2010.
    135.朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    136.朱兆良.中国土壤氮素[J].南京:江苏出版社,1992.
    137. Addiscott TM, Whitmore AP, Powlson DS. Farming, fertilizers and the nitrate problem[M]. CABInternational, Wallingford,1991.
    138. Anonym. Fertilized to death [J]. Nature,2003,425:894-895.
    139. Bahman E, Gilley JE. Phosphorus and nitrogen in runoff following beef cattle manure or compostapplication [J]. J. Environment Qua1.,1999,28:1201-1210.
    140. Baligar VC, Fageria NK, He ZL. Nutrient use efficiency in plants[J]. Cumm Soil Sci Plant Anal,2001,32(8):921-950.
    141. Bartley R, Speirs WJ, Ellis TW, et al.. A review of sediment and nutrient concentration data fromAustralia for use in catchment water quality models[J]. Mar Pollut Bull.,2012,65(4-9):101-116.
    142. Blumfield TJ, Xu ZH. Impact of harvest residuals on soil mineral nitrogen dynamics followingclear fall harvesting of a hop pine plantation in subtropical Australia[J]. Forest Ecology andManagement,2003,179(1-3):55-67.
    143. Bremner JM. Organic forms of nitrogen. Black C.A.(ed.), Methods of soil analysis[M].1965.
    144. Cameron KC, Harrison DF, Smith NP. A method to prevent edge flow in undisturbed soil cores andlysimeters[J]. Aus J Soil Res,1990,28:879-886.
    145. Chen CR, Xu ZH, Zhang SL, et al.. Soluble organic nitrogen pool in forest soils of SubtropicalAustralia[J]. Plant and Soil,2005,277:285-297.
    146. Chen H, Teng Y, Wang J. Load estimation and source apportionment of nonpoint source nitrogenand phosphorus based on integrated application of SLURP model, ECM, and RUSLE: a case studyin the Jinjiang River, China [J]. Environ Monit Assess,2013,185(2):2009-2021.
    147. Clough TJ, Ledgard SF, SPROSEN MS, et al.. Fate of15N labeled urine on four soil types[J]. Plantand Soil,1998,199(2):195-203.
    148. Cruz MC, Cacciabue DG, Gil JF, et al.. The impact of point source pollution on shallowgroundwater used for human consumption in a threshold country[J]. J Environ Monit,2012,14(9):2338-2349.
    149. Cui ZL, Zhang FS, Chen XP, et al.. On-farm estimation of indigenous nitrogen supply for sitespecific nitrogen management in the North China plain [J]. NutrCycl. Agroecosyst.,2008,81:37-47.
    150. Cui ZL, Zhang FS, Chen XP, et al.. On-farm evaluation of an in-season nitrogen managementstrategy based on soil Nmintest [J]. Field Crops Research,2008,105:48-55.
    151. Daniel TC, Sharpley DR, Edwards R, et al.. Minimizing surface water eutrophication fromagriculture by phosphorous management[J]. J. Soil Water Conserv,1994,49:30-38.
    152. Dejoux JF, Recous S, Meynard JM, et al.. The fate of nitrogen from winter-frozen rapeseed leaves:mineralization, fluxes to the environment and uptake by rapeseed crop in spring[J]. Plant and Soil,2000,218(12):257-272.
    153. Ding XW, Shen ZY. Spatial distribution and pollution source identification of agriculturalnon-point source pollution in Fujiang watershed[J]. Environment science,2012,33(11):4025-4032.
    154. Duan Y, Zhang Y, Ye L, et al.. Responses of rice cultivars with different nitrogen use efficiency toenhanced nitrate nutrition [J]. Annals of botany,2007,9:1153-1160.
    155. Emili LA, Greene RP. Modeling agricultural nonpoint source pollution using a geographicinformation system approach[J]. Environ Manage.,2013,51(1):70-95.
    156. Emteryd O, Lu DQ, Nykvist N. Nitrate in soil profiles and nitrate pollution of drink water in theloss region of China[J]. Ambio,1998,27:441–443
    157. Fan XH, Song Y S, Lin DX, et al.. Ammonia volatilization losses and15N balance from ureaapplied to rice on a paddy soil[J]. Journal of Environmental Science,2006,18:299–303.
