用户名: 密码: 验证码:
亚洲小车蝗生境适应性及代谢相关基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚洲小车蝗(Oedaleus decorus asiaticus B.Bienko)是我国北方草原重要害虫,主要分布在蒙古高原及周边地区,曾多次引发严重灾害。亚洲小车蝗主要取食禾本科植物,其营养需求趋向低氮植物。为明确亚洲小车蝗取食特性及营养需求,本研究进行了食物适应性及能量代谢相关基因研究。结果如下:
     通过研究不同生境植物与亚洲小车蝗种群结构的关系,测定了羊草(Leymus chinensis)、针茅(Stipa krylovii)对其生长发育指标的影响。结果表明:亚洲小车蝗种群数量与植物盖度呈负相关(R=-0.7708,p<0.01),与植物生物量呈负相关(R=-0.9052,p<0.01),蝗虫多样性(D)与植物多样性呈正相关(R=0.5884, p<0.05);蝗虫个体总数与植物盖度呈负相关(R=-0.7593, p<0.01),与植物生物量呈负相关(R=-0.8597, p<0.01);蝗虫混合种群更趋向生活在针茅为优势种的针茅草地类型。室内试验测定,亚洲小车蝗相同增重对羊草的消耗量大于针茅(p<0.05),对针茅的消化率高于羊草,对针茅利用效率高于羊草。
     本研究进行了3个生境,3个密度的亚洲小车蝗生活力指标定量分析,结果表明:针茅处理室内饲养亚洲小车蝗雄虫同羊草无明显差异、雌虫相对生长率较羊草高(P<0.05)。小区试验针茅盖度与亚洲小车蝗生活力呈指数函数关系(Y=0.355e0.0061x),拐点在盖度25%,之后生活力快速增长。羊草盖度同亚洲小车蝗生活力呈二次函数关系(Y=0.0007x2-0.00346x+0.7819)当羊草盖度小于25%时,亚洲小车蝗生活力随盖度增加而减小,当羊草盖度大于25%时,生活力随盖度增加而增长,与羊草样地相比,针茅样地中的亚洲小车蝗生活力显著升高(P<0.05)。亚洲小车蝗密度小于18头/m2时,生活力与密度正相关,密度大于18头/m2时,生活力急剧下降。植物盖度和虫口密度是影响亚洲小车蝗生活力的主要因素。
     本研究利用数据库中已有的基因序列,设计简并引物,扩增了亚洲小车蝗的4个基因片段(精氨酸激酶AK,反应原件结合蛋白CREB,蛋白激酶AMPK,卵黄原蛋白Vg)。其中,AK同近缘基因相似度达到95%,CREB相似度达到75%,AMPK相似度达到75%, Vg相似度41%,系统发育同源性比对结果同相似度结果一致,说明所得结果为亚洲小车蝗基因序列。用荧光定量PCR方法检测了不同样地、不同虫龄基因表达量差异。结果表明:针茅饲养的亚洲小车蝗基因表达量低于羊草饲养的蝗虫。根据基因表达量同生活力拟合相关方程:Y=0.633X22271-4.6627X1+0.0033X292-0.2685X2+210X-6.63+187.9655,X1为AK,X2为CREB,X3为AMPK。AK基因当拷贝数小于1.861016copies/μL时,生活力随着拷贝数增大而减小,当拷贝数大于1.861016时,生活力趋于平缓,AK基因表达量并没有随环境恶化而持续升高。当CREB基因拷贝数在2.211013copies/μL.到1.721015copies/μL之间时生活力持续下降,即随环境恶化而增大。当AMPK基因拷贝数在3.051012copies/μL到21013copies/μL之间时生活力持续下降,随环境恶化而增大。Vg与环境没有明显的相关性。
Oedaleus decorus asiaticus B.Bienko,the major northern grassland pest, is mainly distributed inthe Mongolian Plateau and surrounding areas, whose repeated outbreaks has caused serious disasters..O.asiaticus mainly feeding on grasses, and their nutritional needs incline to low-nitrogen plants. Inorder to clarify the feeding characteristics and nutritional needs of O.asiaticus, this study examines thefood adaptability and genes of energy metabolism. Results are as follows:
     This study examined the relationship between plants and O.asiaticus population structure in thedifferent habitats, and assayed effect of Leymus chinensis, S. krylovii (Stipa krylovii) on growth anddevelopment. The results indicate that the amount of O.asiaticus is negatively correlated with thecoverage of plant (r=-0.7708,P<0.01), and the biomass of plant (r=-0.9052, P<0.01).The diversity ofgrasshopper is positively correlated with the diversity of plant (r=0.5884, P<0.05). The amount of thegrasshopper is negatively correlated with the coverage of plant (r=-0.7593, P<0.01) and the biomassof plant (r=-0.8597, P<0.01). The consumption of O.asiaticus indoor is Leymus chinensis> Stipakrylovii (P<0.05). S. krylovii efficiency is higher than L. chinensis.
