用户名: 密码: 验证码:
猪场废弃物堆肥中芽孢杆菌属和梭菌属细菌的分子生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
规模化养猪业的迅速发展一方面提高了人民生活水平,另一方面,养猪场粪便的大量集中排放给环境造成了巨大压力。目前,寻找具有良好环境效应的畜禽场废弃物无害化、资源化技术成为我国畜禽规模化养殖业面临的一项重要课题。堆肥技术通常用于有机固体废弃物的资源化利用,成功的堆肥可以实现无害化、减量化和资源化的处理目标。因此,堆肥被认为是养猪业与环境协调发展的有效途径之一,对堆肥过程中微生物多样性的探讨是近几年来的研究热点。
     本课题组在前期的研究中发现,芽孢杆菌属和梭菌属是猪场废弃物堆肥过程中的优势菌群,本研究将PCR-DGGE技术与传统分离方法相结合,进一步在种和属的水平上对芽孢杆菌属和梭菌属在堆肥过程中的动态变化、种群结构和多样性差异进行了研究;利用FISH技术对其进行了原位空间分布研究及快速定量分析;采用生理生化鉴定与16S rRNA序列分析技术对分离培养的细菌进行了特异性菌种鉴定。具体结果如下:
     1.堆肥试验
     利用强制通风静态仓堆肥系统进行了堆肥试验,以猪粪为主料,木屑为调理剂,物料的初始碳氮比(C/N)调整为20%,初始含水率为60%。堆体温度的变化过程经历了典型的升温期、高温期、降温期三个阶段,堆体中层温度在5天时达到了60℃,且在50℃以上的时间持续了30天,高于55℃上持续了25天。整个堆肥过程历时42d。堆制结束时,堆体体积减少了42.68%,大肠杆菌值和蛔虫卵杀灭率分别为0.069和100%,达到了《粪便无害化卫生标准(GB7959-87)》的规定。本次堆肥试验取得成功,为后续各项研究工作奠定了基础。
     2.核酸的提取
     参照Zhou等(1996)的方法,对猪粪堆肥样品中DNA提取方法进行了改良,从堆肥过程中升温期、高温期、降温期上、中、下共9个样品中提取了基因组DNA,并用试剂盒对其进行了纯化。琼脂糖凝胶电泳检测DNA片段大小均在2kbp以上。使用DNA/RNA浓度测定仪,测得纯化后的DNA浓度为370n/μl,其A260/A280的比值为1.766。结果表明,采用改良后的该方法提取、并用试剂盒纯化后获得的核酸结果较好,能满足后面分子生物学研究的需要。
     3.芽孢杆菌属细菌的分离及鉴定
     (1)采用传统平板稀释法从猪粪堆肥过程中不同时期、不同高度层堆肥样品中分离得到了540株芽孢杆菌,利用HinfⅠ, HaeⅢ和Msp Ⅰ三种限制性内切酶对这些芽孢杆菌进行了RFLP分型,得到8种不同的芽孢杆菌,辅以生理生化鉴定试验,并依据16S rRNA序列分析对这些菌株进行了鉴定,初步得出猪场废弃物堆肥过程中可培养的芽孢杆菌属细菌的多样性信息。它们分别是Bacillus subtilis, Bacillus megaterium, Bacillus anthracis, Bacillus thuringiensis, Bacillus cereus, Bacillus pycnus, Bacillus oleronius和Bacillus circulans。
     (2)获得了8株不同芽孢杆菌的16S rDNA序列,并提交到了GenBank数据库,获得了登录号:JF833086-JF833093。
     4.可培养的芽孢杆菌的时空分布
     RFLP分析结果显示猪粪堆肥过程中,可培养的芽孢杆菌属细菌存在着丰富的多样性和明显的时空分布特性。Bacillus subtilis是整个堆肥过程中的优势菌;升温期和降温期样品中优势芽孢杆菌还分别包括Bacillus anthracis, Bacillus cereus和Bacillus circulans。升温期和降温期中层样品中的可培养的芽孢杆菌属细菌的多样性相对更丰富,包括5种不同的芽孢杆菌。多样性最低的是升温期下层和高温期上层和中层样品。
     5. PCR-DGGE分析
     (1) PCR-DGGE分析结果显示,猪粪堆肥过程中不同时期、不同高度层堆肥样品中有着丰富的芽孢杆菌属和梭菌属细菌多样性,PCR-DGGE图谱中优势性条带都达到了9条以上,其中高温期样品中芽孢杆菌属细菌的多样性相对更丰富;同时存在明显的芽孢杆菌属种群结构变化,而梭菌属种群结构变化不明显,这些都表明猪粪堆肥过程中存在宝贵的芽孢杆菌属和梭菌属细菌资源。
     (2)根据指纹图谱聚类分析和Cs值分析结果显示,处于同一堆肥阶段的三个不同高度层样品之间的芽孢杆菌属种群的相似性最高,说明处于同一阶段的各高度层样品的芽孢杆菌属细菌种群结构最接近;9个堆肥样品彼此间梭菌属种群的相似性都很高,说明各样品之间梭菌属细菌种群结构很接近。9个堆肥样品之间的两属细菌的Cs值都没有明显的变化规律,说明堆肥过程中芽孢杆菌属和梭菌属细菌的演替规律复杂,更替过程更复杂,需要我们进行更深入的探讨。
