用户名: 密码: 验证码:
中国农田长期不同施肥的固碳潜力及预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤有机质(土壤有机碳, SOC)是土壤肥力的主要指标,是作物稳产高产的基础。然而,我国农田土壤有机碳含量远低于世界同类土壤仅为世界同类型土壤的1/3到1/2,提升的空间和潜力大。土壤有机碳含量受多种因素影响,其中施肥是农业生产中提高土壤有机碳含量最直接有效的措施。由于我国地域辽阔,横跨多个气候带、土壤类型且农田管理措施多样,这些因素都将影响土壤有机碳含量的变化。那么在我国多样的农田环境中,不同区域不同施肥措施下土壤有机碳呈现什么样的变化特征?其不同施肥下的固碳潜力有多大?人们尚不十分清楚。土壤有机碳的演变是个长期缓慢的过程,利用长期试验回答这些问题具有明显的优越性。同时利用模型模拟研究土壤有机碳周转已经成为一个重要的手段。然而目前关于农田土壤固碳潜力的研究多为单点位,对区域研究较少;且大多数是用数理统计方法,用模型分析的较少。因此,本论文选择中国典型农田的14个长期定位肥料试验,采用世界上广泛应用且参数简单易调整的RothC26.3模型系统阐明不同施肥下的农田土壤固碳特征与潜力。研究的具体目标是:(1)对RothC26.3模型的适宜性进行评价,通过修改参数和验证,阐明模型的适用性;(2)采用验证后的适宜模型分析中国农田土壤固碳潜力的区域特征;(3)通过对模型的敏感性和情景分析,阐明中国典型农田不同有机肥投入下的土壤碳库演变趋势及主要影响因素。
     14个长期试验点涵盖了中国农田典型气候、土壤以及水分管理(旱地、水旱轮作和水田)类型,各试验点主要包括七种不同施肥方式(不施肥(Control)、单施氮肥(N)、氮磷配施(NP)、氮磷钾配施(NPK)、单施有机肥(M)、化肥配施有机肥(N+M/NP+M/NPK+M/hNPK+M)、化肥配施秸秆(NP+S/NPK+S))。研究得出以下主要结果与结论:
     1.RothC模型在中国农田适用性评价
     RothC26.3模型可以较好的适用于中国北方旱地不同施肥下土壤有机碳变化的模拟。在所有旱地试验点除化肥配施秸秆还田措施外(NPK+S),其他施肥措施下模型模拟值和实测值均方根误差(RMSE)均小于15%(5.29~14.57%),相关方程的决定系数(R2)均大于0.7(0.71~0.93(除平凉点0.64和昌平点0.54)),说明模拟值和实测值接近,模型适用。
     RothC26.3经过参数修改(RothC26.3_p模型),在水旱轮作农田也可以适用。在重庆、遂宁和武昌三个水旱轮作试验点,模拟值与实测值的RMSE在3.62~15.00%,R2值0.62~0.77(除武昌点为0.44外,主要是由于其实测数据年际间浮动较大),均符合模拟的误差要求。但该模型在南方水田即双季稻农田中,仅适用于不施肥和单施化肥低于2.6t C ha~(-1)yr~(-1)碳投入下的SOC的模拟(RMSE在4.92~8.94%),高于此投入量时,模型高估土壤有机碳含量(RMSE值14.15~54.73%),需要进一步修改。
     2.我国农田固碳潜力的区域特征
     在现有施肥基础上,北方旱地土壤的固碳潜力在-4.9~57.0t C ha~(-1)。在不施肥和单施氮肥下,中国东北、西北和华北地区土壤固碳潜力为-7.5~~(-1)4.1t C ha~(-1),(除平凉和昌平试验点外),整体平均为-4.9t C ha~(-1),相对试验初始没有固碳潜力。氮磷配施措施下,除乌鲁木齐、张掖和郑州(-2.1~-5.8t C ha~(-1))外,其他试验点固碳潜力为0.4~32.7t C ha~(-1),且东北和西北(9.9~32.7t C ha~(-1))高于华北地区(0.4~7.0t C ha~(-1)),整体平均固碳潜力为8.1t Cha~(-1)。氮磷钾配施下,除西北地区乌鲁木齐和张掖外,西北平凉和杨凌以及东北和华北地区,土壤均处于持续固碳状态,整体固碳潜力平均为12.4t C ha~(-1)。施用有机肥或秸秆还田,所有农田均有固碳潜力(30.8~57.0t C ha~(-1))。
     在水旱轮作系统中,不施肥下,土壤固碳潜力-7.6~~(-1)6.1t C ha~(-1)。NPK措施下,除重庆外,遂宁和武昌基本维持试验初始SOC水平。施用有机肥,固碳潜力在3.6~35.6t C ha~(-1)。水田(双季稻)系统中,在南昌和进贤试验点,即使是不施肥情况下,土壤可以维持初始有机碳水平(固碳潜力为0.1~2.1t C ha~(-1))。但在望城点,不施肥情况下,土壤有机碳水平在持续下降,其固碳潜力为-7.1t C ha~(-1)。在NPK措施下,三个试验点固碳潜力为10.0~15.9tC ha~(-1)。
     3.我国典型农田不同有机肥投入下的土壤碳库演变趋势及主要影响因素
     不同有机肥投入情景预测(2011~2100年)结果显示,在旱地地区,增施相当于NPK+M中有机肥施用量一半时,不施肥措施下,农田土壤基本由碳源转为碳汇,有2.8~6.8t Cha~(-1)的固碳空间;NPK施肥下,所有农田SOC含量均呈积累状态。而在NPK+M施肥下,有机肥施用量减半后,土壤基本能维持试验初始有机碳含量水平。若要维持试验初始土壤有机碳水平,在不施肥和NPK施肥下,至少要增施相当于NPK+M措施下半量的有机肥碳。在南方水旱轮作和双季稻区,不施肥和施用NPK,增施半量有机肥碳投入量,农田土壤由碳源转化为碳汇,SOC含量会明显提升。施用NPK+M下,三个水旱轮作点,即使停止有机肥碳投入,仍能维持试验初始时水平。