     By applying both the fields net and indoor independent feeding method, this study compared thevitality index of three groups of O.asiaticus with3population densities, and quantitatively analyzed theeffect of S.krylovii and L. chinensis on the growth and development of O.asiaticus.The result indicatsthat the relative growth rate of female, which feed on S.krylovii, is higher than those feed on L.chinensis (p<0.05). The relationship between the coverage of S.krylovii and the vitality value fits theexponent function (Y=0.355e0.0061x). When the coverage of S.krylovii is less than25%, the vitalityvalue increased slowly with the increase of the coverage. When the coverage is more than25%, thevitality value increased rapidly. The relationship between the coverage of L. chinensis and the vitalityvalue fits quadratic function (Y=0.0007x2-0.0346x+0.7819). When the coverage of L. chinensis is lessthan25%, the vitality value decreased with the increase of coverage. When the coverage is more than25%, the vitality value is positively related with the coverage. The vitality of O.asiaticus in S.kryloviiis better than in L. chinensis. The plant coverage and the population density are main factors to affectthe vitality of O.asiaticus.
     On the basis of gene sequence of the database, we design degenerate primer to amplicationO.asiaticus of4genes (AK, CREB, AMPK, Vg). affinis similarity is AK95%, CREB75%, AMPK75%, Vg41%. Homology of O.asiaticus is accordant with similarity, which indicated the genesequence is exist in O.asiaticus. We detected gene expression of different instar in different plots byquantitative PCR. The result showed that, the gene expression of O.asiaticus fed on S.krylovii ishigher than which fed on L. chinensis. On the base of gene expression and vitality value, the matchequation of correlationY=0.633X2-6.62271-4.6627X1+0.0033X22-0.2685X2+2E+09X3+187.9655, X1is AK, X2is CREB, X3isAMPK. When the gene copy number of AK is less than1.86×1016copies/μL, the vitality value decreased with the increase of the copy number. When the gene copy number is more than1.86×1016,the vitality value decreased slowly with the increase of copy number. The expression of AK is notcontinue to rise with environmental degradation. When the copy number of CREB is between2.21×1013copies/μL and1.72×1015copies/μL, the vitality value decreased with the increase of copynumber. When the copy number of AMPK is bwtween3.05×1012copies/μL and2×1013copies/μL, thevitality value decreased with the increase of copy number. The gene expression of CREB and AMPKcontinue to rise with environmental degradation, the gene expression of Vg is not obvious correlationwith environment.
引文
1.柏立新,孙以文,孙洪武.棉铃虫寄主潜在适合度表达的影响因素研究[J].棉花学报,2001,13(6):367-371.
    2.蔡明春,黄庆愿,高钰琪. AMPK与能量代谢[J].重庆医学,2005,34(1):120-122.
    3.蔡文婷.金鱼(Carassius auratus)卵黄原蛋白mRNA特性及其在环境雌激素筛选中的应用[D].中国海洋大学,2008.
    4.彩万志.普通昆虫学[M].中国农业大学出版社,2001.
    5.陈广平,郝树广,庞保平等.光周期对内蒙古三种草原蝗虫高龄若虫发育,存活,羽化,生殖的影响[J].昆虫知识,2009,46(1):51-56.
    6.陈湖海,赵云鲜,康乐.两种同域分布的草原蝗虫对植物挥发性化合物的嗅觉反应[J].中国科学(C辑),2003,33(5):421-428.
    7.陈建新,沈杰,宋敦伦等.蝗虫微孢子虫对东亚飞蝗卵黄原蛋白含量的影响[J].昆虫学报,2002,45(2):170-174.
    8.陈伟,符悦冠,吴伟坚.成虫取食不同植物对越北腹露蝗卵巢发育和生殖力的影响[J].热带作物学报,2008,29(1):89-92.
    9.陈永林.蝗虫灾害的特点、成因和生态学治理[J].生物学通报,2000,35(7):1-5.:
    10.陈永林.亚非地区蝗虫发生动态分析[J].世界农业,1987,1:28-31.
    11.陈志辉.昆虫营养指标的定量测量与计算[J].昆虫知识,1987(5):299-301.
    12.陈志辉,陈娥英,严福顺.食料对于七星瓢虫取食和生殖的影响[J].昆虫学报,1980,23(2):141-148.
    13.丁晓洁,王佑民,王丽萍.高脂饮食对大鼠肝脏组织AMPK表达及其活性的影响[J].安徽医科大学学报,2009,44(006):680-683.
    14.董胜张,叶恭银,刘朝良.昆虫卵黄蛋白分子进化的研究进展[J].昆虫学报,2008,51(11):1196-1209.