     (3)对芽孢杆菌属和梭菌属DGGE图谱中优势条带进行了回收和测序,结果发现,堆肥过程中大部分都是未能培养的芽孢杆菌,并得到了利用纯培养方法未能分离到的芽孢杆菌属细菌信息,它们包括:Bacillus cereus, Bacillus marisflavi, Bacillus koreensis和Bacillus fordii,而Bacillus cereus也是猪粪堆肥过程中的优势菌,存在于整个堆肥过程中。堆肥过程中都是未能培养的梭茵,未检测到可培养的梭菌。说明PCR-DGGE在分子生态学方面具有更大的优越性,可以获得更多的微生物信息。
     6. FISH分析
     (1)对芽孢杆菌属特异性探针LGC353b和梭菌属特异性探针Chis150的杂交条件进行了优化。探针LGC353b和Chis150的最佳杂交温度都是46℃;最佳杂交时间分别为4h和5.5h;杂交液中最佳甲酰胺浓度分别为20%和35%。
     (2) FISH分析结果显示,猪粪堆肥过程中不同时期、不同高度层堆肥样品中总细菌、芽孢杆菌属和梭菌属细菌数目有着明显的动态变化和的时空分布特征。三者的FISH检测数量级都达到了106个/克(湿重)的数量级。总细菌、芽孢杆菌属、梭菌属的时间分布特征是细菌总数随着温度的升高而增加,随着温度的下降而减少;空间分布特征是处于同一堆肥阶段的三个不同高度层中,中层样品中芽孢杆菌属细菌数目和其占总细菌数的百分比是最低的;梭菌属的空间分布特征不明显。
The rapid development of large-scale pig industry has improved people's living standard, on the other hand, concentrated feces exhaust resulted in remendous pressure on the environment. Now, looking for livestock and poulty harmless and recycling technique having good environmental effect has become an important issue faced large-scale livestock and poultry breeding in China. Composting technology is typically used for organic solid waste recycling. Successful composting can achieve harmless reduction and recycling processing. So, composting was considered to be one of the effective way of pig industry and the environment coordinated development and the study of microbial diversity in the process of composting is a hot research topic in recent years.
     1. Composting experiment
     Composting experiment was conducted by using forced ventilation composting system, swine manure was the major component and rice bran was used to as the conditioner for swine composting. The initial carbon nitrogen ratio was adjusted to20, the initial moisture content of the mixture was60%. The composting process went through three classic phases:rapid temperature-rising stage, sustained high-temperature stage, and gradual cooling stage. The temperature of the middle layer of pile achieved60℃within5d, and kept above50℃for30days and55℃for25days. The composting process lasted for42days. When the composting process finished, the volume of the composting pile decreased by42.68%. The E. coli and killing rate of ascarid eggs were100%and0.069, which met the sanitary standards of the non-hazardous treatment of night soil (GB7959-87). The composting experiment had been successful, which laid a good foundation for the later studies.
