用户名: 密码: 验证码:
铁酸铋—钛酸铅系大功率压电陶瓷及器件的设计、研制与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙钛矿结构x(BiFeO_3)–(1-x)(PbTiO_3)(BF-PT)压电固溶体具有较高的居里温度和介电强度以及良好的压电性能,在高温大功率压电器件领域有广阔的应用前景。但是,BF-PT陶瓷矫顽场强场强大,难于极化,介电损耗大,机械品质因子低,限制了其在大功率压电器件中的应用。本文采用固相反应工艺制备了(1-x)Bi(Ga_(0.05)Fe_(0.95))O_3-xPbTiO_3(BGF-PT)陶瓷,研究BGF-PT陶瓷的MPB效应。此外,采用溶胶凝胶工艺制备出具有优异机电性能和温度稳定性的Mn掺杂的0.6(Bi_(0.9)La_(0.1))FeO_3-0.4Pb(Ti_(1-x)Mn_x)O_3(BLF-PTM))陶瓷;测量了BLF-PTM陶瓷的室温、高温和大功率压电性能,讨论了BLF-PTM陶瓷介电、压电和弹性非线性特征。最后,用性能优化的BLF-PTM陶瓷制备了单向极化、圆片型大功率压电变压器,分析建立了变压器的等效电路模型,表征了变压器室温、高温下的升压比和功率密度。
     BGF-PT陶瓷具有钙钛矿结构。当x=0.3和0.35,BGF-PT陶瓷中三方相和四方相共存,晶粒尺寸较小,具有较大的介电常数和剩余极化、较小的介电损耗,呈现MPB特征。XPS分析表明,MPB附近,BGF-PT中Fe~(2+)离子和氧化物杂质含量较少。阻抗分析结果表明,MPB附近,BGF-PT陶瓷的宏观电性能主要来自晶粒的贡献;远离相界,x=0.25和0.45,晶粒和晶界均对陶瓷的宏观电性能有贡献,但晶粒的贡献远大于晶界。高温时,BGF-PT陶瓷中导电载流子主要是氧空位,晶粒和晶界电导主要是氧空位的移动引起,MPB附近,氧空位的热激活能较大。
     BLF-PTM陶瓷具有三方相和四方相共存的钙钛矿结构,Mn掺杂明显提高了陶瓷的晶粒尺寸。BLF-PTM陶瓷表现出硬性压电材料特征,具有较小的介电常数、介电损耗、机械内耗、弹性模量、剩余极化和回线面积以及较大的频率常数,极化后样品的电滞回线明显不对称。适量Mn掺杂BLF-PTM陶瓷具有理想的极化状态,表现出优异的室温、高温压电和机电耦合性能。Mn含量1at%的BLF-PTM陶瓷d33,g33,kp,Qm,Tc分别为124pC/N、37X10-3Vm/N、0.338、403和473oC;且d33和kp具有优异的温度稳定性,退极化温度达到370oC,250oC温度下的Qm大于200。在激励电场作用下,1at%Mn掺杂BLF-PTM陶瓷具有最大的振动速率和小的升温,最大振动速率可以达到1.1m/s,升温仅为6oC。
     BLF-PTM在强电场下出现介电、压电和弹性非线性特征。Mn掺杂同时降低了BLF-PTM陶瓷的介电和压电非线性系数,以及三阶非线性弹性柔顺系数和机电耦合系数。未掺Mn的BLF-PT陶瓷介电和压电非线性符合瑞利定理;Mn掺杂BLF-PTM陶瓷的介电和压电非线性偏离瑞利定理。BLF-PTM陶瓷的弹性非线性是引起机械振动谐振频率频移和非线性机电耦合效应的主要原因。Mn掺杂BLF-PTM陶瓷的电畴比较稳定,在电场作用下不易翻转,而极化后电畴运动更加困难,抑制了BLF-PTM陶瓷的非线性。
     BLF-PTM单向极化圆片型压电变压器的等效电路模型分析表明,压电变压器在谐振频率和三次谐振频率工作时的匹配电阻分别为8.1k和2.1k,效率分别为91.2%和84.3%。实际测量表明,匹配负载压电变压器具有最大的功率密度和效率,谐振频率和三次谐振频率功率密度分别为30.1W/cm~3和23.5W/cm~3,效率分别为83.4%和80.2%。温度升高,压电变压器空载谐振频率向低频移动,电压增益先增大后减小;200oC时,电压增益达到最大值35.6。工作温度低于300oC,压电变压器能保持较高的功率密度,250oC时,功率密度仍大于20W/cm~3。BLF-PTM压电变压器是一种可以在较高温工作的大功率压电变压器,目前文献中还未见相关报道。
BiFeO_3PbTiO_3based piezoelectric ceramics have drawn much attention owing to theirrelatively high Curie temperature, high dielectric strength, good ferroelectric and piezoelectricproperties, which have potential application in high-temperature piezoelectric field. However,development of BF–PT materials has been hampered due to their high coercive field, lowmechanical quality factor and high dielectric loss. In this work,(1-x)Bi(Ga_(0.05)Fe_(0.95))O_3-xPbTiO_3(BGF-PT) ceramics for x=0.25,0.3,0.35and0.45have been fabricated by the solid state reactionprocess. The MPB effects of BGF-PT have been studed. Piezoelectric ceramics of0.6(Bi_(0.9)La_(0.1))FeO_3-0.4Pb(Ti_(1-x)Mn)x)O_3(BLF-PTM) for x=0,0.01,0.02and0.03, with greatelectomechanical properties and temperature stability, were fabricated by sol-gel process combinedwith a solid state reaction method. The dielectric, piezoelectric and elastic nonlinearities forBLF-PTM ceramics have been discussed. Unipole radial high power piezoelectric transformer wasprepared using BLF-PTM ceramics, and the equavilent circuit model has been built,and itselectrical properties have been characterized at room and elevated temperature.
     BGF-PT at MPB is coexistence of rhombohedral and tetragonal phases, exhibting enhanceddielectric constant, remanent polarization and decreased dielectric loss. XPS analysis indicates thatMPB components have less concentration of Fe~(2+)and oxide impurities. The impedance analysisshows that only grain contributed to the electrical properties of x=0.3and0.35, while both grain andgrain boundary contributed to that of x=0.25and0.45. The motion of oxygen vacancies contributeto the conductivity in the high temperature region, and MPB compositions shows high activationenergy.
     BLF-PTM ceramics have perovskite structure, and are coexistence of rhombohedral andtetragonal. Mn modification promotes grain growth. Upon using Mn substituents, BLF-PTMceramics exhibites the characteristics of hard piezoelectrics, such as (1) low polarization,(2) lowdielectric constant and loss,(3) high mechanical quality factor Qm,(4) low internal friction,(5) lowelastic modulus,(6) asymmetrical P-E loops. The dielectric loss, piezoelectric constant d33,piezoelectric voltage coefficient g33, planar coupling coefficient kp, mechanical quality factor Qmand Curie temperature Tcof0.006,124pC/N,37×10-3Vm/N,0.338,418and473oC, respectively,are achieved for BLF-PTM of x=0.01. kp,d33and Qmof Mn modified BLF-PTM show greattemperature stability, the depoled temperature Tdis370oC, and Qmis still more than200at250oC.A large vibration velocity of1.1m/s is achieved for this composition, with only6oC temperaturerise.
     Under higher applied fields, the nonlinear dielectric, elastic and piezoelectric effects areobserved in BLF-PTM. The dielectric and piezoelectric properties of BLF-PTM without Mnmodification obey the Rayleigh law under high electric field, whereas Mn modified BLF-PTM donot. The third order nonlinear elastic effect results in the shift of resonance frequency. However, thenonlinear dielectric constant, piezoelectric coefficient, nonlinear elastic compliance andelectromechanical coupling coefficient decrease by Mn substituents, attributed to its stable domainstructure, leading to low nonlinearities.