    15.杜永均,严福顺.植物挥发性次生物质在植食性昆虫、寄主植物和昆虫天敌关系中的作用机理.昆虫学报,1994,37(2):233-250.
    16.方楷,宋乃平,魏乐等.不同放牧制度对荒漠草原地上生物量及种间关系的影响[J].草业学报,2012,21(5):12-22.
    17.冯光翰,樊树喜,刘秋芳等.室外罩笼条件下几种草原蝗虫的食量测定[J].草地学报,1995,3(3):230-235.
    18.郭郛.寄生蝗虫的拟麻蝇[J].昆虫学报,1954,3:002.
    19.葛颂, Schaal B A,洪德元等.用核糖体DNA的ITS序列探讨裂叶沙参的系统位置——兼论ITS片段在沙参属系统学研究中的价值[J].植物分类学报,1997.35(5):385-395.
    20.顾红雅,杨继.限制性片段长度多态性(RFLPs)分子标记在植物系统与进化研究中的应用[J].植物进化生物学I,1994,994:207-231.
    21.顾晓军,田素芬.害虫适合度与害虫生态控制[J].世界科技研究与发展,2001,23(2):70-73.
    22.关敬群,魏增柱.亚洲小车蝗食量测定[J].昆虫知识,1989,26(1):8-11.
    23.龚和,翟启慧.昆虫卵黄原蛋白和卵黄发生[J].昆虫学报,1979,22(2):219-236.
    24.贺达汉,王新谱,郑哲民.蝗虫种群密度对牧草生长与损失量的影响[J].植物保护学报,1998(02),145-150.
    25.贺达汉,郑哲民.荒漠草原蝗虫营养生态位及种间食物竞争模型的研究[J].应用生态学报,1997,8(6):605-611.
    26.贺达汉,郑哲民.环境因子对蝗虫群落生态效应的数值分析[J].草地学报1996,4(3):213-220.
    27.洪德元,植物细胞分类学[M].北京:科学出版社1990,150-171.
    28.皇甫江云,毛风显,卢欣石.中国西南地区的草地资源分析[J].草业学报,2012,21(1):75-82.
    29.黄登宇,马恩波.东亚飞蝗Locustamigratoriamanilensis (Meyen)预测预报研究进展[J].动物学报,2001(S1).
    30.黄宁.营养和盐碱对羊草(Leymus chinensis)与贝加尔针茅(Stipa baicalensis)种间关系的影响[D].东北师范大学,2009.
    31.黄涛,冯延平,高军等.蛋白激酶COt反义寡核苷酸对人胰腺癌BXPC-3细胞体外侵袭力的影响[J].郑州大学学报(医学版),2006,4(5).
    32.景晓红,康乐.光照与飞蝗卵耐寒性的关系[J].动物学研究,2003,24(3):196-199.
    33.康乐.草原生态系统研究[J].第4集,1992.
    34.康乐,陈永林.草原蝗虫时空异质性的研究[J].草原生态系统研究,第4集.北京:科学出版杜,1992:109-123.
    35.康乐,陈永林.草原蝗虫食料植物叶片表皮显微结构的研究[J].草原生态系统研究,第4集.北京:科学出版社,1992:125-139..
    36.康乐,陈永林.关于蝗虫灾害减灾对策的探讨[J].中国减灾,1992,2(1):50-53.
    37.康乐,陈永林.草原蝗虫营养生态位的研究[J].昆虫学报,1994,37(2):178-189.
    38.康乐.放牧干扰下的蝗虫一植物相互作用关系[J].生态学报,1995,15(1):1-10.
    39.康乐.蝗虫群落动态对草原放牧活动的反应.草原生态系统研究,第5集.北京,科学出版社,1995
    40.康乐.内蒙古草地害虫的发生与防治[J].中国草地,1990,(5):49-572
    41.李广.亚洲小车蝗为害草场损失估计分析的研究[D].中国农业科学院;2007.
    42.李春选,马恩波.飞蝗研究进展[J].昆虫知识,2003,40(1):24-30.
    43.李鸿昌,陈永林.内蒙古典型草原蝗虫食性的研究Ⅱ在自然植物群落内的取食特性[A].草原生态系统研究[M].科学出版社,1985,1:154-165.
    44.李鸿昌,席瑞华,陈永林.内蒙古典型草原食性研究Ⅰ罩笼供食下的取食特性[J].生态学报,1983,3(3):214-228.
    45.李峻蜂,张古忍.冬虫夏草寄主蒲氏钩蝠蛾实验种群生命表[J].环境昆虫学报,2012,34(3):386-389.
    46.刘举鹏,席瑞华,陈永林.蝗虫产卵选择的初步研究[J].昆虫知识,1984,21(5):204-207.