     2. Nucleic acid extraction
     A method for obtaining DNA from swine manure composting was modified, based on the procedures described by Zhou (1996), and the genomic DNA were obtained from9samples of rapid temperature-rising stage, sustained high-temperature stage, and gradual cooling stage in the composting process, and was purified with Commercial kit. The length of the DNA fragment was above2Kbp by detecting with agarose gel eletrophoresis. The concentration of purified DNA was about370ng/uL by using DNA/RNA concentration determinator. The A260/A280ratio was1.766. The results showed that the quantity of nucleinic acid was high by using this method and could meet the need of molecular biology research.
     3. Separation and identification
     (1) A total of540Bacillus were obtained from the samples of different phrases and layers in swine manure composting using traditional plate dilution method. An RFLP analysis was conducted for these isolates which were then divided eight different patterns. Basing on physiology and biochemistry tests and16S rDNA sequence analysis, the diversity of cultured Bacillus in swine manure composting was obtained. There are Bacillus subtilis, Bacillus megaterium, Bacillus anthracis, Bacillus thuringiensis, Bacillus cereus, Bacillus pycnus, Bacillus oleronius and Bacillus circulans.
     (2)16S rDNA sequences of eight different Bacillus were obtained, and have been deposited in GenBank database under accession numbers JF833086-JT833093.
     4. Temporal-spatial distribution of cultured Bacillus
     The results of RFLP analysis showed that the diversity of cultured Bacillus was rich and the characteristic of temporal-spatial distribution was obvious. Bacillus subtilis was the dominant bacteria in the whole composting; the dominant bacteria at rapid temperature-rising stage and gradual cooling stage also included Bacillus anthracis, Bacillus cereus and Bacillus circulans, respectively. The diversity of cultured Bacillus in the samples of middle layer at stages of rapid temperature-rising and gradual cooling was relatively more richer, including5different Bacillus. The diversities of bottom layer at rapid temperature-rising stage and top and middle layers at high temperature stage were the lowest.
     5. PCR-DGGE analysis
     (1) The results of PCR-DGGE analysis showed that the bacterial diversities of Bacillus and Clostridium in the samples of different stages and different locations in swine manure composting were comparatively rich. The dominant bands in PCR-DGGR maps achieved to over10. The diversity of Bacillus in the sample of high temperature stage was relatively more richer; and the structure of population of Bacillus existed obvious changes, while the change of populative structure of Clostridium was not obvious, which indicated that precious resources of Bacillus and Clostridium in the swine manure composting was very rich.
     (2) The results of fingerprinting clustering and Cs value analysis showed that the diversities of Bacillus in the samples of different locations each other at the same stage was the highest. However, the diversities of Clostridium in9samples each other were very high, indicating that the composition of Clostridium among all samples were similar. The change laws of the Cs value of two genus among9samples were not obvious, indicating that the succession of Bacillus and Clostridium in the composting process was complicated, and the succession process was more complicated, further studies are needed.
     (3) The dominant bands in the Bacillus and Clostridium maps were retrieved and sequenced, the results indicated that the most Bacillus species were uncultured, some Bacillus which were not found using cultured method were obtained, including Bacillus cereus, Bacillus marisflavi, Bacillus koreensis and Bacillus fordii, and Bacillus cereus was also the dominant bacteria in the whole composting. All Clostridium species were uncultured, and cultured Clostridium were not detected. All of these indicated that PCE-DGGE technology is provided with more advantages in the respect of molecular biology.
     6. FISH analysis
     (1) The hybridization conditions of the specific probes of Bacillus LGC353b and Clostridium Chis150have been optimized. The optimal hybridization temperature of two probes were46℃, optimal hybridization time were4h and5.5, and the formamide concentration in hybridization buffer were20%and30%, respectively.