     在施用NPK措施下,增施1t C ha~(-1)有机肥碳,到本世纪末(2100年),中国北方旱地一年一熟地区土壤固碳潜力平均比NPK增加43.9%(31.0%~56.7%),一年两熟地区增加29.8%(28.0%~33.3%),水旱轮作地区增加31.3%(29.1%~33.1%),双季稻地区则增加28.5%(26.9%~30.3%)。
     综上所述,本研究利用长期定位试验的资料和修正后的RothC定量阐明了中国旱地、水旱轮作和双季稻典型农田土壤固碳潜力的时空变化特征区域差异,为我国不同区域的土壤肥力维持和提升提供技术支持。预测分析了典型区域不同施肥措施下土壤有机碳的未来变化趋势,提出了不同区域农田土壤有机碳维持与提升(固碳)的施肥技术。
Soil organic carbon (SOC) is the important index as the foundation of crop productivityfor soil fertility. The SOC content is only1/3~1/2of the similar soil type of the world, with largeimprovement potential. SOC is affected by many factors, and fertilization affect the SOC changedirectly. China is a large country with a diverse range of climatic factors and managementpractices. The SOC change and its sequestration potential under different fertilizations in thediversity agro-ecosystem environment in China is still unclear. SOC change is a long, slow andcomplex process, therefore the long-term experiment combine with SOC process model has theadvantage. Forthermore, most of previous studies on SOC potential focus on single site by thestatistics analysis, and lack of the regional study. Therefore we chose14long-term fertilizationexperimental sites combine with the Rothamsted Carbon Model (RothC) to find the SOCsequestration potential under different fertilization management. The objectives were (1) evaluateand select the suitable RothC26.3model for Chinese arable land;(2)explore the SOCsequestration potential regional characteristics in Chinese arable land;(3) set manure carbon inputscenarios, to disinter the SOC evolution and the main effect factors under different fertilization inChinese arable land.
     The14long-term fertilization experimental sites represent three typical agro-ecosystem,upland, paddy-upland rotation, and double-rice. Seven kinds of fertilization treatments waschosen:(1) no fertilizer (Control),(2)nitrogen (N) only,(3) N and phosphorus (NP),(4)N,P andpotassium (NPK),(5) manure only (M),(6) inorganic fertilizer+manure (N+M/NP+M/NPK+M/hNPK+M),(7) inorganic fertilizer+straw (NP+S/NPK+S). The main results and conclusions arefollowed.