    47.刘举鹏.中国蝗虫鉴定手册[J].陕西杨睦:天则出版杜,1990.
    48.李晓山,买淑鹏,王重建等.高脂膳食对大鼠肝组织腺苷酸活化蛋白激酶表达的影响[J].华中科技大学学报(医学版),2008,1:2837-2838.
    49.刘凤沂,须志平,薄仙萍等.昆虫抗药性与与适合度[J].昆虫知识,2008.45(3).
    50.刘玲,郭安红.2004年内蒙古草原蝗虫大发生的气象生态条件分析①[J].2004.
    51.刘启航,周强.诱导光源光照梯度对蝗虫趋光响应的影响[J].农业机械学报,2011,42(10):105-109.
    52.刘晓丽,汪奇,贾林芝等.壬基酚对斑马鱼精巢组织及性激素合成酶基因表达的影响[J].环境科学学报,2011,31(11):2523-2529.
    53.刘永杰,徐蓬军,李艳伟等.昆虫蜕皮激素受体及其类似物的杀虫机制研究进展.昆虫学报,2007,50:67-73
    54.卢辉,韩建国.典型草原三种蝗虫种群死亡率和竞争的研究[J].草地学,2008,16(5)480-484.
    55.卢辉,余鸣,张礼生.不同龄期及密度亚洲小车蝗取食对牧草产量的影响[J].植物保护,2005,31(4):55-58.
    56.马耀,李鸿昌,康乐.内蒙古草地昆虫[M].陕西杨陵:天则出版社,1991.
    57.马世骏.中国东亚飞蝗蝗区的研究[M].北京:科学出版社,1965.
    58.买淑鹏,李晓山,徐增光等.同脂饮食对大鼠脂肪组织AMP激活的蛋白激酶表达的影响[J].营养学报,2008,30(3).
    59.倪绍祥,蒋建军,王杰臣等.青海湖地区草地蝗虫发生的生态环境条件浅析[J].草业学报,2000,9(1):43-47.
    60.潘建梅.内蒙古草原蝗虫发生原因及防治对策[J].中国草地,2002,24(6):66-69.
    61.钦俊德,郭郛,郑竺英.东亚飞蝗的食性和食物利用以及不同食料植物对其生长和生殖的影响[J].昆虫学报,1957,7(2):143-166.
    62.邱式邦.蝗虫生物防治的新进展[J].植保参考,1992,6:13-14.
    63.陶娟,谢立群.论诱导昆虫滞育的环境因素[J].南方农业,2012,6(1):79-82.
    64.田方文,彭彦明,王希英.翻耕蝗区土壤对东亚飞蝗蝗卵的影响[J].安徽农业科学,2009,37(3):1155-1156,1171.
    65.吴坤君,陈玉平,李明辉.不同温度下的棉铃虫实验种群生命表[J].昆虫学报,1978,21(4):385-391.
    66.王杰臣,倪绍祥.环青海湖地区草地蝗虫成灾状况与气候条件的关系[J].干旱区研究,2001,18(4):8-12.
    67.王世贵,周莹,冯利苹.温度和食物种类对红褐斑腿蝗取食,生长及肠道消化酶活性的影响[J].植物保护学报,2008,35(1).
    68.汪小全,洪德元.植物分子系统学近五年的研究进展概况植物分类学报,1997,35(5):465-480
    69.王华兵,徐豫松.家蚕精氨酸激酶基因的克隆、基因结构与表达分析[J].中国农业科学,2006,39:2354-2361.
    70.王凯,张淑颖,谢兰芬等.小菜蛾抗溴氰菊酯品系的相对适合度和抗性遗传方式[J].农药,2010,49(10):729-731.
    71.王小平,薛芳森,华爱等.食料因子对昆虫滞育及滞育后发育的影响[J].江西农业科学,200426(1):10-16.
    72.王振平,严毓骅.蝗虫天敌可利用性分析及研究进展[J].中国草地,1999,6:54-58.
    73.魏初奖,董应华,陈顺立等.松突圆蚧自然种群生命表的构建与分析[J].福建林学院学报,2011,31(3):267-270.
    74.吴虎山,能乃扎布.呼伦贝尔市草地蝗虫[M].中国农业出版社,2009,64-65.
    75.吴慧慧.内蒙古典型草原优势种蝗虫食物适应性研究[D].中国农业科学院,2012.
    76.吴瑞芬,霍治国,卢志光等.蝗虫发生的气象环境成因研究概述[J].自然灾害学报,2005,14(3):66-73.
    77.武万锋.石河子地区棉铃虫抗药性监测及CYP6AE14和AK基因的克隆[D].石河子大学,2010.
    78.席瑞华,刘举鹏.不同食料植物对亚洲小车蝗生长和生殖力的影响[J].昆虫知识,1984(04):153-155.