     (2) The results of FISH analysis showed that the number of total cells, Bacillus and Clostridium were presented obvious dynamic changes and temporal-spatial distribution characteristic. The detected limits of them using FISH method were approximately106cells g"'(wet weight). The characteristic of temporal distribution of total cells, Bacillus and Clostridium was that the number of cells detected would rise with the rising of temperature and vice versa; the spatial distribution of Bacillus bacteria was that the number and the relative level of the Bacillus cells detected in the middle-level of composting were the lowest at each of composting, while that of Clostridium in the compositing was not obvious.
引文
1. 白清云.土壤微生物群落结构的化学估价方法[J].农业环境保护,1997,16(6):252-256
    2. 蔡建成,李国珍,范毅等.堆肥工程与堆肥工厂.北京:机械工业出版社,1990,259-291
    3. 陈敏,方序.黄瓜青枯病内生拮抗菌株的分离及ARDRA分析[J].微生物学报,2006,46(6):984-987
    4. 陈世和,张所明.城市垃圾堆肥原理与工艺.上海:复旦大学出版社,1990,(2):32-33
    5. 陈瑛,任南琪,宋佳秀.荧光原位杂交技术解析发酵产氢细菌群落结构.中国环境科学,2007,27(3):295-299
    6. 戴玄,唐兵,陈向东等.产高温蛋白酶微生物菌种资源的研究[J].微生物杂志,1997,17(3):25-29
    7. 冯明谦,刘德明.滚筒式高温堆肥中微生物种类数量的研究.中国环境科学,1999,19(6):490-492
    8. 傅思武,陆俭,肖在滢,吕存女,欹欣,邹开勇,孟筱琦.酪酸梭菌-婴儿型双歧杆菌二联活菌制剂的研究.中国微生物学杂志,2000,12(1):11-14
    9.傅以钢,王峰,何培松等.DGGE污泥堆肥工艺微生物种群结构分析[J].中国环境科学,2005,25(Suppl):98-101
    10.郭兴华.益生菌基础与应用.北京:北京科学技术出版社.2002.
    11.郭艳.猪场废弃物堆肥微生物多样性及空间异质性的研究.[博士学位论文].武汉:华中农业大学图书馆,2008
    12.韩延平.需氧芽孢杆菌分类学研究进展.微生物学免疫学进展,2001,29(4):73-78
    13.何品晶,邵立明,陈绍伟.城市垃圾与排水污泥混合堆肥配比的研究[J].上海环境科学,1994,13(6):21-23
    14.李国学,张福锁.固体废弃物堆肥化与有机复混肥生产[M].北京:化学工业出版社,2000
    15.李佳荃,汤展宏,凌鸿英.丁酸梭菌对小鼠移植瘤的抑制作用.广西医科大学学报,2003,20(1):77-79
    16.李建国,王金莉.动物粪便的开发潜力与应用[J].畜牧与饲料科学,2004(4):13-14
    17.李璐滨,刘敏,杨淑贞等.毛竹根际可培养微生物种群多样性分析[J].微生物学报,2008,48(6):772-779
    18.李艳霞,王敏健,王菊思等.城市固体废弃物堆肥化处理的影响因素[J].土壤与环境,1990,8(1):61-65
    19.雷娟红,周艳红,丁桔.不同蔬菜连作对土壤细菌DNA分子水平多态性影响的研究[J].中国农业科学,2005,38(10):2076-2083
    20.梁英娟,罗湘南,付红霞.PCR-DGGE技术在微生物生态学中的应用 [J].生物学杂志,2007,24(6):58-60
    21.刘敏,李潞滨,杨凯等.冷箭竹根际土壤中可培养细菌的多样性[J].生物多样性,2008,16(1):91-95
    22.刘向国,谢国明.荧光定量PCR仪技术及其在医学中的应用.医疗卫生设备,2002,5:37-39
    23.卢杰,李成江,薛文源.污泥与城市垃圾混合堆肥技术[J].城市环境与城市生态,1992,5(2):17-26
    24.罗泉达.猪粪堆肥腐熟度指标及影响堆肥腐熟因素的研究.[硕士学位论文].福建:福建农林大学图书馆,2005