     According to equivalent circuit model, the match load and efficiency of unipole radialpiezoelectric transformer is found to be8.1k and2.1k,91.2%and84.3%at resonancefrequency and third order resonance frequency. Under resonance frequency and third order resonance frequency, the power density and efficiency of piezoelectric is30.1W/cm~3and23.5W/cm~3,83.4%and80.2%. With temperature rising, the voltage gain increases initially and thendecreases; the maximum voltage gain is35.6at200oC. The power density of piezoelectrictransformer is20W/cm~3at250oC, and exhibits large power density ever at300oC. Our resutsshows that the transformer prepared by BLF-PTM is a kind of high temperature and high powerpiezoelectric transformer.
引文
【1】 K. Uchino, Materials issues in design and performance of piezoelectric actuators: an overview [J], Mater.Res. Soc. Bull., Vol.18,1993, pp.42-48.
    【2】 S. Kawashima, O. Ohnishi, H. Hakamata, S. Tagami, A. Fukuoka, T. Inoue, and S. Hirose, Third orderlongitudinal mode piezoelectric ceramic transformer and its application to high-voltage power inverter,Proc. IEEE Int'l Ultrasonic Symp.'94, France,1994.
    【3】 K. Uchino, Advances in ceramic actuator materials [J], Mater. Lett.,Vol.22, No.11,1995, pp.1-4.
    【4】 H. Shin, H. Ahn and D. Han, Modeling and analysis of multilayer piezoelectric transformer [J], Mater.Chem. Phys., Vol.92,2005, pp.616-620.
    【5】 Z. P. Yang, X. L. Chao, R. Zhang, Y. F. Chang, and Y. Q, Chen, Fabrication and electrical characteristics ofpiezoelectric PMN–PZN–PZT ceramic transformers [J], Mater. Sci. Eng. B, Vol.138,2007, pp.277-283.
    【6】 R. C. Turner, P. A. Fuierer, R. E. Newnham, and T. R. Shrout, Materials for high temperature acoustic andvibration sensors: a review [J]. Appl. Acoust., Vol.41, No.4,1994, pp.299-324.
    【7】王守德,刘福田,芦令超,常钧,程新.高居里点压电陶瓷材料研究进展[J],山东陶瓷, Vol.27, No.4,2004, pp.14~17.
    【8】 Y. Gao, Ph.D Dissertation Thesis, The Pennsylvania State University, University Park, PA,2002.
    【9】 S. Sherrit, X. Bao, Y. Bar-Cohen, and Z. Chang, Resonance analysis of high temperature piezoelectricmaterials for actuation and sensing [J], Proceedings of the SPIE Smart Structures Conference, Vol.5387,2004, pp.5387-5396.
    【10】贾菲(美),压电陶瓷(林声和译)[M],北京:科学出版社,1979年,第一版.
    【11】文海,王晓慧,赵巍,王浩,李龙土等,高温压电陶瓷研究进展[J],硅酸盐学报, Vol.34, No.11,2006, pp.1367-1373.
    【12】王媛玉,吴家刚等,钪酸铋基高温压电材料的研究与进展[J],材料导报, Vol.21, No.1,2007, pp.27-29.
    【13】晏伯武,林汝湛,张海波,姜胜林,周东祥,高温高频用改性PbTiO3压电陶瓷材料的研究[J],压电与声光,Vol.27, No.4,2005, pp.418-420.
    【14】陈林,陈异,肖定全,朱建国高性能、高居里温度压电陶瓷研究进展[J],四川大学学报(自然科学版), Vol.42, No.2,2005, pp.150-153.
    【15】 M. Kaor, A. Masaki and F. Hiroshi, Electronic and Structural Properties of ABO3: Role of the B-OCoulomb Repulsions for Ferroelectricity [J], Materials, Vol.4,2011, pp.260-273.
    【16】 A. Manan, Y. Iqbal, M. Rahman and M. Khan et al.,AReview on Perovskites and investigation into Phaseand Microstructure of PbTiO3Samples Prepared by Mixed Oxide Route [J], Mater. Soc., Vol.2, No.1,2008, pp.15-21.
    【17】 K. Miura and T. Furuta, First-principles study of structural trend of BiMO3and BaMO3: Relationshipbetween tetragonal and rhombohedral structure and the tolerance factors [J]. Jpn. J. Appl. Phys., Vol.49,2010, pp.031501:1-6.
    【18】 M. R. Suchomel, P. K. Davies, Predicting the position of the morphotropic phase boundary in hightemperature PbTiO3-Bi(B’B”)O3based dielectric ceramics [J]. J. Appl. Phys., Vol.96,2004, pp.405-4410.
    【19】 V. R. Singh., D. C. Agrawalc,Structure and properties of lanthanum-doped bismuth ferrite thin films [J],Solid State Communications, Vol.149,2009, pp.734-73.
    【20】 D. Berlincoust and H. Kruger, Properties of specialized Clevite ceramics [J], J. UnderwaterAcoust., Vol.15,1965, pp.266-269.
    【21】 F. Kulcsar, Electromechanical properties of lead titanate zirconate ceramics with lead partially replaced bycalcium or strontium [J], J. Am. Ceram. Soc., Vol.42,1959, pp.49-51.
    【22】 F. Kulcsar, Electromechanical Properties of Lead Titanate Zirconate Ceramics Modified with CertainThree-or Five-Valent Additions [J], J. Am. Ceram. Soc. Vol.42,1959, pp.343-349.
    【23】 B. Jaffe, W. Cook, H. Jaffe, Piezoelectric ceramics [M], Academic Press, London and New York,1971.
    【24】 Q. Tan, J. F. Li and D.Vieland, Ferroelectric behavior dominated by mobile and randomly quenchedimpurities in modified Lead Zirconate ceramics [J], Philos. Mag. B, Vol.76,1997, pp.59-74.
    【25】 Q.Tan, Z. Xu and D.Vieland, Commonalities of the influence of lower valent A-site and B-sitemodifications on Lead Zirconate Titanate ferroelectrics and antiferroeletrics [J], J. Mater. Res., Vol.14,1999, pp.465-475.
    【26】 Y. Chen, K. Uchino and D. Vieland, Substituent-Introduction of “Hard” Polarization Characteristics in“Soft” Pb(BIBII)O3-PbTiO3ferroelectric ceramics [J], J. Appl. Phys., Vol.89, No.7,2001, pp.3928-3933.
    【27】 Y. Gao, Uchino and D.Vieland, Effects of rare earth metal substituents on the piezoelectric andpolarization properties of Pb(Zr,Ti)O3–Pb(Sb,Mn)O3ceramics [J], J. Appl. Phys., Vol.92,2003, pp.2094-2099.
    【28】 Y. Imry and S. Ma, Random-Field Instability of the Ordered State of Continuous Symmetry [J], Phys. Rev.Lett., Vol.35,1975, pp.1399–1401.
    【29】 F. Chu, I. Reaney, and N. Setter. Role of defects in the ferroelectric relaxor Lead Scandium Tantalate [J],J. Am. Cer. Um., Vol.78, No.71,1995, pp.1947-1952.
    【30】 R. Gerson, Variation in ferroelectric characteristics of Lead Zirconate Titanate ceramics due to minorchemical modifications [J], J. Appl. Phys., Vol.31,1960, pp.188-94.
    【31】 A. Hagimura and K. Uchino, Impurity doping effect on electrostrictive properties of (Pb,Ba)(Zr,Ti)O3[J],Ferroelectric. Vol.93,1989, pp.373-378.
    【32】 N. Pertsev and G.Arlt, Theory of the banded domain structure in coarse-grained ferroelectric ceramics [J],Ferroelectric, Vol.132,1992, pp.27-40.
    【33】 J. Chen, H. M. Chan and M. P. Harmer, Ordering structure and dielectric properties of undoped andLa/Na-doped Pb(Mg1/3Nb2/3)O3[J], J. Am. Ceram. Soc., Vol.73,1989, pp.593-598.
    【34】 B. Noheda, J. A. Gonzalo, L.E. Cross, R. Guo, S. E. Park, D. E. Cox and S. G, Tetragonal-to-Monoclinicphase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3[J], Phys. Rev. B, Vol.61, No.13,2000, pp.8687-8695
    【35】G. Shirane and K. Suzuki, Crystal structure of Pb(Zr, Ti)O3[J], J. Phys. Soc. Jpn., Vol.7,1952,pp.333-346.