    79.夏凯龄.中国动物志(昆虫纲第四卷)[M].北京:科学出版社,1994.1-340.
    80.徐长林,曹致中,贾笃敬.优良抗寒苜蓿新品种-甘农一号杂花苜蓿.中国畜牧杂志,1992,6:43
    81.徐晶.能量负平衡对小尾寒羊体内AMPK表达调控的影响[D].吉林农业大学,2012.
    82.杨群芳,廖志昌,李庆等.西藏飞蝗食性及防治指标[J].植物保护学报,2008.35(5)399~404.
    83.姚翠鸾,王志勇,相建海.甲壳动物精氨酸激酶的结构与功能[J].中国生物化学与分子生物学报,2008,24:203-208.
    84.叶寅,王苏燕,田波.核酸序列测定—实验室指南[M]北京:科学出版社1995,323
    85.尹汝湛.昆虫生命表的制作与分析[J].植物保护,1980(1):31-38.
    86.余鸣.蝗虫生态闽值初探.2006.中国农业科学院植物保护研究所博士后论文.
    87.余瑞元,王燕峰. CREB研究进展[J].中国生物工程杂志,2003,23:39-42.
    88.于飞,曾鑫年,张帅等.取食量对昆虫生长发育影响的研究[J].广东农业科学,2004,1:44-46.
    89.翟启慧,龚和,王成等.七星瓢虫卵黄原蛋白基因的表达:保幼激素类似物对mRNA的诱导[J].昆虫学报,1990,33(3):257-264.
    90.张茂新,凌冰,梁广文.不同寄主植物对黄曲条跳甲的适合度及自然种群增长的影响[J].华南农业大学学报,2004,25(3):64-66.
    91.张庆,牛建明,BUYANTUYEV Alexander等.内蒙古短花针茅群落数量分类及环境解释[J].草业学报.2012,21(1):83-92.
    92.张孝羲.昆虫生态及预测预报[M].中国农业出版社,2001,82.
    93.张元臣,安世恒,李为争,等.烟夜蛾精氨酸激酶基因的克隆及mRNA表达分析[J].昆虫学报,2011,54(7):754-761.
    94.赵成章,周伟,王科明等.黑河上游蝗虫与植被关系的CCA分析[J].生态学报,2011,31:3384-3390.
    95.郑哲民,夏凯龄.中国动物志:昆虫纲.直翅目.蝗总科.斑翅蝗科网翅蝗科[M].科学出版社,1998.
    96.周强,徐瑞清,程小桐.昆虫的生物光电效应与虫害治理应用[J][J].现代生物医学进展,2006,6(4):70-72.
    97.朱慧,彭媛媛,王德利.植物对昆虫多样性的影响[J].生态学杂志,2008,27(12):2215-2221.
    98. Andersson U, Filipsson K, Abbott C R, et al. AMP-activated protein kinase plays a role in thecontrol of food intake[J]. Journal of Biological Chemistry,2004,279(13):12005-12008.
    99. Arianne J. Cease, et al. Heavy Livestock Grazing Promotes Locust Outbreaks by Lowering PlantNitrogen Content[J]. Science,2012(335):467-469.
    100. Astrofsky K M, Roux M M, Klimpel K R, et al. Isolation of differentially expressed genes fromwhite spot virus (WSV) infected Pacific blue shrimp (Penaeus stylirostris)[J]. Archives of virology,2002,147(9):1799-1812.
    101. Bailey L D. Effects of potassium fertilizer and fall harvests on alfalfa grown on the easternCanadian Prairies[J]. Canadian Journal Soil Science1983,63:211-219.
    102. Bateman R P, Carey M, Moore D, et al. The enhanced infectivity of Metarhizium flavoviride in oilformulations to desert locusts at low humidities[J]. Annals of Applied Biology,1993,122(1):145-152.
    103. Bernays E A, Bright K L, Gonzalez N, et al. Dietary mixing in a generalist herbivore: tests of twohypotheses[J]. Ecology,1994:1997-2006.
    104. Bird L J, Akhurst R J. Effects of host plant species on ftness costs of Bt resistance in Helicoverpaarmigera (Lepidoptera:Noctuidae)[J]. Biological Control,2007(40):196–203.
    105. Buhlmann G. Haemolymph vitellogenin, juvenile hormone, and o cyte growth in the adultcockroach Nauphoeta cinerea during first pre-oviposition period[J]. Journal of Insect Physiology,1976,22(8):1101-1110.
    106. Byrne B M, De Jong H, Fouchier R A M, et al. Rudimentary phosvitin domains in a minor chickenvitellogenin gene[J]. Biochemistry,1989,28(6):2572-2577.