    25.马悦欣,Jeremy, Webb, Staffan K, jelleber等.变形梯度凝胶电(DGGE)在微生物生态学中的应用[J].生态学报,2003,23(8):1561-1569
    26.齐义鹏,黄永秀,梁明山.基因工程原理和方法.四川大学出版社,1988
    27.逄兵,蒋学之,倪祖尧等.荧光原位杂交原理及其在染色体畸变研究中的应用.劳动医学,1997,14(1):52-56
    28.苏杨.我国集约化畜禽养殖场污染问题研究.中国生态农业学报,2006,14(2):15-18
    29.汪开英,代小蓉.畜禽场空气污染对人畜健康的影响.中国畜牧杂志,2008,44(10):32-35
    30.王新谋.猪场粪便污水处理和利用.云南畜牧兽医,1997,3:8-12
    31.汪雅谷,沈根祥.上海市郊畜禽粪便处理利用发展方向[J].上海农业学报,1994,10(增刊):1-5
    32.伍欣,张小昱,武龙.产碱性蛋白酶嗜碱芽孢杆菌的筛选及其研究[J].微生物学杂志,2005,25(2):40-44
    33.魏源送,王健敏.堆肥技术及进展.环境科学进展,1999,3(7):12-23
    34.翁伯倚.防治畜禽养殖污染刻不缓.农业环境保护,2002,(6):288
    35.席北斗,刘鸿亮,孟伟等.高效复合微生物菌群在垃圾堆肥中的应用.环境科学,2001,22(5):122-125
    36.肖勇.16S rRNA/rDNA序列分析技术应用于环境微生物群落的初步研究[D].[硕士学位论文].湖南:湖南大学图书馆,2007
    37.谢俊杰,佘世望,许杨,孙红斌.食品防腐新领域-微生物天然防腐剂.食品科学,1999,1:13-14
    38.解志刚,刘江波.枯草芽孢杆菌与活菌制剂.微生物学杂志,1996,16(2):48-50
    39.余利岩,徐平,姚天爵.新型Actinobacteria荧光原位杂交(FISH)探针的设计和应用.中国抗生素杂志,2000,25(6):401-406
    40.臧红梅,樊景凤,王斌,周一兵.海洋微生物多样性的研究进展[J].海洋环境科学,2006,35(3):96-100
    41.章家恩,蔡燕飞,高爱霞等.土壤微生物多样性试验研究方法概述.土壤,2004,36(4):346-350
    42.张纪忠.微生物分类[M].上海:复旦大学出版社,1990,44-45
    43.张名涛,顾宪红,杨琳等.16S rRNA寡核苷酸探针原位杂交法在粪便微生物研究中的应用.家畜生态,2002,23(4):37-41
    44.赵虎山,陈莹,王艳萍,许本发.一种新的功能性食品添加剂-TQ33凝结芽孢杆菌粉的研究.中国食品添加剂,1997,4:10-12
    45.赵小明,龚月生.畜禽粪便再生饲料的饲养价值及研究展望[J].畜牧兽医杂志,2000,(2):20-22
    46.赵熙,冉陆,杨宝兰,姚景会,付萍,陈稚峰,刘志刚.丁酸梭菌活菌制剂对肠道菌群影响的研究.中国微生物学杂志,1999,11(6):332-333
    47.郑传进,黄林,龚明.巨大芽孢杆菌解磷能力的研究[J].江西农业大学学报(自然科学版),2004,24(2):190-192
    48.郑永利,雷秋波,徐润林,林继球.枯草芽孢杆菌粉剂作为鸡饲料添加剂的研究.中山大学学报(自然科学版),1998,37(2):69-72
    49.朱海生,陈志宇,栾冬梅.畜禽粪便的综合利用[J].黑龙江畜牧兽医,2004(4):59-60
    50.朱晓慧,唐宝英,刘佳.酪酸菌对肠道有益菌的增值作用和共生关系研究.中国微生物学杂志,2004,16(4):193-196
    51. Amann R I, Binder B J, Olson R J, Chisholm S W, Devereux R, Stahl D A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Applied and environmental microbiology, 1990,56:1919-1925
    52. Amann R I, Krumholz L, Stahl D A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. Journal of Bacteriology,1990,172 (2),762-770
    53.41. Alfreider A, Pernthaler J, Amann R, Sattler B, Glockner F, Wille A, Psenner R. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Applied and environmental microbiology,1996,62:2138-2144.