    【36】S. T. Bowden, The phase rule and phase reactions: theoretical and practical, London, Macmillan,1938, pp.153.
    【37】S. K. Mishra, Dhananjai Pandey and Anirudh P. Singh, Effect of phase coexistence at morphotropic phaseboundary on the properties of Pb(ZrxTi1-x)O3ceramics [J], App. Phys. Lett., Vol.69,1996, pp.1707-1709.
    【38】H. Fu and Ronald E. Cohen, Polarization rotation mechanism for ultrahigh electromechanical response insingle-crystal piezoelectrics [J], Nature, Vol.403,2000, pp.901-906.
    【39】M.Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. Mao, R. J. Hemley, Y. Ren, P. Liermann andZ. Wu, Origin of morphotropic phase boundaries in ferroelectrics [J], nature, Vol.451,2008, pp.545-548..
    【40】R. Ahluwalia, T. Lookman, A. Saxena and W. Cao, Domain-size dependence of piezoelectric properties offerroelectrics [J], Phys, Rev. B, Vol.72,014112,2005, pp.1-13.
    【41】E. Sawaguchi, Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3and PbTiO3. J.Phys. Soc. Jpn., Vol.8,1953, pp.615-620.
    【42】B. Jaffe, R. S. Roth, S. Marzullo, Piezoelectric properties of lead zirconate–lead titanatesolid-solutionceramics [J]. J. Appl. Phys., Vol.25,1954, pp.809-810.
    【43】B. Jaffe, R. S. Roth, S. Marzullo, Properties of piezoelectric ceramics in the solid-solution series leadtitanate-lead zirconate-lead in oxide and lead titanate–lead hafnate [J], J. Res. Natio. Bur. Stand., Vol.55,1955, pp.239-254.
    【44】A. Singh, Pandey D. Structure and the location of the morphotropic phase boundaryregion in (1x)[Pb(Mg1/3Nb2/3)O3]–xPbTiO3[J], J. Phys.: Condens. Matter., Vol.13,2001, pp. L931-L936.
    【45】J. Kelly, M. Leonard, C. Tantigate et al., Effect of composition on the electromechanical properties of (1x)Pb(Mg1/3Nb2/3)O3–xPbTiO3ceramics [J]. J. Am. Ceram. Soc., Vol.80,1997, pp.957-964.
    【46】O. Noblanc, P. Gaucher, G. Calvarin, Structural and dielectric studies of Pb(Mg1/3Nb2/3)O3–PbTiO3ferroelectric solid solutions around the morphotropic boundary [J]. J. Appl. Phys., Vol.79,1996, pp.4291-4297.
    【47】S. E. Park, T. R. Shrout, Characteristics of relaxor-based piezoelectric single crystals for ultrasonictransducers [J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control., Vol.44,1997, pp.1140-1147.
    【48】S. W. Choi, T. R. Shrout, S. J. Jang and A. S. Bhalla, Morphotropic phase boundary in Pb(Mg1/3Nb2/3)O3-PbTiO3system, Mater. Lett., Vol.8, No.6,1989, pp.253-255.
    【49】F. Badillo, J. Eiras, F. Milton, D. Garcia, Preparation and microstructural, structural, optical andelectro-optical properties of La doped PMN-PT transparent ceramics [J], Optics and Photonics Journal, Vol.2,2012, pp.157-162.
    【50】T. H. Wang, C. S. Tu, Y. Ding, T. C. Lin, C. S. Ku, W. C. Yang, H. H. Yu, K. T. Wu, Y. D. Yao, H. Y. Lee,Phase transition and ferroelectric properties of xBiFeO3-(1-x)BaTiO3ceramics [J], Curre. Appl. Phys., Vol.11,2011, pp. s240-s243.
    【51】T. H. Wang, Y. Ding, C. S. Tu, Y. D. Yao, K. T. Wu, T. C. Lin, H. H. Yu, C. S. Ku, and H. Y. Lee, Structure,magnetic, and dielectric properties of (1-x)BiFeO3-xBaTiO3ceramics [J], J. Appl. Phys., Vol.109,07D907,2011, pp.1-3.
    【52】A. Singh, V. Pandey, R. K. Kotnala and D. Pandey, Direct evidence for multiferroic magnetoelectriccoupling in0.9BiFeO3–0.1BaTiO3[J], Phys. Rew. Lett., Vol.101,247602,2008, pp.1-4.
    【53】J. R. Cheng, N. Li, and L. E. Cross, Structural and dielectric properties of Ga-modified BiFeO3–PbTiO3crystalline solutions [J], J. Appl. Phys., Vol.94,2003, pp.5153-5157.
    【54】 J. R. Cheng and L. E. Cross, Effects of La substitute on ferroelectric rhombohedral-tetragonalmorphotropic phase boundary in (1-x)(Bi, La)(Ga0.05Fe0.95O3–xPbTiO3piezoelectric ceramics [J], J. Appl.Phys., Vol.94,2003, pp.5188-5192.
    【55】 Z. A. Li, H. X. Yang, H. F. Tian, J. Q. Li, J. R. Cheng, and J. G. Chen., Transmission electron microscopystudy of multiferroic Bi1xLaxFeO3–PbTiO3with x=0.1,0.2, and0.3[J], Appl. Phys. Letts., Vol.90,182904,2007, pp.
    【56】N. G. Wang, J. R. Cheng, A. Pyatakov., A. K. Zvezdin, J. F. Li, L. E. Cross, D. Viehland, Multiferroicproperties of modified BiFeO3-PbTiO3-based ceramics: Random-field induced release of latentmagnetization and polarization [J], Phys. Rev. B., Vol.72,104434,2005, pp.1-5.
    【57】I. Sterianou, I. M. Reaney, D. C. Sinclair and D. I. Woodward, High-temperature (1-x) BiSc1/2Fe1/2O3-xPbTiO3piezoelectric ceramics [J], Appl. Phys. Lett., Vol.87, No.24,242901,2005, pp.1-3.
    【58】祈玉发,BiFeO3-PbTiO3系高温压电陶瓷的制备与研究,上海大学硕士学位论文,2009. pp.65.
    【59】Y. Dai, X. Zhang, G. Zhou, Phase transitional behavior in K0.5Na0.5NbO3-LiTaO3ceramics [J], Appl. Phys.Lett. Vol.90, No.26,262903,2007, pp.1-3.
    【60】W. Liu and X. Ren, Large piezoelectric effect Pb-free ceramics [J], Phys. Rev. Lett., Vol.103,257602,2009,pp.1-4.
    【61】J. Daniels, K. H. Haerdtl, Defect chemistry and Electrical conductivity of doped barium titanate ceramics,part I, electrical conductivity at high temperatures of donor-doped barium titanate ceramics [J], Philips Res.Rep., Vol.31,1976, pp.489–504.
    【62】K. Carl and K. H. Haerdtl, Electrical after-effects in Pb(Ti,Zr)O3ceramics [J]. Ferroelectrics, Vol.17,1978,pp.473-486.
    【63】P. Gerthsen, K. H. Haerdtl and N. A. Schmidt, Correlation of mechanical and electrical losses inferroelectric ceramics [J], J. Appl. Phys. Vol.51,1980, pp.1131-1134
    【64】K. H. Haerdtl, Electrical and mechanical es in ferroelectric ceramics [J], Ceram. Int., Vol.8, No.4,1982, pp.121-127
    【65】K. Uchino, J. H. Zheng, Y. H. Chen, X. H. Du, J. Ryu, Y. Gao, S. Ural,S. Pruya,S. Hirose, Lossmechanisms and high power piezoelectrics [J], J. Mater. Sci., Vol.41,2006, pp.217–228.
    【66】Y. Gao, Yun-Han, J. Ryu, K. Uchino, and D. Viehland, Eu and Yb substituent effects on the properties ofPb(Zr0.52Ti0.48)O3-Pb(Mn1/3Sb2/3)O3ceramics: Development of a new high-power piezoelectric withenhanced vibrational velocity [J], Jpn. J. Appl. Phys., Vol.40,2001, pp.687-693.