    158. FAO, Statistical databases, Food and Agriculture Organization (FAO) of the United Nations[J].2001.
    159. Fujisawa E, Kobayashi A, Hanyu T. A mechanism of nutrient release from resin-coated fertilizersand its estimation by kinetic methods,5: Effect of soil moisture level on release rates fromresin-coated mixed fertilizer[J]. Japanese Journal of Soil Science and Plant Nutrition,1998,69:582–589.
    160. Galloway JN, Townsend AR, Erisman JW, et al.. Transformation of the nitrogen cycle: Recent,trends, questions, and potential solutions [J]. Science,2008,320:889-892.
    161. Guo RY, Nendel C, Rahn C, et al.. Tracking nitrogen losses in a greenhouse crop rotationexperiment in North China using the EU-Rotate N simulation model[J]. Environmental Pollution,2010,158:2218-2229.
    162. He CE, Wang X, Liu XJ, et al. Total nitrogen deposition at key growing stages of maize and wheatas affected by pot surface area and crop variety[J]. Plant. Soil,2011,339:137-145.
    163. Houba VJG. Comparison of soil extractions by0.01M CaCl2, by EUF and some conventionalextraction procedures [J]. Plant and Soil,1986,96:433-437.
    164. Huang L, Ban J, Han YT, et al. Multi-angle Indicators System of Non-point Pollution SourceAssessment in Rural Areas: A Case Study Near Taihu Lake[J]. Environ Manage,2013,28(1):13-22.
    165. Jansson PE, Karlberg L. Coupled heat and mass transfer model for soil-plant-atmospheresystems[M].2001, Royal Institute of Technology, Dept of Civil and Environment Engineering,Stockholm.
    166. Jinno Y, Honna T. Nitrate leaching and nitrogen balance in turf grass field by lysimeters[J]. Journalof soil and fertilizer institute in Japan,1999,70(3):297-305.
    167. Joo M, Raymond MA, McNeil VH, et al.. Estimates of sediment and nutrient loads in10majorcatchments draining to the Great Barrier Reef during2006-2009[J]. Mar Pollut Bull.,2012,65(9):150-166.
    168. Ju XT, Liu Xj, Zhang FS, et al.. Accumulation and movement of NO-3-N in soil profile in winterwheat-summer maize rotation system[J]. Acta Pedologica Sinica,2003,40:538-546.
    169. Ju XT, Xing GX, Chen XP, et al.. Reducing environment risk by improving N management inintensive Chinese agricultural systems[J]. PNAS,2009,106:3041-3046.
    170. Ju XT, Kou CL, Zhang FS, etal.. Nitrogen balance and ground water nitrate contamination:Comparison among three intensive cropping systems on the North China Plain[J]. EnvironmentalPollution,2006,143:117-125.
    171. Juahir H, Zain SM, Yusoff MK,et al.. Spatial water quality assessment of Langat River Basin(Malaysia) using environ metrics chines[J]. Environ Monit Assess.,2011,173(4):625-641.
    172. Kalbitz K, Solinger S, Park JH, et al.. Controls on the dynamics of dissolved organic matter in soil:A review [J]. Soil Science,2000,165(4):277-304.
    173. Kim JH, Guo XJ, Park HS. Comparison study of the effects of temperature and free ammoniaconcentration on nitrification and nitrite accumulation[J]. Process Biochemistry,2008,43:154-160.
    174. Kroon FJ, Kuhnert PM, Henderson BL, et al.. River loads of suspended solids, nitrogen,phosphorus and herbicides delivered to the Great Barrier Reef lagoon[J]. Mar Pollut Bull,2012,65(9):167-181.
    175. Legg JO, Meisinger JJ. Soil nitrogen budgets and Nitrogen in agricultural soil[J]. Agronomoy,1982,22:503-566.
    176. Li C, Frolking S, Frolking TA. Modeling carbon biogeochemistry in agricultural soils[J]. GlobalBiogeochemical Cycles,1994,8:237-254.
    177. Liu GD, Li YC, Alva AK. Moisture Quotients for Ammonia Volatilization from Four Soils inPotato Production Regions [J]. Water Air Soil Pollution,2007,183:115-120.