    54.42. Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology and Molecular Biology Reviews,1995,59:143-169.
    55. Amann R, Stromley J, Devereux R, Key R, Stahl D. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Applied and environmental microbiology,1992,58:614-623.
    56. Augenstein D, Wise D, Dat N X, Khien N D. Composting of municipal solid waste and sewage sludge:Potential for fuel gas production in a developing country. Resources, conservation and recycling,1996,16:265-279
    57. Bassler H A, Flood S J, Livak K J, Marmaro J, Knorr R, Batt C A. Use of a fluorogenic probe in a PCR-based assay for the detection of Listeria monocytogenes. Applied and environmental microbiology,1995,61:3724-3728
    58. Bertoldi M, Vallini G, Pera A. Biology of composting; a review. Waste management & research:journal of International Solid Wastes and Public Cleansing Association, 1983,1:157-176
    59. Binnerup S J, Bloem J, Hansen B M, Wolters W, Veninga M, Hansen M. Ribosomal RNA content in microcolony forming soil bacteria measured by quantitative 16S rRNA hybridization and image analysis. Fems Microbiology Ecology,2001,37: 231-237.
    60. Bizet C, Barreau C, Harmant C, Nowakowski M, Pietfroid A. Identification of Rhodococcus, Gordona and Dietzia species using carbon source utilization tests. Research in Microbiology,1997,148:799-809.
    61. Boon N, Windt W, Verstraete W, Top EM. Evaluation of nested PCR-CDGGE (denaturing gradient gel electrophoresis) with group(?)\specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. Fems Microbiology Ecology,2002,39:101-112.
    62. Crawford J. Composting of agricultural wastes-A review. Process Biochemistry, 1983,18:14-18
    63. Crecchio C, Curci M, Pizzigallo M D R, Ricciuti P, Ruggiero P. Effects of municipal solid waste compost amendments on soil enzyme activities and bacterial genetic diversity. Soil biology and Biochemistry,2004,36:1595-1605
    64. Crombie G. Evolution of a compost plant. Biocycle,1982,23:17-25
    65. Daims H, Nielsen J L, Nielsen P H, Schleifer K H, Wagner M. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Applied and environmental microbiology,2001,67:5273-5284.
    66. Daims H, Ramsing N B, Schleifer K H, Wagner M. Cultivation-independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridization. Applied and environmental microbiology,2001,67:5810-5818.
    67. Dees P M, Ghiorse W C. Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. Fems Microbiology Ecology,2001,35:207-216.
    68.56. Eghball B, Lesoing G W. Viability of weed seeds following manure windrow composting. Compost science & utilization,2000,8:46-53.
    69. Fallani M, Rigottier-Gois L, Aguilera M, Bridonneau C, Collignon A, Edwards C A, Corthier G, Dore J. Clostridium difficile and Clostridium perfringens species detected in infant faecal microbiota using 16S rRNA targeted probes. Journal of Microbiological Methods,2006,67:150-161.
    70. Fritze D. Taxonomy of the genus Bacillus and related genera:the aerobic endospore-forming bacteria. Phytopathology,2004,94:1245-1248.
    71. Ghosh S, Kapadnis B, Singh N. Composting of cellulosic hospital solid waste:a potentially novel approach. International Biodeterioration & Biodegradation,2000, 45:89-92.