    【67】S. Priya, and K. Uchino, Dielectric and piezoelectric properties of the Mn-substituted Pb(Zn1/3Nb2/3)O3–PbTiO3single crystal [J], J. Appl. Phys., Vol.91, No.7,2002, pp.4515-4520.
    【68】Y. H. Chen, S. Hisrose, D. Viehland S. Takahashi and K. Uchino, Mn-Modified Pb(Mg1/3Nb2/3)O3-PbTiO3ceramics: improved mechanical quality factors for high-power transducer applications [J], Jpn. J. Appl.Phys. Vol.39,2000, pp.4843-4952.
    【69】J. Ryu, H. W. Kim, K. Uchino and J. Lee, Effec of Yb addition on the sintering behavior and high powerpiezoelectric properies of Pb(Zr, Ti)O3-Pb(Mn, Nb)O3[J], Jpn. J. Appl. Phys., Vol.42,2003, pp.1307-1310.
    【70】K. Uchino, Piezoelectric actuators and ultrasonic motors [M], KluwerAcademic Publisher, Norwell,1996.
    【71】L. Wu, C.C. Lee, T. S. Wu and C. C. Wei, Effect of rare-earth oxide on the properties of piezoelectricceramics [J], Ferroelectrics, Vol.41,1982, pp.157-162.
    【72】S. Takahashi, Effects of impurity doping in lead zirconate-titanate ceramics, Ferroelectric, Vol.41,1982, pp.143-156.
    【73】L.X. He, M. Gao, C. E. Li,Effects of Cr2O3Addition on the Properties of PZT-PMN Ceramics [J], J. Inor.Mater., Vol16, No.2,2001, pp.337-343.
    【74】K. Bu, Y. Gao and K. Uchino, Design of a circular piezoelectric transformer with crescent shape inputelectrocdes [J], Jpn. J. Appl. Phys., Vol.42,2003, pp.1-6.
    【75】B. Kim, Y. Gao and K. Uchino, Disk type piezoelectric transformer design employing high powerpiezoelectric ceramic material, MRA Fall Meeting, Boston,1999.
    【76】H. W. Kim, S. Dong, P. Laoratanakul and K. Uchino, Novel method for driving the ultrasonic motor [J],IEEE Trans. Ultra. Ferro. Freq. Ctron., Vol49,2002, pp.1356-1362.
    【77】N. Zhang, X. L. Dong, D. Z. Sun and P. H. Xiang, Electrical properties of Pb(Mg1/3Nb2/3)O3-PbTi03ceramics modified with WO3[J], Mate. Res. Bull., Vol.39,2004, pp.175-184.
    【78】Z. G. Zhu, B. S. Li, G. R. Li, Microstructure and piezoelectric properties od PMS-PZT ceramics [J], Mate.Sci. Eng. B,117(2005)216-220.
    【79】J. C. Shaw, K. S. Liu and L. N. Liu, Modification of piezoelectric characteristics of Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTi03ternary system by aliovalent additives [J], J. Am. Ceram. Soc., Vol.7, No.1,1995, pp.178-182.
    【80】S. B. Seo, S. H. Lee, C. B. Yoon, Low-temperature sintering and piezoelectric prop erties of0.6Pb(Zr0.47Ti0.53)O3-0.4Pb(Zn1/3Nb2/3)O3ceramics [J], J. Am. Ceram. Soc., Vol.87, No.7,2004, pp.1238-1243.
    【81】Z. Yang, X. Zong, H. Li and Y. Chang, Structure and electrical properties od new Pb(Zr,Ti)O3-Pb(Fe2/3W1/3)O3-Pb(Mn1/3Nb2/3)O3ceramics [J], Mate. Lett., Vol.59,2005, pp.3476-3480.
    【82】H. Li, Z. Yang, X. Zong, High electrical properties of W-additive Mn-modified PZT-PMS-PZN, ceramicsfor high power piezoelelctirc transformers [J], Mate. Sci. Eng. B, Vol.130,2006, pp.288-294.
    【83】R. Herbiet, U. Robels, H. Dederichs and G..Arlt, Domain wall and volume contributions to materialproperties of PZT ceramics [J], Ferroelectrics, Vol.98,1989, pp.107-121.
    【84】D.A. Hall, Rayleigh behaviour and the threshold field in ferroelectric ceramics [J], Ferroelectrics, Vol.223,1999, pp.319-328.
    【85】U. Robels, C. Zadon and G. Arlt, DiP219: Linearization of dielectric nonlinearity by internal bias fields [J],Ferroelectrics, Vol.133,1992, pp.163-168.
    【86】D.A. Hall and M. M. Ben-Omran, Ageing of high field dielectric properties in BaTiO3-basedpiezoceramics [J], J. Phys.: Condens. Matter, Vol.10,1998, pp.9129-9140.
    【87】L. Rayleigh, XXV. Notes on electricity and magnetism.—III. On the behaviour of iron and steel under theoperation of feeble magnetic forces [J], Phil. Mag., Vol.23,1887, pp.225-245.
    【88】D. A. Hall and P. J. Stevenson, High field dielectric behaviour of ferroelectric ceramics [J], Ferroelectrics,Vol.228,1999, pp.139-158.
    【89】D. A. Hall, M. Cain and M. Stewart, Ferroelectric Hysteresis Measurement&Analysis, in Minutes of theNPL CAM7IAG Meeting, NPL,18th, March,1998.
    【90】D. A. Hall, M. M. Ben-Omran and P. J. Stevenson, Field and temperature dependence of dielectricproperties in BaTiO3-based piezoceramics [J], J. Phys.: Condens. Matter, Vol.10,1998, pp.461-476.
    【91】M. Demartin D. Damjanovic, Dependence of the direct piezoelectric effect in coarse and fine grain bariumtitanate ceramics on dynamic and static pressure [J], Appl. Phys. Lett., Vol.68,1996, pp.3046-3048.
    【92】D. Damjanovic and D. Demartin, The Rayleigh law in piezoelectric ceramics [J], J. Phys. D: Appl. Phys.,Vol.29,1996, pp.2057-2060.
    【93】J. E. García, R. Pérez, D. A. Ochoa, A. Albareda, M. H. Lente and J. A. Eiras, Evaluation of domain wallmotion in lead zirconate titanate ceramics by nonlinear response measurements [J]. J. Appl. Phys., Vol.103,054108,2008, pp.1-8.
    【94】J. E. García, J. D. S. Guerra, E. B. Araújo and R. Pérez, Domain wall contribution to dielectric andpiezoelectric responses in0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3ferroelectric ceramics [J], J. Phys. D: Appl.Phys., Vol.42,115421,2009, pp.1-6.
    【95】J. E. García, R. Pérez and A. Albareda, Contribution of reversible processes to the non-linear dielectricresponse in hard lead zirconate titanate ceramics [J], J. Phys.: Condens.Matter., Vol.17,2005, pp.7143–7150.
    【96】A. Bernal and N. Bassiri-Gharb, Polarization rotation contributions to dielectric nonlinearity in65Pb(Mg1/3Nb2/3)O3–35PbTiO3single crystals [J], Appl. Phys. Lett., Vol.95,042902,2009, pp.1-3.
    【97】P. Gonnard, V. Perrin, R. Briot and D. Guyomar, Characterization of the mechanical nonlinear behavior ofpiezoelectric ceramics [J], IEEE trans. Ultra. Ferro. Freq. control., Vol.47,2000, pp.844-853.
    【98】P. Gonnard, V. Perrin, R. Briot, D. Guyomar and A. Albareda, Characterization of the piezoelectric ceramicmechanical nonlinear behavior, Proc. ISAF’98,1998,353-356.
    【99】V. D. Kugel and L. E. Cross, Behavior of soft piezoelectric ceramics under high sinusoidal electric fields [J],J. Appl. Phys., Vol.84,1998, pp.2815-2830.