     1. Suitable RothC model evaluation and selection
     Original RothC26.3model can be used in upland soil in northern China. The root meansquare error (RMSE) ranged5.29~14.57%(<15%) under in all the upland sites. The R2varied0.71~0.93(except0.64in Pingliang and0.54in Changping).
     The modified RothC26.3model for paddy soil (RothC26.3_p) was suitable in paddy-uplandrotation sites and the plot with lower than2.6t C ha~(-1)yr~(-1)carbon input in double-rice site but thehigher carbon input plots. Although the R2value was not high (0.62~0.77), the RMSE ranged3.62~15.00%in paddy-upland rotation site. The RMSE value was relative lower (4.92~8.94%)inplots with lower carbon input but higher (14.15~54.73%) in plots with higher carbon input indouble-rice site. The model need further modification in double-rice site.
     2.charateristics of regional SOC sequestration potential in Chinese arable land
     Under the current fertilization management, the SOC sequestration potential was-4.9~57.0tC ha~(-1)in northern China. Under Control and N plots, the potential ranged-7.5~~(-1)4.1t C ha~(-1)in all sites except Pingliang and Changping with the total average of-4.9t C ha~(-1). Under NP plot,there was no SOC potential in Urumqi, Zhangye and Zhengzhou (-2.1~-5.8t C ha~(-1)), and0.4~32.7t C ha~(-1)in other five sites. The SOC potential in NP plot in northeast and northwest China(9.9~32.7) was higher than that in north China(0.4~7.0t C ha~(-1)), and the average one was8.1tC ha~(-1). Under NPK plot, the SOC potential was12.4t C ha~(-1), showed SOC maintained the initiallevel in all sites except Urumqi and Zhangye. There was higher SOC potential ranged30.8~57.0t C ha~(-1)under plots with organic materials application.
     In paddy-upland rotation system, there was no potential under Control plots (-7.6~~(-1)6.1t Cha~(-1)). Under NPK plot, the SOC keep the initial level in Suining and Wuchang. The SOC potentialunder plots with organic materials application ranged3.6~35.6t C ha~(-1). In double-rice soil, evenunder Control plot, the SOC maintain the initial level in Nanchang and Jinxian but Wangcheng.Under NPK plot, the SOC potential ranged10.0~15.9t C ha~(-1).
     3. the SOC change under different manure carbon input scenarios
     The manure carbon scenario prediction (2011~2100) results showed, when the additional halfamount of manure carbon input of relevant NPK+M plot, the SOC potential will be turned fromnegetive into positive under Control plot in all sites except Zhangye and Zhengzhou, ranged2.8~6.8t Cha~(-1). Under NPK plot, the additional half amount manure carbon input made Urumqi andZhangye site from negative SOC potential into positive. Under NPK+M plot,50%-reducedmanure carbon input, the SOC level can still keep the initial SOC level in all the site but Zhangye.All in all, to maintain the initial SOC level, additional half amount of manure carbon input of therelevant NPK+M should be needed under Control, NPK, and NPK+M. In paddy-upland rotationand double-rice soil system, additional half amount of manure carbon input of the relevantNPK+M will turn soil from negetive into positive in all sites except Chongqing. Under NPK+Mplot, even stop the manure carbon input, it still can keep the initial SOC level.
     Under NPK plot,1t C ha~(-1)yr~(-1)manure carbon input will increase43.9%(31.0%~56.7%)SOC sequestration potential in single-crop region and29.8%(28.0%~33.3%)in double-cropregion in northern China,31.3%(29.1%~33.1%)in paddy-upland rotation, and28.5%(26.9%~30.3%)in double-rice soil.
     In conclusion, we quantified the regional discrepancy of SOC sequestration potential inupland, paddy-upland rotation, and double-rice systems in China based on database in long-termfertilization sites and RothC model. These results provided the technology support to maintain andimprove soil fertility in different region. Forthurmore, we predicted the SOC change underdifferent fertilization management in typical region in China in future, and proposed thefertilization practices to maintain and elevate SOC.
引文
1.陈鲜妮,岳西杰,葛玺祖,王旭东,长期秸秆还田对塿土耕层土壤有机碳库的影响.自然资源学报,2012,27:25-32.