    72. Giovannoni S J, DeLong E F, Olsen G J, Pace N R. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. Journal of Bacteriology,1988,170:720-726
    73. Golueke C G, Diaz L F. Low tech composting for small communities. Biocycle,1990, 3:62-64.
    74. Gray K, Sherman K, Biddlestone A. A review of composting. Part 1. Process Biochemistry,1971,6:32-36.
    75. Hassen A, Belguith K, Jedidi N, Cherif A, Cherif M, Boudabous A. Microbial characterization during composting of municipal solid waste. Bioresource Technology,2001,80:217-225
    76. Haug R T. Engineering principles of sludge composting. Journal of Water Pollution Control Federation,1979,51:2189-2206.
    77. Hiraishi A, Masamune K, Kitamura H. Characterization of the bacterial population structure in an anaerobic-aerobic activated sludge system on the basis of respiratory quinone profiles. Applied and environmental microbiology,1989,55:897-901
    78. Holben W. Isolation and purification of bacterial DNA from soil. Methods of soil analysis,1994,2:727-751.
    79. Imachi H, Sekiguchi Y, Kamagata Y, Ohashi A, Harada H. Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Applied and environmental microbiology,2000,66:3608-3615
    80. Ishii K, Fukui M, Takii S. Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. Journal of Applied Microbiology,2000,89:768-777.
    81. Ishii H, Tanaka K, Aoki M, Murakami T, Yamada M. Sewage sludge composting process by static pile method,1991,23:1979-1989
    82. Jimenez E I, Garcia V P. Composting of domestic refuse and sewage sludge. I. Evolution of temperature, pH, C/N ratio and cation-exchange capacity. Resources, conservation and recycling,1991,6:45-60
    83. Kalmbach S, Manz W, Bendinger B, Szewzyk U. In situ probing reveals Aquabacterium commune as a widespread and highly abundant bacterial species in drinking water biofilms. Water Research,2000,34:575-581
    84.72. Krimmer V, Merkert H, Von Eiff C, Frosch M, Eulert J, Lohr J, Hacker J, Ziebuhr W. Detection of Staphylococcus aureus and Staphylococcus epidermidis in clinical samples by 16S rRNA-directed in situ hybridization. Journal of clinical microbiology,1999,37:2667-2673.
    85. Kuhnigk T, Borst E M, Breunig A, Konig H, Collins M D, Hutson R A, Kampfer P. Bacillus oleronius sp. nov., a member of the hindgut flora of the termite Reticulitermes santonensis (Feytaud). Canadian journal of microbiology,1995,41: 699-706.
    86. Wu L, Li F G, Deng C Y, Xu D Q, Jiang S W, Xiong Y Z. A method for obtaining DNA from compost. Applied Microbiology and Biotechnology,2009,84:389-395.
    87. Miller F C. Matric water potential as an ecological determinant in compost, a substrate dense system. Microbial Ecology,1989,18:59-71.
    88. Moter A, Gobel U B. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. Journal of Microbiological Methods,2000,41: 85-112.
    89. Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek,1998,73:127-141.
    90. Muyzer G D, Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and environmental microbiology,1993,59:695-700
    91. Niedobitek G, Herbst H. Applications of in situ hybridization. International review of experimental pathology,1991,32:1-56
    92. Piar G, Saiz(?)\Jimenez C, Schabereiter(?)\Gurtner C, Blanco(?)\Varela M T, Lubitz W, R lleke S. Archaeal communities in two disparate deteriorated ancient wall paintings:detection, identification and temporal monitoring by denaturing gradient gel electrophoresis. Fems Microbiology Ecology,2001,37:45-54.
    93. Prescott A, Fricker C. Use of PNA oligonucleotides for the in situ detection of Escherichia coli in water. Molecular and cellular probes,1999,13:261-268.
    94. Ramsay A J. Extraction of bacteria from soil:efficiency of shaking or ultrasonication as indicated by direct counts and autoradiography. Soil biology and Biochemistry,1984,16:475-481.
    95. Reva O N, Dixelius C, Meijer J, Priest F G Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. Fems Microbiology Ecology,2004,48:249-259.