    【100】K. Ishii, N. Akimoto, S. Tashiro and H. Igarashi, Analysis of nonlinear phenomena in piezoelectricceramics under high-power vibration [J], J. Ceram J. Ceram. Soc. Japan., Vol.106,1998, pp.555-558.
    【101】K. Ishii, N. Akimoto, S. Tashiro and H. Igarashi, Influence of resistance on higher harmonic voltagegenerated in a piezoelectric transformer [J], Jpn. J. Appl. Phys., Vol.37,1998, pp.5330-5333.
    【102】K. Ishii, N. Akimoto, S. Tashiro and H. Igarashi,,Influence of material composition on3rdnonlinearpiezoelectric coefficient in Lead Zirconate Titanate ceramics [J], Jpn. J. Appl. Phys., Vol.39,2000, pp.5597-5599.
    【103】S. Priya, D. Viehland, A. V. Carazo, J. Ryu, and K. Uchino, High-power resonant measurements ofpiezoelectric materials: Importance of elastic nonlinearities [J], J. Appl. Phys.,90,3(2001)1469-1479.
    【104】H. Ouchi, K. Nagano, S. Hayakawa, Piezoelectric properties of Pb (Mg1/3Nb2/3) O3-PbTiO3-PbZrO3solidSolution ceramics [J], J. Ceram. Soc., Vol.48,1965, pp.630-635.
    【105】O. Ise, K. Satoh and Y, Mamiya, High power characteristics of piezoelectric ceramics in Pb (Mg1/3Nb2/3)O3-PbTiO3-PbZrO3system [J], Jpn. J. Appl. Phys., Vol.38,1999, pp.5531-5534.
    【106】B. S. Li, G. R. Li, S. C. Zhao, Characterization of the high-power piezoelectric properties of PMnN–PZTceramics using constant voltage and pulse drive methods [J], J. Phys. D: Appl. Phys., Vol.38,2005, pp.2265-2270.
    【107】B. S. Li, G. Li, W. Zhang and A. Dinrting, Influence of particle size on the sintering behavior andhigh-power piezoelectric properties of PMnN-PZT ceramics [J], Mate. Sci. Eng. B, Vl.121,2005. pp.92-97.
    【108】Z. Zhu, G. Li and Z J Xu, Effect of PMS modification on dielectricand piezoelectric properties inxPMS-(1-x)PZT ceramics [J], Appl. Phys., Vol.38,2005, pp.1464-1469.
    【109】Z. Zhu, G. Li and B. Li, The influence of Yb and Nd substituents on high-power piezoelectric propertiesof PMS-PZT ceramics [J], Ceram. Inter., Vol.34,2008, pp.2067-2072.
    【110】S. H. Park, S. Ural, C. W. Ahn and K. Uchino, Piezoelectric properties of Sb-, Li-, and Mn-substitutedceramics for high-power applications [J], Jpn. J. Appl. Phys, Vol.45,2006, pp.2667-2673.
    【111】Z. Yang, Y. Chang and X. Zong, Preparation and properties of PZT–PMN–PMS ceramics by molten saltsynthesis [J]. Mate Lett., Vol.59,2005, pp.2790-2793.
    【112】Z. Yang, H. Li and X. Zong M, Structure and electrical properties of PZT–PMS–PZN piezoelectricceramics [J], J. Euro. Ceram. Soc., Vol.26,2006, pp.3197-3202.
    【113】Z. Yang, R. Zhang and L. Yang, Effects of Cr2O3doping on the electrical properties and the temperaturestabilities of PNW–PMN–PZT ceramics [J] Mate. Res. Bull., Vol.42,2007, pp.2156-2162.
    【114】F. Gao, L. Cheng, R. Hong, Crystal structure and piezoelectric properties of xPb(Mn1/3Nb2/3)O3–(0.2-x)Pb(Zn1/3Nb2/3)O–0.8Pb(Zr0.52Ti0.48)O3ceramics [J] Ceram. Int., Vol.35,2009, pp.1719-1723.
    【115】R. Zuo, L. Li and X. Hu, Effect of silver dopant on electrical properties of PMN–PNN–PZT piezoelectricceramics by complex impedance spectroscopy [J] Mate. Lett., Vol.54,2002, pp.185-190.
    【116】S. Zhao, H. Wu and Q. Sun, Study on PSN–PZN–PZT quaternary piezoelectric ceramics near themorphotropic phase boundary [J], Mate. Sci. Eng. B, Vol.123,2005, pp.203-210.
    【117】孙琳,孙清池,胜鹏,五元系PZN-PSN-PMS-PZT压电陶瓷的研究[J],压电与声光,Vol.26,2006,pp.35-38.
    【118】D.Tanaka, J. Yamazaki, M. Furukawa and T. Tsukada, High Power Characteristics of (Ca,Ba)TiO3Piezoelectric Ceramics with High Mechanical Quality Factor [J], Jpn. J. Appl. Phys., Vol.49,09MD03,2010, pp.1-4.
    【119】H. Ogawa, S. Kawada, M. Kimura, Y. Higuchi, and H. Takagi, High-Power Characteristics of ThicknessShear Mode for Textured SrBi2Nb2O9Ceramics [J], Jpn. J. Appl. Phys., Vol.48,09KD05,2009, pp.1-4.
    【120】H. Ogawa, S. Kawada, M. Kimura, K. Shiratsuyu, Y. Sakabe, High-power piezoelectric characteristics oftextured bismuth layer structured ferroelectric ceramics [J], IEEE trans. Ultra. Ferro. Freq. control., Vol.54,2007, pp.2500-2504.
    【121】S. Kawada, H. Ogawa, M. Kimura, K. Shiratsuyu, and H. Niimi, Relationship between Vibration Directionand High-Power Characteristics of <001>-Textured SrBi2Nb2O9Ceramics [J] Jpn. J. Appl. Phys., Vol.46,2007, pp.7079-7083.
    【122】S. Kawada, H. Ogawa, M. Kimura, K. Shiratsuyu, and Y. Higuchi, High-Power Piezoelectric VibrationCharacteristics of Textured SrBi2Nb2O9Ceramics [J], Jpn. J. Appl. Phys., Vol.45,2006, pp.7455-7459.
    【123】J. Ryu, S. Piya, C. Sakaki and K. Uchino, High power piezoelectric characteristics BiScO3-PbTiO3-Pb(Mn1/3Nb2/3)O3[J], Jpn. J. Appl. Phys., Vol.41,2002, pp.6040-6044.
    【124】S. Zhang, R. Xia, L. Lebrun, D.Anderson, T. Shrout, Piezoelectric materials for high power, hightemperature [J], applications, Mate. Lett., Vol.59,2005, pp.3471-3475.
    【125】Y. N. Venevtsev, G. S. Zhdanov, S. P. Solovev, E. V. Bezus, V. V. Ivanova, S.A.Fedulov, and A. G.Kapyshev, Kristallografiya, Crystal Chemical Studies of Substances with Perovskite Type Structure andSpecial Dielectric Properties [J], Soviet. phys. Cryst., Vol.5, No.620,1960, pp.594.
    【126】S. A. Fedulov, P. B. Ladyzhinskii, I. L. Pyatigorskaya, and Yu. N. Venevsev, Compelete phase diagram ofthe PbTiO3-BiFeO3system [J], Soviet. Phys. Cryst. Vol.6, No.2,1964, pp.375-378.
    【127】D. I. Woodward and I. M. Reaney, et al, Crystal and domain structure of the BiFeO3–PbTiO3solid solution.J. Appl. Phys, Vol.94, No.5,2003, pp.3313-3318
    【128】S. Bhattacharjee, S. Tripathi, and D. Pandey, Morphotropic phase boundary in (1-x)BiFeO3-xPbTiO3:phase coexistance region and unusually large tetragonality [J], Appl. Phys. Lett., Vol.91.2007,042903,pp.1-3.
    【129】T. L. Burnett, T. P. Comyn,A. J. Bell, E. Condliffe and G. Lloyd,Imaging of domains in single crystals ofBiFeO3-PbTiO3using various microscopy techniques [J]. Journal of Physics: Conference Series, Vol.26,2006, pp.239-242.