    178. Maeda M, Zhao BZ, Ozaki Y, et al.. Nitrate leaching in an and soil treated with different types offertilizers [J]. Environmental Pollution,2003,121:477-487.
    179. Matlou MC, Haynes RJ. Soluble organic matter and microbial biomass C and N in soils underpasture and arable management and the leaching of organic C, N and nitrate in a lysimeter study[J].Appl. Soil Ecol.,2006,34:160-167.
    180. Merseburger G, MartíE, Sabater F. Point-source effects on N and P uptake in a forested and anagricultural Mediterranean streams[J]. Sci Total Environ,2011,409(5):957-967.
    181. McNeal BL, Dratt PF. Leaching of nitrogen from soils, on Management of nitrogen in IrrigatedAgriculture[J]. University of California. Riverside,1978:195-230.
    182. Min J, Shi WM, Xing GX, et al.. Effects of a catch crop and reduced nitrogen fertilization onnitrogen leaching in greenhouse vegetable production systems[J]. Nutrient Cycling in Agroecossytems,2011,91(1):31-39.
    183. Moller K, Stinner W, Leithold G. Growth, composition, biological N2fixation and nutrient uptakeof a leguminous cover crop mixture and the effect of their removal on field nitrogen balances andnitrate leaching risk[J]. Nutr. Cycl. Agroeco-system,2008,82:233-249.
    184. Mouri G, Takizawa S, Oki T. Spatial and temporal variation in nutrient parameters in stream waterin a rural-urban catchment, Shikoku, Japan: effects of land cover and human impact[J]. J EnvironManage,2011,92(7):1837-1848.
    185. Murphy DV, Macdonald AJ, Stockdale EA, et al.. Soluble organic nitrogen in agricultural soils[J].BiolFertil Soils,2000,30:374-387.
    186. Owens LB, Edwards WM, van Keuren RW. Nitrate leaching from grassed lysimeters treated withammonium nitrate or slow-release nitrogen fertilizer[J]. Journal of Environment Quality,1999,28:1810–1816.
    187. Ouyang W, Hao FH, Wang XL, et al.. Nonpoint source pollution responses simulation forconversion cropland to forest in mountains by SWAT in China[J]. Environ Manage,2008,41(1):79-89.
    188. Ouyang W, Huang H, Hao F, et al.. Evaluating spatial interaction of soil property with non-pointsource pollution at watershed scale: the phosphorus indicator in Northeast China[J]. Sci TotalEnviron,2012,432:412-421.
    189. Perakis SS, Hedin LO. Nitrogen loss from unpolluted South American forests mainly via dissolvedorganic compounds[J]. Nature,2002,415:416-419.
    190. Purandara BK, Varadarajan N, Venkatesh B, et al.. Surface water quality evaluation and modelingof Ghataprabha River, Karnataka, India[J]. Environ Monit Assess,2012,184(3):1371-1378.
    191. Qiu SJ, Peng PQ, Li L, et al.. Effects of applied urea and straw on various nitrogen fractions in twoChinese paddy soils with differing clay mineralogy [J]. Biol Fertil Soils,2012,48:161-172.
    192. Rodgher S, de Azevedo H, Ferrari CR, et al.. Evaluation of surface water quality in aquatic bodiesunder the influence of uranium mining(MG, Brazil)[J]. Environ Monit Assess.,2013,185(3):2395-2406.
    193. Rúa-Gómez PC, Püttmann W. Impact of wastewater treatment plant discharge of lidocaine,tramadol, venlafaxine and their metabolites on the quality of surface waters and groundwater[J]. JEnviron Monit,2012,14(5):1391-1399.
    194. Serna M D, Bauls J, Quiones A, et al.. Evaluation of3,4-dimethylpyrazole phosphate as anitrification in habit or in a Citrus cultivated soil[J]. Bio1.Fertil.Soils,2001,32:41-46.
    195. Shen SM. Contribution of nitrogen fertilizer to the development of agriculture and its loss inChina[J]. Actapedol sin,2002,39(supp.):12-25.