    96. Santegoeds C M, Nold S, Ward D M. Denaturing gradient gel electroph ores used to monitor the enrichment culture of aerobic chemo organot rophic bacteria from a hot spring cyanobacterial mat. Applied and Environmental Microbiology,1996,62: 3922-3928
    97. Santoso U, Tanaka K, Ohtani S. Effect of dried Bacillus subtilis culture on growth, body composition and hepatic lipogenic enzyme activity in female broiler chicks. British Journal of Nutrition,1995,74:523-529.
    98. Schonfeld J, Gelsomino A, Overbeek L S, Gorissen A, Smalla K, Elsas J D. Effects of compost addition and simulated solarisation on the fate of Ralstonia solanacearum biovar 2 and indigenous bacteria in soil. Fems Microbiology Ecology,2003,43: 63-74.
    99. Schramm A, Larsen L H, Revsbech N P, Ramsing N B, Amann R, Schleifer K H. Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Applied and environmental microbiology,1996,62: 4641-4647
    100. Schramm A, Santegoeds C M, Nielsen H K, Ploug H, Wagner M, Pribyl M, Wanner J, Amann R, De Beer D. On the occurrence of anoxic microniches, denitrification, and sulfate reduction in aerated activated sludge. Applied and environmental microbiology,1999,65:4189-4196
    101. Stentiford E. Composting control:principles and practice. In:De Bertoldi M, Sequi P, Lemmes B, Papi T (eds.), The Science of Composting. Glasgow:Blackie Academic and Professional,1996,49-59.
    102. Strom P F. Identification of thermophilic bacteria in solid-waste composting. Applied and environmental microbiology,1985,50:906-913.
    103.Tang J, Kanamori T, Inoue Y, Yasuta T, Yoshida S, Katayama A. Changes in the microbial community structure during thermophilic composting of manure as detected by the quinone profile method. Process Biochemistry,2004,39:1999-2006.
    104. Tiquia S M, Ichida J M, Keener H M, Elwell D L, Burtt E H, Michel F C. Bacterial community profiles on feathers during composting as determined by terminal restriction fragment length polymorphism analysis of 16S rDNA genes. Applied Microbiology and Biotechnology,2005,67:412-419.
    105.USEPA. Composting facility design. In:Composting of Municipal Waster Sludhes, 1985, p.3
    106. Wagner M, Amann R, Lemmer H, Schleifer K H. Probing activated sludge with oligonucleotides specific for proteobacteria:inadequacy of culture-dependent methods for describing microbial community structure. Applied and environmental microbiology,1993,59:1520-1525
    107. Ward D, Bateson M, Weller R, Ruff-Roberts A. Ribosomal RNA analysis of microorganisms as they occur in nature. Advances in microbial ecology,1992,12: 219-286.
    108. Yoon J H, Kim I G, Kang K H, Oh T K, Park Y H. Bacillus marisflavi sp. nov., and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. International journal of systematic and evolutionary microbiology,2003, 53:1297-1303
    109. Zhang Y Q C, Ronimus R S, Turner N, Zhang Y, Morgan H W. Enumeration of thermophilic Bacillus species in composts and identification with a random amplification polymorphic DNA (RAPD) protocol. Systematic and Applied Microbiology,2002,25:618-626.
    110.Zhou J, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition. Applied and environmental microbiology,1996,62:316-322.
    111.Zhu N, Deng C, Xiong Y, Qian H. Performance characteristics of three aeration systems in the swine manure composting. Bioresource Technology,2004,95: 319-326.
    112. Zvyagintsev D, Galkina G. Ultrasonic treatment as a method for preparation of soils for microbiological analysis. Mikrobiologiya,1967,36:1087-1095
    113. Tzeneva V A, Li Y, Felske A D M, De Vos W M, Akkermans A D L, Vaughan E E, Smidt H. Development and application of a selective PCR-denaturing gradient gel electrophoresis approach to detect a recently cultivated Bacillus group predominant in soil. Applied and environmental microbiology,2004,70:5801-5809.
    114. Keener H, Hansen R, Marugg C. Optimizing the efficiency of the composting process,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700