    【130】W. M. Zhu, H. Y. Guo, and Z. G. Ye, structure and magnetic characterization of multiferroic(BiFeO3)1-x(PbTiO3)xsolid solutions [J], Phys. Rev. B, Vol.78,014401,2008, pp.1-10.
    【131】V. V. S. S. Sai. Sunder, A. Halliyal, and A. M. Umarji, Investigation in the BiFeO3-PbTiO3system byhigh-temperature x-ray diffraction [J], J. Mater. Res., Vol.10,1995, pp.1301-1306.
    【132】MikaelA. Khan, Timothy P. Comyn,Andrew J. Bellw, et al, Processing of nanoparticulate Bismuth FerriteLead Titanate (BFPT) through high-energy milling [J], J. Am. Ceram., Vol.88,2005, pp.2608-2610.
    【133】C. Correas, I. Martínez, A. Castro and T. Hungría, Optimization of the mechanochemical conditions forthe synthesis of the xBiFeO3–(1x)PbTiO3multiferroic system [J], Journal of Alloys and Compounds,Vol.509,2011, pp.5483-5487.
    【134】L. Zhang, Z. Xu, L. Cao, Xi Yao, et al, Synthesis of BF–PT perovskite powders by high-energy ballmilling [J], Mater. Lett., Vol.61,2007, pp.1130-1133.
    【135】H. Sheng and Z. Yue, et al, Synthesis of BiFeO3-PbTiO3powders by sol-gel Auto-combustion process [J],Key engineering materials, Vol.280-283,2005, pp.609-612.
    【136】T. Wei, H. Liu, C. Zhu, Y. Guo, J. Liu, Y. Wu and X. M. Chen, Size-dependent structural preferences andmagnetization enhancement in0.5Bi0.8La0.2FeO3–0.5PbTiO3[J], J. Appl. Phys., Vol.108,124108,2010),pp.1-5.
    【137】K. Singh, N. S. Negi, R. K. Kotnala and M. Singh, Dielectric and magnetic properties of (BiFeO3)1x(PbTiO3)xferromagnetoelectric system [J], Solid State Communications, Vol.148,2008, pp.18-21.
    【138】J. Chen, L. Feng, G. Shi, L. Zhao, S. Yu and J. Cheng, Dielectric and multiferroic properties of(Bi,La)FeO3-PbTiO3ceramics. The19th ISAF, IEEE International Symposium,2010.
    【139】T. Comyn and D. Kanguwe, et al. Synthesis of bismuth ferrite lead titanate nano-powders and ceramicsusing chemical co-precipitation [J], J. Euro. Ceram. Soc., Vol.28,2008, pp.2233-2238.
    【140】J. cheng, R. Eitel, and L. E. Cross, Lanthanum-Modified (1–x)(Bi0.8La0.2)(Ga0.05Fe0.95)O3-xPbTiO3Crystalline Solutions: Novel Morphotropic Phase-Boundary Lead-Reduced Piezoelectrics [J], J. Am.Ceram. Soc, Vol.86,2003, pp.2111-2115
    【141】 J. Chen, Y. Qi, G. Shi, S. Yu and J. Cheng, A high temperature piezoelectric ceramics:(1-x)(Bi0.9La0.1)FeO3–xPbTiO3Crystalline Solutions [J], IEEE Transactions on Ultrasonics,Ferroelectrics, And Frequency Contro., Vol.56,2009, pp.1820-1825
    【142】J. Cheng, Z, Meng and L. E. Cross, Piezoelectric performances of lead-reduced (1x)(Bi0.9La0.1)(Ga0.05Fe0.95)O3-x.(Pb0.9Ba0.1)TiO3crystalline solutions in the morphotropic phase boundary [J], J. Appl.Phys., Vol.96,6611,2004, pp.1-5.
    【143】J. Chen, J. Cheng, S. Yu, D. Jin and Z. Meng, Effects of La concentration on the structural and dielectricproperties of0.57BiFeO3-0.43PbTiO3crystalline solutions [J], IEEE Tran. Ultra. Ferro. Freq. Ctrl., Vol.54,2007, pp.2637-2640.
    【144】J. Chen, Y. Qi, G. Shi, X. Yan, S. Yu and J. Cheng, Diffused phase transition and mutiferroic properties of0.57BiFeO3-0.43PbTiO3crystalline solutions [J], J. Appl. Phys., Vol.104,2008, pp.1-5.
    【145】A. Singh, R. Chatterjee, et al, Origin of Large Dielectric Constant with Large Remnant Polarization andEvidence of Magnetoelectric Coupling in Multiferroic La modified BiFeO3-PbTiO3Solid Solution [J],Eprint Arxiv, Vol.2,2010, pp.1-20.
    【146】T. Leist, G. Kyle, Webber, et al, Stress-induced structural changes in La-doped BiFeO3–PbTiO3high-temperature piezoceramics [J], Acta Materialia., Vol.58, No.18,2010, pp.5962-5971
    【147】T. Leist, T. Granzow, et al, Effect of tetragonal distortion on ferroelectric domain switching: A case studyon La-doped BiFeO3–PbTiO3ceramics [J], J. Appl. Phys. Vol.108,014103,2010, pp.1-8
    【148】R. Zuo, Y. Wu, J. Fu, et al, Influences of dopants on BiFeO3–PbTiO3ferroelectric ceramics [J], MaterialsChemistry and Physics, Vol.113,2009, pp.361-364.
    【149】W. Zhu, Z. Ye, et al, Effects of chemical modification on the electrical properties of0.67BiFeO30.33PbTiO3ferroelectric ceramics [J], Ceramics International, Vol.30,2004, pp.1435-1442.
    【150】陈建国,铁酸铋-钛酸铅多铁性固溶体的掺杂改进及能表征,上海大学博士论文,2010,9.
    【151】祁玉发, BiFeO3–PbTiO3系高温压电陶瓷的制备与研究,上海大学硕士学位论文,2009,3
    【152】赵龙,铁酸铋-钛酸铅系高温压电陶瓷的掺杂改性及电导机理研究,上海大学硕士学位论文,2011,3.
    【153】Y. Qi, J. Chen, G. Shi, S. Yu and J. Cheng, Effects of Ga on the structure and electrical properties of0.65(Bi0.94La0.06)(GaxFe1-x)O3-0.35PbTiO3ceramics [J], IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control., Vol.56, No.9,2009, pp.1826-1829.
    【154】J. Bell, T. Schlegel, et al, Impedance Spectroscopy of Mn-Doped BiFeO3-PbTiO3Ceramics [J], IEEE Int.Symp. Appl. Ferroelectrics, Vol.15,2006,1-4.
    【155】张福学,王丽坤.现代压电学(上册中册)[M],科学出版社,北京,2002.
    【156】电子陶瓷情报网,压电陶瓷应用[M],山东大学出版社,济南,1985.
    【157】J.范兰德拉特, R.塞德林顿主编,彭浩波等译,压电陶瓷[M],科学出版社,北京,1980.
    【158】晁小练,低温烧结PZT基压电陶瓷材料的研究及器件开发,山西师范大学博士论文,2009,3.
    【159】C.A. Rosen,Analysis and Design of Ceramic Transformer Transformers and Filter Elements. Ph.D.Dissertation, Electrical Engineering Dept., Syracuse University,1956.
    【160】C.A. Rosen. Ceramic transformers and filters, Proc. of Electronic Comp. Symp.,1956, pp.205-211.
    【161】C.A. Rosen, US Patent No.2,974,296,1961.
    【162】Y. Sasaki, K. Uehara, T. Moue. Piezoelectric ceramic transformer being driven with thickness extensionalvibration, US Patent, No.5,241,236,1993.
    【163】R. P. Bishop. Multi-Layer Piezoelectric Transformer, US Patent No.5,834,882, Nov.10,1998
    【164】R. L. Lin, Piezoelectric Transformer Characterisation and Application of Electronic Ballast (PhDThesis), Virginia Polytechnic Institute and State University,2001.