    2.劳秀荣,孙伟红,王真,郝艳如,张昌爱,秸秆还田与化肥配合施用对土壤肥力的影响.土壤学报,2003,40:619-624.
    3.李庆逵,朱兆良,于天仁,中国农业发展中的肥料问题.江西科学技术出版社,南昌,1998.
    4.廖育林,郑圣先,鲁艳红,杨曾平,聂军,谢坚长期施用化肥和稻草对红壤性水稻土钾素固定的影响.水土保持学报,2011,25:70-74.
    5.林而达,李玉娥,郭李萍,中国农业土壤固碳潜力与气候变化.科学出版社,北京,2005.
    6.刘骅,林英华,王西和,谭新霞,张云舒,长期配施秸秆对灰漠土质量的影响.生态环境,2007,16:1492-1497.
    7.聂军,郑圣先,杨曾平,廖育林,谢坚,长期施用化肥、猪粪和稻草对红壤性水稻土物理性质的影响.中国农业科学,2010,43:1404-1413.
    8.秦大河,张坤民,牛文元,中国人口资源环境与可持续发展.新华出版社,北京,2002.
    9.沈裕琥,黄海庆,秸秆覆盖的农田效应.干旱地区农业研究,1998,16:45-50.
    10.汪军,王德建,张刚,王灿,连续全量秸秆还田与氮肥用量对农田土壤养分的影响.水土保持学报,2010,24:40-45.
    11.王金州,卢昌艾,张金涛,单鹤翔,张文菊,黄绍敏,徐明岗RothC模型模拟华北潮土区的土壤有机碳动态.中国土壤与肥料,2010,6:16-22.
    12.王燕,王小彬,刘爽,梁二,蔡典雄保护性耕作及其对土壤有机碳的影响.中国生态农业学报,2008,16:766-771.
    13.王志明,朱培立,黄东迈,刘海琴,水旱轮作条件下土壤碳的分解及土壤微生物量碳的周转特.江苏农业学报,2003,19:33-36.
    14.徐明岗,梁国庆,张夫道,中国土壤肥力演变.中国农业科学出版社,北京,中国,2006.
    15.杨文钰,王兰英,作物秸秆还田的现状与展望.四川农业大学学报,1999,17:211-216.
    16.张会民,徐明岗,吕家珑,石孝均,陈义,长期施肥对水稻土和紫色土钾素容量和强度关系的影响.土壤学报,2009,46:640-647.
    17.张颖,刘学军,张福锁,巨晓棠,邹国元,胡克林,华北平原大气氮素沉降的时空变异.生态学报,2006,26:1634-1639.
    18.郑德明,姜益娟,吕双庆,朱朝阳,干旱地区有机肥料腐解及腐殖化系数的研究.土壤肥料,2004,2:15-19.
    19.中华人民共和国统计局中国统计年鉴,中国统计出版社,北京,2012.
    20.周萍,宋国菡,潘根兴,李恋卿,张旭辉南方三种典型水稻土长期试验下有机碳积累机制研究Ⅰ.团聚体物理保护作用.土壤学报,2008,45:1063-1074.
    21.周萍,潘根兴,李恋卿,张旭辉,南方典型水稻土长期试验下有机碳积累机制V.碳输入与土壤碳固定.中国农业科学,2009,42:4260-4268.
    22. Allen, R.G., Pereira, L.S., Raes, D., Smith, M. Crop evapotranspiration-Guidelines forcomputing crop water requirements-FAO Irrigation and drainage paper56, Rome,1998.
    23. Ayanaba, A., Jenkinson, D.S. Decomposition of carbon-14labeled ryegrass and maize undertropical conditions. Soil Science Society of American Journal,1990,54:112–115.
    24. Balesdent, J., Balabane, M. Major contributions of roots to soil carbon storage inferred frommaize cultivated soils. Soil Biology Biochemistry,1996,28:1261–1263.
    25. Davidson, E.A., Janssens, I.A. Temperature sensitivity of soil carbon decomposition andfeedbacks to climate change. Nature,2006,440:165-173.
    26. Dieckow, J., Bayer, C., Concei o, P.C., Zanatta, J.A., Martin-Neto, L., Milori, D.B.M.,Salton, J.C., Macedo, M.M., Mielniczuk, J., Hernani, L.C. Land use, tillage, texture andorganic matter stock and composition in tropical and subtropical Brazilian soils. EuropeanJournal of Soil Science,2009,60:240-249.