    107. Kemp B E, Mitchelhill K I, Stapleton D, et al. Dealing with energy demand: the AMP-activatedprotein kinase[J]. Trends in biochemical sciences,1999,24(1):22-25.
    108. Gangwere S K. A monograph on food selection in Orthoptera[J]. Transactions of the AmericanEntomological Society (1890-),1961,87(2/3):67-230.
    109. Carlson M. Glucose repression in yeast[J]. Current opinion in microbiology,1999,2(2):202-207.
    110. Carling D. The role of the AMP-activated protein kinase in the regulation of energyhomeostasis[C]Fatty Acid and Lipotoxicity in Obesity and Diabetes: Novartis FoundationSymposium. Wiley,2008,696:72.
    111. Cloutier C, Douglas A E. Impact of a parasitoid on the bacterial symbiosis of its aphid host[J].Entomologia Experimentalis et Applicata,2003(109):13-19.
    112. Du K, Herzig S, Kulkarni R N, et al. TRB3: a tribbles homolog that inhibits Akt/PKB activation byinsulin in liver[J]. Science Signaling,2003,300(5625):1574.
    113. Elzen G W, Williams H J, Vinson S B. Wind tunnel flight responses by hymenopterous parasitoidCampoletis sonorensis to cotton cultivars and lines[J]. Entomologia experimentalis et applicata,1986,42(3):285-289.
    114. Falchuk K H, Montorzi M. Zinc physiology and biochemistry in oocytes and embryos[J].Biometals,2001,14(3-4):385-395.
    115. Frank D A, Evans R D. Effects of native grazers on grassland N cycling in Yellowstone NationalPark[J]. Ecology,1997,78(7):2238-2248.
    116. Frank D A, McNaughton S J, Tracy B F. The ecology of the earth's grazing ecosystems[J].BioScience,1998,48(7):513-521..
    117. Freeland W J, Janzen D H. Strategies in herbivory by mammals: the role of plant secondarycompounds[J]. American Naturalist,1974:269-289.
    118. Furusawa T, Shikata M, Yamashita O. Temperature dependent sorbitol utilization in diapause eggsof the silkworm, Bombyx mori[J]. Journal of comparative physiology,1982,147(1):21-26.
    119. Gassmann A J, Carriere Y, Tabashnik B E. Fitness Costs of Insect Resistance to Bacillusthuringiensis[J]. Annual Review of Entomology,2009,54:147–163.
    120. Gonzalez G A, Yamamoto K K, Fischer W H, et al. A cluster of phosphorylation sites on the cyclicAMP-regulated nuclear factor CREB predicted by its sequence[J].1989.
    121. Hansen,R.S.&Ueckert,D.N.Diertary similarity of some primary consumers[J].Ecology,1970,51:640-648.
    122. Hardie D G, Scott J W, Pan D A, et al. Management of cellular energy by the AMP-activatedprotein kinase system[J]. FEBS letters,2003,546(1):113-120.
    123. Hens K, Lemey P, Macours N, et al. Cyclorraphan yolk proteins and lepidopteran minor yolkproteins originate from two unrelated lipase families[J]. Insect molecular biology,2004,13(6):615-623.
    124. Herzig S, Long F, Jhala U S, et al. CREB regulates hepatic gluconeogenesis through thecoactivator PGC-1[J]. Nature,2001,413(6852):179-183.
    125. Herzig S, Hedrick S, Morantte I, et al. CREB controls hepatic lipid metabolism through nuclearhormone receptor PPAR-γ[J]. Nature,2003,426(6963):190-193.
    126. Henry J E, Oma E A. Pest control by Nosema locustae, a pathogen of grasshoppers and crickets[J].Microbial control of pests and plant diseases,1970,1980:573-586.
    127. Hopkins C R, Gibson A, Shipman M, et al. Movement of internalized ligand–receptor complexesalong a continuous endosomal reticulum[J].1990.
    128. Iijima-Ando K, Wu P, Drier E A, et al. cAMP-response element-binding protein and heat-shockprotein70additively suppress polyglutamine-mediated toxicity in Drosophila[J]. Proceedings ofthe National Academy of Sciences of the United States of America,2005,102(29):10261-10266.
    129. James J M, Collier G E. Early gene interaction during prepupal expression of Drosophila argininekinase[J]. Developmental genetics,1992,13(4):302-305.
    130. Jiang C, Lamblin AF, Steller H, Thummel CS, A steroid-triggered transcriptional hierarchy controlssalivary gland cell death during Drosophila metamorphosis. Molecular cell,2000,5:445-455.
    131. Kang L, Chen Y. Dynamics of grasshopper communities under different grazing intensities in InnerMongolian steppes[J]. Insect Science,1995,2(3):265-281.
    132. Kang,L.&.Chen Y.L. Multimensional analysis of resource utilization in assemblages rangelandgrasshoppers (Orthop.:Acrid.). Entomologia Sinica,1994,1(3):264-282.