    【165】T. Zaitsu, T. Inoue, O. Ohnishi, and Y. Sasaki,2MHz power converter with piezoelectric ceramictransformer, IEICE Transactions on Electronics, Vol. E77-C,1994, pp.280-286.
    【166】K. Breb l, Piezoelectric Transformer, U.S. Patent6,707,235,2004.
    【167】T. Bove, W. Wolny, E. Ringgaard, and K. Breboel, New type of piezoelectric transformer with very highpower density, presented at IEEE International Symposium on Applications of Ferroelectrics,2000.
    【168】O. Ohnishi, H. Kishie, A. Iwamoto, Y. Sasaki, T. Zaitsu, and T. Inoue, Piezoelectric ceramic transformeroperating in thickness extensional vibration mode for power supply, presented at IEEE UltrasonicsSymposium,1992.
    【169】E. M, Syed, F. P. Dawson and E. S. Rogers,Analysis and modeling of a Rosen type piezoelectrictransformer, IEEE PESC, Vol.4,2001, pp.1761-1766.
    【170】H. Fukunaga, H. Kakehashi, H. Ogasawara and Y. Ohta, Effect of dimension on characteristics ofRosen-type piezoelectric trmsformer [J], PESO98, Vol.2,1998, pp.1504-1510
    【171】Y. Hsu, C. Kung, L. Wen, H. Hsiao, Electrical and mechanical fully coupled theory and experimentalverification of Rosen-type piezoelectric transformers [J], IEEE Transactions Ultrasonics Ferroelectricsand Frequency Control.,2005, pp.1829-1839.
    【172】S. Tagami, H. Hakamta, KawashiMa et al., Development of color-LCD backlight inverters utilizingpiezoelectric transformer [J], NEC Technical Journal, Vol.47, No.10,1994, pp.106-110.
    【173】J. W. C. Vries, P. Jedeloo and R. Porath, Co-fired piezoelectric multilayer transformers, Proceedings of theTenth IEEE international symposium on applications of Ferroelectrics,1996, pp.173-176.
    【174】S. Kawashima, O. Ohnishi, H. Hakamata, S. Tagami, Third order longitudinal mode piezoelectric ceramictransformer and its application to high voltage power inverter. IEEE Int'1Ultrasonic Symp. Proc.,1994.
    【175】K. Sakurai, S. Shindou, K. Ohnishi, Y. Tomikawa, Piezoelectric ceramic transformer using radial vibrationmode disks, Ultrasonics Symposium,1998, Proceedings,1998.
    【176】佐佐木康弘,l0W级积层压电トうンスの开发[J], NEC技报, Vol.10,1998, pp.8184.
    【177】滕野超使,压电トうンス用ハイパーセうミック材料っソて[J],电子情报通信学会论文志, Vol.10,1988, pp.1682-1687.
    【178】A. V. Carazo,50Years of piezoelectric transformers. Trends in the technology, presented at MaterialsResearch Society Symposium, Boston, MA, United States,2003.
    【179】J. Wu, Y. Jia, H. Zhu, X. Zhao, L. Luo, Rosen-type Pb(Mg1/3Nb2/3)O3–PbTiO3single crystal piezoelectrictransformer [J], Review of Scientific Instruments, Vol.78,073903,2007, pp.1-5.
    【180】Y. Jia, L. Luo, X. Zhao, F. Wang, Giant magnetoelectric response from a piezoelectric/magnetostrictiveLaminated composite combined with a piezoelectric transformer []J, Adv. Mater., Vol.20,2008, pp.4776–4779.
    【181】Y. Zhuang, O. Ural, R. Gosain, S. Tuncdemir, A. Amin and K. Uchino, High Power PiezoelectricTransformers with Pb(Mg1/3Nb2/3)O3--PbTiO3Single Crystals [J], Applied Physics Express, Vol.2,121402,2009, pp.1-3.
    【182】NEC. Thickness Mode Piezoelectric Transformer, US Patent No.5,691592,1992.
    【183】M. Katsuno, Y. Fuda, Piezoelectric transformer using inter-digital internal electrodes, UltrasonicsSymposium,1998. Proceedings.,1998IEEE, Vol.1,1998, pp.897-900.
    【184】P. Laoratanakul and K. Uchino, Designing a radial mode laminated piezoelectric transformer for highpower applications,2004IEEE International Ultrasonics, Ferroelectric, and Frequency Control Joint50thAnniversary Conference,2004, pp.229-232.
    【185】E. M. Baker, W. Huang, D. Y. Chen and F.C. Lee, Radial Mode Piezoelectric Transformer Design forFluorescent Lamp Ballast Applications [J], IEEE Transactions on Power Electronics, Vol.20, No.5,2005,1213
    【186】D.A. Berlincourt et al., Piezoelectric transformer, US Patent Specification3764848,1973.
    【187】P. Laoratanakul, et al., Unipoled disk-type piezoelectric transformers [J], Jpn. J.Appl. Phys., Vol.41,2002,pp.1446-1450.
    【188】S. Priya, S. Ural, H. W. Kim, K. Uchino, and T. Ezaki, Multilayered unipoled piezoelectric transformers [J],Jpn. J. Appl.Phys., Vol.43,2004, pp.3503-3510.
    【189】S. Priya, J. Zahnd, S.W. Kim, S. Ural and K. Uchino, Unipoled piezoelectric transformers for automobilelighting [J], presented at Actuator2004, Bremen, Germany,2004.
    【190】S. Manuspiya, P. Laoratankul and K. Uchino, Integration of a piezoelectric transformer and an ultrasonicmotor [J], Ultrasonics, Vol.41,2003, pp.83-87.
    【191】H. Kim, S. Dong, P. Laoratanakul, K. Uchino, Novel Method for Driving the Ultrasonic Motor, IEEEInternational Ultrasonics, Ferroelectric, and Frequency Control, VoL.49, No.10,2002, pp.1356-1362.
    【192】K. Uchino, S. Priya, S. Ural,A. V. Carazo, and T. Ezaki, High power piezoelectric transformers-Theirapplications to smart actuator systems [J], Ceram. Trans., Vol.167,2005, pp.383-396.
    【193】T. Hemsel, S. Priya, Model based analysis of piezoelectric transformers [J], Ultrasonics, Vol.44,2006, pp.e741-e745.
    【194】P. P lpán, J. Erhart, Thransformer ratio of “ring-dot” planar piezoelectric transformer [J], Sensors andActuators A, Vol.140,2007, pp.215-224.
    【195】M. Yamamoto, Y. Sasaki, moue T et al. Piezoelectric transformer for30W outputAC-DC converters [J],Applications of Ferroelectrics,2002. ISAF2002. Proceedings of the13th IEEEInternational Symposiumon,28May-1June2002,347-350.
    【196】J. Du, J. Hu and K. Tseng, High-Power, Multioutput piezoelectric transformers operating at thethickness-shear vibration mode [J], IEEE transactions on ultrasonics, ferroelectrics, and frequency control,Vol.51, no.5,2004, pp.502-509.
    【197】A. M. Flynn and S. R. Sanders, Fundamental limits on energy transfer and circuit considerations forpiezoelectric transformers [J], IEEE Transactions on Power Electronics, Vol.17,2002, pp.8-14.
    【198】T. Zhou, X. Wang, H. Wang, C. Zhong, L. Li and L. Chen, Bulk dense fine-grain (1x)BiScO3–xPbTiO3ceramics with high piezoelectric coefficient.[J], Appl. Phys. Lett., Vol.93,192913,2008, pp:1-3.
    【199】V. V. S. S. Sai Sunder, A. Halliyal and A. M. Umarji, Investigation of tetragonal distortion in thePbTiO3–BiFeO3system by high-temperature x-ray diffraction [J], J. Mater. Res., Vol.10,1995, pp.1031-1036.
    【200】C. J. Stringer, T. R. Shrout and C. A. Randall, Classification of transition temperature behavior inferroelectric PbTiO3--Bi(Me'Me")O3solid solutions [J], J. Appl. Phys., Vol.99,024106,2003, pp.1-4.