    196. Shen Z, Chen L, Ding X, et al.. Long-term variation (1960-2003) and causal factors ofnon-point-source nitrogen and phosphorus in the upper reach of the Yangtze River[J]. J HazardMater.,2013,25(1):45-56.
    197. Shen Z, Hong Q, Yu H, et al.. Parameter uncertainty analysis of the non-point source pollution inthe Daning River watershed of the Three Gorges Reservoir Region[J]. China. Sci Total Environ.,2008,405(3):195-205.
    198. Sheri C, Deanna O, Carl C, et al.. Winter wheat and maize response to urea ammonium nitrate anda new urea formaldehyde polymer fertilizer [J]. Agron. J.,2007,99:1645-1653.
    199. Shindo H, Nishio T. Immobilization and demineralization of N following addition of wheat strawinto soil: determination of gross N transformation rates by15N-ammonium isotope dilutiontechnique[J]. Soil Biology&Biochemistry,2005,37:425-432.
    200. Shrestha RK, Ladha JK. Nitrate in groundwater and integration of nitrogen-catch crop inrice-sweet pepper cropping system[J]. Soil Science Society of America Journal,1998,62(6):1610-1619.
    201. Silva RG, Cmeron KC, Di HJ, et al.. Effect of macrospore flow on the transport of surface appliedcow urine through a soil profile[J]. Australian J of Soil Res,2000,38:13-23.
    202. Simunek J, Sejna M, Van Genuchten M Th. The Hydrous Software package for simulation theone-dimensional movement of water, heat and multiple solutes in variably-saturated media[M].U.S.salinity laboratory.
    203. Sogbedji JM, Vanes HM, Hutson JL. N fate and transport under variable cropping history andfertilizer rate on loamy sand and clay loam soils.I. calibration of the LEACHMN model[J]. Plantand Soil,2001,229(1):57-70.
    204. Solomon A, Kazuyuki I. Comparative Effects of Application of Coated and Non Coated Urea inClayey and Sandy Paddy Soil Microcosms Examined by the15N Tracer Technique [J]. Soil Sci.Plant Nutr.,2004,50(2):205-213.
    205. Stites W, Krafft GJ. Groundwater quality beneath irrigated vegetable fields in a north-central USsand plain[J]. Journal of Environ-mental Quality,2000,29(5):1509-1517.
    206. Tian YH, Yin B, Yang LZ, et al.. Nitrogen runoff and leaching losses during rice-wheat rotations inTaihu Lake region, China[J]. Pedosphere,2007,17(4):445-456.
    207. Trenton FS, Joseph GL. Corn grain yield response to crop rotation and nitrogen over35Years[J].Agron.J.,2008,100:643-650.
    208. Vesna Z, Martina, Sonja L, et al.. Nitrate leaching under vegetable field above a shallow aquiferin Slovenia[J]. Agriculture, Ecosystems and Environment,2011,144:167-174.
    209. Waddll JT, Gupta SC, Moncriff J F, et al.. Irrigation and nitrogen management impacts on nitrateleaching under potato[J]. Journal of Environmental Quality,2000,29(1):251-261.
    210. Wallace J, Karim F, Wilkinson S. Assessing the potential underestimation of sediment and nutrientloads to the Great Barrier Reef lagoon during floods[J]. Mar Pollut Bull,2012,65(9):194-202.
    211. Wang CH, Wan SQ, Xing XY, et al.. Temperature and soil moisture interactively affected soil netN mineralization in temperate grassland in Northern China[J]. Soil Biology and Biochemistry,2006,38:1101-1110.
    212. Wang H, Li X, Xie Y. Hydrochemical evaluation of surface water quality and pollution sourceapportionment in the Luan River basin, China[J]. Water Sci Technol,2011,64(10):2119-2125.
    213. Wang JY, Wang SL, Chen Y. Study on leaching loss of nitrogen in rice fields by using largeundisturbed monolith lysimeters[J]. PedospHere,1994,4:87-92.
    214. Wang L, Duggin JA, Nie D. Nitrate-nitrogen reduction by established tree and pasture buffer stripsassociated with a cattle feedlot effluent disposal area near Armidale, NSW Australia[J]. J EnvironManage,2012,99:1-9.