    133. Kaufmann J H. A three-year study of mating behavior in a freeranging band of rhesus monkeys[J].Ecology,1965:500-512.
    134. Keesing F. Cryptic consumers and the ecology of an African savanna[J]. BioScience,2000,50(3):205-215.
    135. Kimura K, Kazui S, Minematsu K, et al. Analysis of16,922patients with acute ischemic strokeand transient ischemic attack in Japan[J]. Cerebrovascular Diseases,2004,18(1):47-56.
    136. Kwok R P S, Lundblad J R, Chrivia J C, et al. Nuclear protein CBP is a coactivator for thetranscription factor CREB[J]. Nature,1994,370(6486):223-226.
    137. Iijima K, Zhao L J, Shenton C, et al. Regulation of energy stores and feeding by neuronal andperipheral CREB activity in Drosophila[J]. PloS one,2009,4(12): e8498.
    138. Kotlyar S, Weihrauch D, Paulsen R S, et al. Expression of arginine kinase enzymatic activity andmRNA in gills of the euryhaline crabs Carcinus maenas and Callinectes sapidus[J]. Journal ofExperimental Biology,2000,203(16):2395-2404.
    139. Kucharski R,Maleszka R, Arginine kinase is highly expressed in the compound eye of the honeybee,Apis mellifera. Gene,1998.211:343-349.
    140. McGee S L, van Denderen B J W, Howlett K F, et al. AMP-activated protein kinase regulatesGLUT4transcription by phosphorylating histone deacetylase5[J]. Diabetes,2008,57(4):860-867.
    141. Meinzingen W F.(Ed.). A guide to migrant pest management in Africa. FAO,1993.
    142. Montminy M R, Sevarino K A, Wagner J A, et al. Identification of a cyclic-AMP-responsiveelement within the rat somatostatin gene[J]. Proceedings of the National Academy of Sciences,1986,83(18):6682-6686.
    143. Montminy M R, Bilezikjian L M. Binding of a nuclear protein to the cyclic-AMP response elementof the somatostatin gene[J]. Nature,1987,328(6126):175-178.
    144. Munday M R, Milic M R, Takhar S, et al. The short-term regulation of hepatic acetyl-CoAcarboxylase during starvation and re-feeding in the rat[J]. Biochemical Journal,1991,280(Pt3):733.
    145. Muramatsu D, Kinjoh T, Shinoda T, et al. The role of20-hydroxyecdysone and juvenile hormonein pupal commitment of the epidermis of the silkworm, Bombyx mori[J]. Mechanisms ofdevelopment,2008,125(5):411-420.
    146. Nagy B. Food comsumption of Dociostaurus crucigerus brevicollis Eversm, and Oedipodacoerulescens L.(Orth. Acrididae)[J]. Acta biol. hung,1952,3:41-52.
    147. Ostfeld R S, Keesing F. Pulsed resources and community dynamics of consumers in terrestrialecosystems[J]. Trends in Ecology&Evolution,2000,15(6):232-237.
    148. Onsager J A. Suppression of grasshoppers in the Great Plains through grazing management[J].Journal of Range Management,2000:592-602.
    149. Pan M L, Bell W J, Telfer W H. Vitellogenic blood protein synthesis by insect fat body[J]. Science,1969,165(3891):393-394.
    150. Pan M L, Wiemerslage L J, Telfer W H. Male-grown eggs in Hyalophora: Deficient follicle cellsecretion as well as protein and lipid yolk deposition[J]. Journal of insect physiology,1994,40(9):765-773.
    151. Paris M,Roux F,Berard A,Reboud X. The effects of genetic background on herbicide resistanceftness cost and its associated dominance inArabidopsis thaliana[J]. Heredity,2008,(101):499-506.
    152. Parker J R. Some effects of temperature and moisture upon the activities of grasshoppers and theirrelation to grasshopper abundance and control[J]. Trans. Fourth Internat. Congr. of Ent.(Ithaca),1929,2:322-332.
    153. Park J M, Greten F R, Wong A, et al. Signaling pathways and genes that inhibit pathogen-inducedmacrophage apoptosis—CREB and NF-κB as key regulators[J]. Immunity,2005,23(3):319-329.
    154. Pereira C A, Alonso G D, Ivaudi S, et al. Screening of substrate analogs as potential enzymeinhibitors for the arginine kinase of Trypanosoma cruzi[J]. Journal of Eukaryotic Microbiology,2003,50(2):132-134.
    155. Pulliam H R. Diet optimization with nutrient constraints[J]. The American Naturalist,1975,109(970):765-768.
    156. Pullin A S. Physiological relationships between insect diapause and cold tolerance: coevolution orcoincidence[J]. European Journal of Entomology,1996,93:121-130.