    27. Falloon, P., Smith, P., Coleman, K., Marshall, S. Estimating the size of the inert organicmatter pool from total soil organic carbon content for use in the Rothamsted carbon model.Soil Biology&Biochemistry,1998,30:1207-1211.
    28. Franko, U., Oelschl gel, B., Schenk, S. Simulation of Temperature-, Water-and Nitrogendynamics using the Model CANDY. Ecological Modelling,1995,81:213-222.
    29. Gabriel, C.E., Kellman, L. Examining moisture and temperature sensitivity of soil organicmatter decomposition in a temperate coniferous forest soil. Biogeosciences Discussions,2011,8:1369-1409.
    30. Giardina, C.P., Ryan, M.G. Evidence that decomposition rates of organic carbon in mineralsoil do not vary with temperature. Nature,2000,404:858-861.
    31. Gulde, S., Chung, H., Amelung, W., Chang, C., Six, J. Soil Carbon Saturation ControlsLabile and Stable Carbon Pool Dynamics. Soil Science Society of America Journal,2008,72:605.
    32. Guo, L., Falloon, P., Coleman, K., Zhou, B., Li, Y., Lin, E., Zhang, F. Application of theRothC model to the results of long-term experiments on typical upland soils in northernChina. Soil Use and Management,2007,23:63-70.
    33. Gwenzi, W., Gotosa, J., Chakanetsa, S., Mutema, Z. Effects of tillage systems on soil organiccarbon dynamics,structural stability and crop yields in irrigated wheat-cotton rotation insemi-arid Zimbabwe. Nutrition Cycling Agroecosyst,2009,83:211-221.
    34. Hassink, J., Whitmore, A.P., Kubát, J., Size and density fractionation of soil organic matterand the physical capacity of soils to protect organic matter, in: Ittersum, M.K.v., Geijn,S.C.v.d.(Eds.), Developments in Crop Science. Elsevier, pp.245-255,1997.
    35. Hoyle, F.C., Baldock, J.A., Murphy, D.V. Soil Organic Carbon–Role in Rainfed FarmingSystems,2011,339-361.
    36. Hutchinson, J.J., Campbell, C.A., Desjardins, R.L. Some perspectives on carbonsequestration in agriculture. Agricultural and Forest Meteorology,2007,142:288-302.
    37. IPCC, IPCC-AR4-WG3-chapter8Agriculture,2007.
    38. Jenkinson, D.S., Coleman, K. A model for the turnover of carbon in soil-Model descriptionand windows user guide. Rothamsted Research Harpenden Herts AL52JQ,1999.
    39. Jenkinson, D.S., Rayner, J.H. The turnover of soil organic matter in some of the Rothamstedclassical experiments. Soil Science,1977,123:298-305.
    40. Johnston, A.E., Poulton, P.R., Coleman, K. Chapter1Soil Organic MatterIts Importance inSustainable Agriculture and Carbon Dioxide Fluxes,2009,101:1-57.
    41. K tterer, T., Reichstein, M., Andrén, O., Lomander, A. Temperature dependence of organic10matter decomposition: a critical review using literature data analysed with differentmodels. Biology Fertillity of Soils,1998,27:258-262.
    42. Kaonga, M.L., Coleman, K. Modelling soil organic carbon turnover in improved fallows ineastern Zambia using the RothC-26.3model. Forest Ecology and Management,2008,256:1160-1166.
    43. Knorr, W., Prentice, I.C., House, J.I., Holland, E.A. Long-term sensitivity of soil carbonturnover to warming. Nature,2005,433,298-301.
    44. Kong, A.Y.Y., Six, J., Bryant, D.C., Denison, R.F., van Kessel, C. The Relationship betweenCarbon Input, Aggregation, and Soil Organic Carbon Stabilization in Sustainable CroppingSystems. Soil Science Society of America Journal,2005,69:1078.
    45. Kundu, S., Bhattacharyya, R., Prakash, V., Ghosh, B., Gupta, H. Carbon sequestration andrelationship between carbon addition and storage under rainfed soybean–wheat rotation in asandy loam soil of the Indian Himalayas. Soil and Tillage Research,2007,92:87-95.