    215. Wang N, Mao L, Huang HB, et al.. Temporal and spatial variation of non-point source nitrogen insurface water in urban agricultural region of Shanghai[J]. Huan Jing Ke Xue,2012,33(3):802-9.
    216. WanYJ. Gross nitrogen transformation sand related N2O emission sinanin tensive lyusedcalcareous soil[J]. Soil Science Society of America Journal,2009,73:102-112.
    217. Wang X, Wang Q, Wu C, et al.. A method coupled with remote sensing data to evaluate non-pointsource pollution in the Xin'anjiang catchment of China[J]. Sci Total Environ,2012,430:132-143.
    218. Williams JR, Jones CA, Kiniry JR, etal.. The EPIC crop growth model[J]. Trans ASAF,1989,32:497-510.
    219. Wu L, Long TY, Li CM. The simulation research of dissolved nitrogen and phosphorus non-pointsource pollution in Xiao-Jiang watershed of Three Gorges Reservoir area[J]. Water Sci Technol.,2010,61(6):1601-1616.
    220. Yang Y, Chen Y, Zhang X, et al.. Methodology for agricultural and rural NPS pollution in a typicalcounty of the North China Plain[J]. Environ Pollut.,2012,16(8):170-176.
    221. Ying Zhao, Jiang-Hang Luo, Xiao-Qun Chen, et al.. Greenhouse tomato–cucumber yield and soilN leaching as affected by reducing N rate and adding manure: a case study in the Yellow RiverIrrigation Region China[J]. NutrCyclAgroecosyst,2012,94:221-235.
    222. Yongchao, Miroslav, Nikolic, et al.. Organic manure stimulates biological activity and baleygrowth in soil subject to secondary stalinization[J]. Soil Biology and biochemisty,2005,37:1185-1195.
    223. Young MH, Wierenga PJ, Mancino CF. Large weighing lysimeters for water use and deeppercolation studies[J]. Soil Sci,1996,161:491-501.
    224. Yu H, Xi B, Jiang J, et al.. Environmental heterogeneity analysis, assessment of trophic state andsource identification in Chaohu Lake, China[J]. Environ Sci Pollut Res,2011,18(8):1333-1342.
    225. Yvonne O, Yvonne K, Roland B, et al.. Nitrate leaching in soil: Tracing the NO3-sources with thehelp of stable N and isotopes [J]. Soil Biology&Biochemistry,2007,39:3024-3033.
    226. Zebarth BJ, Drury CF, Tremblay N, et al.. Opportunities for improved fertilizer nitrogenmanagement in production of arable crops in eastern Canada: A review[J]. Canadian Journal ofSoil Science,2009,89:113–132.
    227. Zhang LX, Ulgiati S, Yang ZF et al.. Emergy evaluation and economic analysis of three wetlandfish farming systems in Nansi Lake area, China[J]. J Environ Manage,2011,92(3):683-694.
    228. Zhang QC, Wang GH, Xie WX. Soil organic N forms and N supply as affected by fertilizationunder intensive rice cropping system[J]. Pedosphere,2006,16(3):345-353.
    229. Zhang YM, Chen DL, Zhang JB, et al.. Ammonia Volatilization and Denitrification losses froman irrigated maize-wheat rotation field in the North China [J]. Pedosphere,2004,14(4):533-540.
    230. Zhao CS, Hu CX, Huang W, et al.. A lysimeter study of nitrate leaching and optimum nitrogenapplication rates for intensively irrigated vegetable production systems in Central China[J]. J SoilsSediments,2010,10:9–17.
    231. Zhou JB, Green M, Shaviv A. Mineralization of organic N originating in treated effluent used forirrigation[J]. Nut Cyc Agroecosyst,2003,67(3):205-213.
    232. Zhou JB, Xi JG, Chen ZJ, et al.. Leaching and transformation of nitrogen fertilizers in soil afterapplication of N with irrigation: A soil column method [J]. Pedosphere,2006,16:245-252.
    233. Zotarelli L, Scholberg JM, Dukes MD, et al.. Monitoring of nitrate leaching in sandy soils[J].Environ Qual,2007,36:953-962.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700