    157. Samways M J. Marginality and national red listing of species[J]. Biodiversity and Conservation,2003,12(12):2523-2525.
    158. Sappington T W, S Raikhel A. Molecular characteristics of insect vitellogenins and vitellogeninreceptors[J]. Insect biochemistry and molecular biology,1998,28(5):277-300.
    159. Schneider A, Wiesner R J, Grieshaber M K. On the role of arginine kinase in insect flight muscle[J].Insect biochemistry,1989,19(5):471-480.
    160. Serrano L, Halanych K M, Henry R P. Salinity-stimulated changes in expression and activity oftwo carbonic anhydrase isoforms in the blue crab Callinectes sapidus[J]. Journal of ExperimentalBiology,2007,210(13):2320-2332.
    161. Shamsadin R, Jantsan K, Adham I, et al. Cloning, organisation, chromosomal localization andexpression analysis of the mouse Prkag1gene[J]. Cytogenetic and Genome Research,2001,92(1-2):134-138.
    162. Sheldon J K, Rogers L E. Grasshopper food habits within a shrub-steppe community[J]. Oecologia,1978,32(1):85-92.
    163. Sookrung N, Chaicumpa W, Tungtrongchitr A, et al. Periplaneta americana arginine kinase as amajor cockroach allergen among Thai patients with major cockroach allergies[J]. Environmentalhealth perspectives,2006,114(6):875.
    164. Tauber M J, Tauber C A. Seasonal adaptations of insects[M]. Oxford University Press on Demand,1986.
    165. Telfer W H. Immunological studies of insect metamorphosis II. The role of a sex-limited bloodprotein in egg formation by the Cecropia silkworm[J]. The Journal of general physiology,1954,37(4):539-558.
    166. Torell, L A, Huddleston E W. Factors affecting the economic threshold for control of range-landgrasshoppers, In J. L. Capinera [ed.], Integrated Pest Management on Rangeland. WestviewPress,Boulder,CO.1987,377-396.
    167. Tscharntke T, Greiler H J. Insect communities, grasses, and grasslands[J]. Annual Review ofEntomology,1995,40(1):535-558.
    168. Tscharntke T. Verterateate effects on plant-invertebrate food webs[J]. Multitrophic interactions interrestrial systems,1997,36:277.
    169. Vitousek P M, Mooney H A, Lubchenco J, et al. Human domination of Earth's ecosystems[J].Science,1997,277(5325):494-499.
    170. Wahla M A, Khan M R. A comparative consumption of sorghum foliage by the hoppers ofAcrotylus humbertianus Saussure (Acrididae: Orthoptera)[J]. Pakistan Journal of Zoology,1980,12(1):145-148.
    171. Westoby M. What are the biological bases of varied diets?[J]. The American Naturalist,1978,112(985):627-631.
    172. Wickremasinghe M G V, Emden H F. Reactions of adult female parasitoids, particularly Aphidiusrhopalosiphi, to volatile chemical cues from the host plants of their aphid prey[J]. PhysiologicalEntomology,1992,17(3):297-304.
    173. Williams R N, Ellis M S, Fickle D S. Insects in the Killbuck marsh wildlife area:1993survey[J].the ohio journal of science,1995,95:226-232.
    174. Wong K, Zhang J, Awasthi S, et al. Nerve growth factor receptor signaling induces histoneacetyltransferase domain-dependent nuclear translocation of p300/CREB-bindingprotein-associated factor and hGCN5acetyltransferases[J]. Journal of Biological Chemistry,2004,279(53):55667-55674.
    175. WallisDeVries M F, Laca E A, Demment M W. From feeding station to patch: scaling up foodintake measurements in grazing cattle[J]. Applied Animal Behaviour Science,1998,60(4):301-315
    176. Westoby M. what are the biological bases of varied diets?[J].Americn Naturalist,1978,112:627-631.
    177. Wang Yu-mei E, Esbensen P, Bentley D. Arginine kinase expression and localization in growthcone migration[J]. The Journal of neuroscience,1998,18(3):987-998.
    178. Yamamoto K K, Gonzalez G A, Biggs3rd W H, et al. Phosphorylation-induced binding andtranscriptional efficacy of nuclear factor CREB[J]. Nature,1988,334(6182):494.
    179. acetyltransferase domain-dependent nuclear translocation of p300/CREB-bindingprotein-associated factor and hGCN5acetyltransferases[J Journal of Biological Chemistry,2004,279(53):55667-55674.
    180. Yao C L, Wu C G, Xiang J H, et al. Molecular cloning and response to laminarin stimulation ofarginine kinase in haemolymph in Chinese shrimp, Fenneropenaeus chinensis[J]. Fish&shellfishimmunology,2005,19(4):317-329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700