    46. Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science,2004a,304:1623-1627.
    47. Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma,2004b,123:1-22.
    48. Lal, R. Carbon Management in Agricultural Soils. Mitigation and Adaptation Strategies forGlobal Change,2006,12:303-322.
    49. Lal, R. Soil Science and the Carbon Civilization. Soil Science Society of America Journal,2007,71:1425.
    50. Lal, R. Sequestering carbon in soils of agro-ecosystems. Food Policy,2011,36: S33-S39.
    51. Li, C., Frolking, S., Frolking, T. A model of nitrous oxide evolution from soil driven byrainfall events: II. Model applications. Journal of Geophysical Research,1992a,97:9777-9783.
    52. Li, C., Frolking, S., Frolking, T. A model of nitrous oxide evolution from soil driven byrainfall events: I. Model structure and sensitivity. Journal of Geophysical Research,1992b,97:9759-9776.
    53. Li, C., Frolking, S., Harriss, R. Modeling carbon biogeochemistry in agricultural soils.Global Biogeochemical Cycles,1994,8:237-254.
    54. Liu, D.L., Chan, K.Y., Conyers, M.K. Simulation of soil organic carbon under differenttillage and stubble management practices using the Rothamsted carbon model. Soil andTillage Research,2009,104:65-73.
    55. Liu, D.L., Chan, K.Y., Conyers, M.K., Li, G., Poile, G.J. Simulation of soil organic carbondynamics under different pasture managements using the RothC carbon model.Geoderma,2011,165:69-77.
    56. Lou, Y., Xu, M., Wang, W., Sun, X., Zhao, K. Return rate of straw residue affects soil organicC sequestration by chemical fertilization. Soil and Tillage Research,2011,113:70-73.
    57. Lu, F.E.I., Wang, X., Han, B., Ouyang, Z., Duan, X., Zheng, H.U.A., Miao, H. Soil carbonsequestrations by nitrogen fertilizer application, straw return and no-tillage in China'scropland. Global Change Biology,2009,15:281-305.
    58. Lu, Y., Watanabe, A., Kimura, M. Carbon dynamics of rhizodeposits, root-and shoot-residuesin a rice soil. Soil Biology and Biochemistry,2003,35:1223-1230.
    59. Miller, A., Schimel, J., Meixner, T., Sickman, J., Melack, J. Episodic rewetting enhancescarbon and nitrogen release from chaparral soils. Soil Biology and Biochemistry,2005,37:2195-2204.
    60. Olchin, G.P., Ogle, S., Frey, S.D., Filley, T.R., Paustian, K., Six, J. Residue CarbonStabilization in Soil Aggregates of No-Till and Tillage Management of Dryland CroppingSystems. Soil Science Society of America Journal,2008,72:507.
    61. Pan, G., Li, L., Wu, L., Zhang, X. Storage and sequestration potential of topsoil organiccarbon in China's paddy soils. Global Change Biology,2003,10:79-92.
    62. Pan, G., Smith, P., Pan, W. The role of soil organic matter in maintaining the productivity andyield stability of cereals in China. Agriculture, Ecosystems&Environment,2009,129:344-348.
    63. Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S. Analysis of factors controlling soilorganic matter levels in Great Plains Grasslands. Soil Science&Society of American Journal,1987,51:1173-1179.
    64. Parton, W.J., Scurlock, J.M.O., Ojima, D.S., Gilmanov, T.G., Scholes, R.J., Schimel, D.S.,Kirchner, T., Menaut, J.C., Seastedt, T., Garcia Moya, E., Kamnalrut, A., Kinyamario, J.I.Observations and modeling of biomass and soil organic matter dynamics for the grasslandbiome worldwide. Global Biogeochemistry Cycles,1993,7:785-809.
    65. Paul, K. Temperature and Moisture Effects on Decomposition.
    66. Rampazzo Todorovic, G., Stemmer, M., Tatzber, M., Katzlberger, C., Spiegel, H., Zehetner, F.,Gerzabek, M.H. Soil-carbon turnover under different crop management: Evaluation ofRothC-model predictions under Pannonian climate conditions. Journal of Plant Nutrition andSoil Science,2010,173:662-670.
    67. Reichstein, M., K tterer, T., Andrén, O., Ciais, P., Schulze, E.-D., Cramer, W., Papale, D.,Valentini, R. Temperature sensitivity of decomposition in relation to soil organic matterpools:critique and outlook. Biogeochemistry,2005,2:317-321.
    68. Robin, P., Ablain, F., Yulipriyanto, H., Pourcher, A.M., Morvan, T., Cluzeau, D., Morand, P.Evolution of non-dissolved particulate organic matter during composting of sludge with straw.Bioresour Technol,2008,99:7636-7643.
    69. Sahrawat, K. Organic matter accumulation in submerged soils,2004,81,169-201.
    70. Sakurai, G., Jomura, M., Yonemura, S., Iizumi, T., Shirato, Y., Yokozawa, M. Inverselyestimating temperature sensitivity of soil carbon decomposition by assimilating a turnovermodel and long-term field data. Soil Biology and Biochemistry.2011,1-9.
    71. Six, J., Bossuyt, H., Degryze, S., Denef, K. A history of research on the link betweenmicro-aggregates, soil biota, and soil organic matter dynamics. Soil and TillageResearch,2004,79:7-31.
    72. Six, J., Conant, R.T., Paul, E.A., Paustian, K. Stabilization mechanisms of soil organic matterImplications for C-saturation of soils. Plant and Soil,2002a,241:155-176.
    73. Six, J., Feller, C., Denef, K., Ogle, S.M., de Moraes, J.C., Albrecht, A. Soil organic matter,biota and aggregation in temperate and tropical soils-Effects of no-tillage. Agronomie,2002b,22:755-775.
    74. Skjemstad, J.O., Spouncer, L.R., Cowie, B., Swift, R.S. Calibration of the Rothamstedorganic carbon turnover model (RothC ver.26.3), using measurable soil organic carbon pools.Australian Journal of Soil Research,2004,42:79-88.
    75. Smith, P., Smith, J.U., Powlson, D.S., McGill, W.B., Arah, J.R.M., Chertov, O.G., Coleman,K., Franko, U., Frolking, S., Jenkinson, D.S., Jensen, L.S., Kelly, R.H., Klein-Gunnewiek, H.,Komarov, A.S., Li, C., Molina, J.A.E., Mueller, T., Parton, W.J., Thornley, J.H.M., Whitmore,A.P. A comparison of the performance of nine soil organic matter models using datasets fromseven long-term experiments. Geoderma,1997,81:153-225.
    76. Sommer, R., Ryan, J., Masri, S., Singh, M., Diekmann, J. Effect of shallow tillage,moldboard plowing, straw management and compost addition on soil organic matter andnitrogen in a dryland barley/wheat-vetch rotation. Soil and Tillage Research,2011,115-116:39-46.
    77. Soon, Y.K. Crop residue and fertilizer management effects on some biological and chemicalproperties of a Dark Grey Solod. Canadian Journal of Soil Science,1998,78:707-713.
    78. Stewart, C.E., Paustian, K., Conant, R.T., Plante, A.F., Six, J. Soil carbon saturation:Implications for measurable carbon pool dynamics in long-term incubations. Soil Biologyand Biochemistry,2009,41:357-366.
    79. Studdert, G.A., Monterubbianesi, M.G., Domínguez, G.F. Use of RothC to simulate changesof organic carbon stock in the arable layer of a Mollisol of the southeastern Pampas undercontinuous cropping. Soil and Tillage Research,2011,117:191-200.
    80. Thornley, J.H.M., Chanell, M.G.R. Soil carbon storage response to temperature_a hypothesis.annals of Batany,2001,87:591-598.
    81. Timsina, J., Connor, D. Productivity and management of rice-wheat cropping systems_issueand challenges. Field Crops Research,2001,69:93-132.
    82. van Groenigen, K.J., Hastings, A., Forristal, D., Roth, B., Jones, M., Smith, P. Soil C storageas affected by tillage and straw management: An assessment using field measurements andmodel predictions. Agriculture, Ecosystems&Environment,2011,140:218-225.
    83. Wang, X., Li, X., Hu, Y., Lv, J., Sun, J., Li, Z., Wu, Z. Effect of temperature and moisture onsoil organic carbon mineralization of predominantly permafrost peatland in the Great Hing'anMountains, Northeastern China. Journal of Environmental Sciences,2010,22:1057-1066.
    84. Wu, J., Donnell, A.G.O., Syers, J.K., Adey, M.A., Vityakon, P. Modelling soil organic matterchanges in ley-arable rotations in sandy soils of Northeast Thailand. European Journal of SoilScience,1998,49:463-470.
    85. Xie, Z., Zhu, J., Liu, G., Cadisch, G., Hasegawa, T., Chen, C., Sun, H., Tang, H., Zeng, Q.Soil organic carbon stocks in China and changes from1980s to2000s. Global ChangeBiology,2007,13:1989-2007.
    86. Yan, H., Cao, M., Liu, J., Tao, B. Potential and sustainability for carbon sequestration withimproved soil management in agricultural soils of China. Agriculture, Ecosystems&Environment,2007,121:325-335.
    87. Yan, X., Cai, Z., Wang, S., Smith, P. Direct measurement of soil organic carbon contentchange in the croplands of China. Global Change Biology,2010,17:1487-1496.
    88. Yang, X.M., Zhang, X.P., Fang, H.J., Zhu, P., Ren, J., Wang, L.C. Long-Term Effects ofFertilization on Soil Organic Carbon Changes in Continuous Corn of Northeast China RothCModel Simulations,2003,32:459-465.
    89. Yasuhito Shirato, Yokozawa, M. Applying the Rothamsted Carbon model for long-termexperiments on Japanese paddy soils and modifying it by simple tuning of the decompositionrate. Soil Science and Plant Nutrition,2005,51:405-415.
    90. Yu, Y., Guo, Z., Wu, H., Kahmann, J.A., Oldfield, F. Spatial changes in soil organic carbondensity and storage of cultivated soils in China from1980to2000. Global BiogeochemicalCycles,2009,23.
    91. Zhang, F.D., Fokin, A.D. Decomposition and transformation of14C-traced straw in soil..Plant Nutrition of Fertilizer Sciences,1994,1,27–38.
    92. Zhang, H., Wang, X., Feng, Z., Pang, J., Lu, F., Ouyang, Z., Zheng, H., Liu, W., Hui, D. Soiltemperature and moisture sensitivities of soil CO2efflux before and after tillage in a wheatfield of Loess Plateau, China. Journal of Environmental Sciences,2011,23:79-86.
    93. Zhang, H., Xu, M., Zhang, F. Long-term effects of manure application on grain yield underdifferent cropping systems and ecological conditions in China. The Journal of AgriculturalScience,2008,147:31.
    94. Zhang, W., Xu, M., Wang, X., Huang, Q., Nie, J., Li, Z., Li, S., Hwang, S.W., Lee, K.B.Effects of organic amendments on soil carbon sequestration in paddy fields of subtropicalChina. Journal of Soils and Sediments,2012.
    95. Zhang, W.J., Wang, X.J., Xu, M.G., Huang, S.M., Liu, H., Peng, C. Soil organic carbondynamics under long-term fertilizations in arable land of north China. Biogeosciences,2010,7:409-425.
    96. Zhang, X., Li, L., Pan, G. Topsoil organic carbon mineralization and CO2evolution of threepaddy soils from South China and the temperature dependence. Journal of EnvironmentalSciences,2007,19:319-326.
    97. Zhao, Y., Wang, P., Li, J., Chen, Y., Ying, X., Liu, S. The effects of two organic manures onsoil properties and crop yields on a temperate calcareous soil under a wheat–maize croppingsystem. European Journal of Agronomy,2009,31:36-42.
    98. Zhou, P., Song, G., Pan, G., Li, L., Zhang, X. Role of chemical protection by binding tooxyhydrates in SOC sequestration in three typical paddy soils under long-termagro-ecosystem experiments from South China. Geoderma,2009,153:52-60.
    99. Zhu, B., Cheng, W. Rhizosphere priming effect increases the temperature sensitivity of soilorganic matter decomposition. Global Change Biology,2011,17:2172-2183.
    100. Zotarelli, L., Alves, B.J.R., Urquiaga, S., Boddey, R.M., Six, J. Impact of tillage and croprotation on light fraction and intra-aggregate soil organic matter in two Oxisols. Soil andTillage Research,2007,95:196-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700