    【201】S. Bhattacharjee, V.Pandey, R. K. Kotnala, and D. Pandey, Unambiguous evidence for magnetoelectriccoupling of multiferroic origin in0.73BiFeO3--0.27PbTiO3[J], Appl. Phys. Lett., Vo.94,012906,2009,pp.1-3.
    【202】殷之文,电介质物理[M],科技出版社,北京,2003.
    【203】J. Chen, X. Xing,A. Watson, W. Wang, R. Yu, J. Deng, L. Yan, C. Sun and X. Chen, Chem. Mater., Vol.19,No.15,2007, pp.3598-3600.
    【204】Y. P Wang, L Zhou, M. F. Zhang, X. Y. Chen, J-M. Liu and Z. G. Liu, Room-temperature saturatedferroelectric polarization in BiFeO3ceramics synthesized by rapid liquid phase sintering [J], Appl. Phys.Lett., Vol.84, No.10,2004, pp.1731-1733.
    【205】A. Lahmar, S. Habouti, C-H. Solterbeck, M.E-Souni and B.Elouadi, Correlation between structure,dielectric, and ferroelectric properties in BiFeO3–LaMnO3solid solution thin films [J], J. Appl. Phys.,Vol.105,014111,2009, pp.1-8.
    【206】R. K. Dwivedi, D. Kumar, and Om Parkash, Dielectric relaxation in valence compensated solid solutionSr0.65La0.35Ti0.65Co0.35O3[J], J. Phys. D: Appl. Phys., Vol.33,2000, pp.88-95.
    【207】O. Parkash, C. D. Prasad, Dielectric relaxator behaviour of the system Sr1xLaxTi1xCoxO3[J], J. Mater.Sci., Vol.25,1990, pp.487-492.
    【208】F. Z. Huang, X. M. Lu, W. W. Lin, X. M. Wu, and J. S. Zhu, Effect of Nd dopant on magnetic and electricproperties of BiFeO3thin films prepared by metal organic deposition method [J], Appl. Phys. Lett., Vol.89,242914,2006, pp.1-3.
    【209】T. Yamashita and P. Hayes, Analysis of XPS spectra of Fe2+and Fe3+ions in oxide materials [J], Appl.Surf. Sci., Vol.254,2008, pp.2441-2449.
    【210】周伟舫,电化学测量[M],上海:上海科学技术出版社,1985.
    【211】崔晓莉,江志裕,交流阻抗谱的表示及应用[J],上海师范大学学报(自然科学版), Vol.30, No.4,2001,pp.53-61.
    【212】史美伦,交流阻抗谱原理及应用[M],北京:国防工业出版社,2001, pp.253-258.
    【213】Z. G. Yia, Y. X. Lib, Z. Y. Wen, S. R. Wang J. T. Zenga, and Q. R. Yin, Intergrowth Bi2WO6–Bi3TiNbO9ferroelectrics with high ionic conductivity [J], Appl. Phys. Lett., Vol.86,192906,2005, pp.1-3.
    【214】D. C. Sinclair and A. R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3showingpositive temperature coefficient of resistance [J]. J. Appl. Phys., Vol.66, No.8,1989, pp.3850-3856.
    【215】D. C. Sinclair and A. R. West, Electrical properties of a LiTaO3single crystal [J], Phys..Rev. B, Vol.39,13486,1989, pp.13486-13492.
    【216】Campbell C.K, Vanwykj D, Holm F. K, et al, Aspects of modeling of high voltage ferroelectric nonlinearceramic capacitors [J], IEEE Trans Compon Hydirds Manuf Technol, Vol.15, No.2,1992, pp.245-251.
    【217】Campbell C.K, Vanwykj D, Holm F. K, et al, Relaxation effects in high voltage barium titanate nonlinearceramic disk capacitors [J], IEEE Trans Compon Hydirds Manuf Technol, Vol.16, No.4,1993,pp.418-423.
    【218】D. P. Canna and C. A. Randall, Electrode effects in positive temperature coefficient and negativetemperature coefficient devices measured by complex-plane impedance analysis [J], J. Appl. Phys., Vol.80No.3,1996, pp.1628-1632.
    【219】张中太,齐建全,唐子龙,等, BaTiO3系PTCR材料电学性能的复阻抗解析[J],硅酸盐学报, Vol.24,No.1,1996, pp.100-103.
    【220】杨雪娜,王弘,尚淑霞,等,化学溶液沉积法制备掺镧Bi2Ti2O7薄膜及其特性的研究[J],硅酸盐学报, Vol.32, No.4,2004, pp.251-254.
    【221】M. A. L Nobre and S. Lanfred, Impedance spectroscopy analysis of high-temperature phase transitions insodium lithium niobate ceramics [J], J. Phys.: Condens. Matter., Vol.12,2000, pp.7833–7841.
    【222】A. R. Jamesa, S. Priya, K. Uchino and K. Srinivas, Dielectric spectroscopy of Pb(Mg1/3Nb2/3)O3-PbTiO3single crystals [J], J. Appl. Phys., Vol.90, No.7,2001, pp.35043508.
    【223】Finlay D. Morrison, Derek C. Sinclair, and Anthony R. Wes, Characterization of Lanthanum-DopedBarium Titanate Ceramics Using Impedance Spectroscopy [J], J. Am. Ceram. Soc., Vol.84, No.3,2001,pp.531–38.
    【224】C. Verdie, F. D. Morrison, D. C. Lupascu, J. F. Scott, Fatigue studies in compensated bulk lead zirconatetitanate [J], J. Appl, Phys., Vol.97,024107,2005, pp.1-6.
    【225】N. Phoosit, D. C. Sinclair and S. Phanichphant, Proceedings of the2nd IEEE International Conference onNano/Micro Engineered and Molecular Systems,2007, pp.947-950.
    【226】K. S. Raoa, P. M. Krishna, D. M. Prasad, J. Lee, J. Kimb, Electrical, electromechanical and structuralstudies of lead potassium samarium niobate ceramics [J], Journal of Alloys and Compounds, Vol.464,2008, pp.497-507.
    【227】S. Sen, R. N. P. Choudhary, A. Tarafdar and P. Pramanik, Impedance spectroscopy study of strontiummodified lead zirconate titanate ceramics [J], J. Appl. Phys., Vol.99,124114,2006, pp.1-8.
    【228】M. A. L. Nobre and S. Lanfredi, Dielectric loss and phase transition of sodium potassium niobate ceramicinvestigated by impedance spectroscopy [J], Catalysis Today, Vol.78,2003, pp.529-538.
    【229】V. L. Mathe, K. K. Patankar, R. N. Patil and C. D. Lokhande, Synthesis and dielectric properties ofBi1xNdxFeO3perovskites [J], J. Magn. Mater., Vol.270,2004. pp.380-388.
    【230】A. R. West, D. C. Sinclair and N. Horpse, Characterization of electrical aterials, especially ferroelectricsby impedance spectroscopy [J], Journal of Electroceramics, Vol.1, No.1,1997, pp.65-71.
    【231】Y. J. Wei, L. Y. Yan, C. Z. Wang, X. G. Xu, F. Wu, and G. Chen, Effects of Ni Doping on [MnO6]Octahedron in LiMn2O4,J. Phys. Chem. B, Vol.108,2004, pp.18547-18551.
    【232】A. Molak, E. Talik, M. Kruczek, M. Paluch, A. Ratuszna, Z. Ujma, Characterisation of Pb(Mn1/3Nb2/3)O3ceramics by SEM, XRD, XPS and dielectric permittivity tests [J],Materials Science and Engineering B,Vol.128,2006, pp.16–24.
    【233】E.Beyreuther, S. Grafstr m, and L. M. Eng,XPS investigation of Mn valence in lanthanum manganite thinfilms under variation of oxygen content [J], Phsy. Rev. B, Vol.73,155425,2006, pp.1-9.
    【234】L. Wu, C. C, Wei, T. S. Wu, and C. C.Teng, Dielectric properties of modified PZT ceramics [J], J. Phys. C:Solid State Phys., Vol.16,1983, pp.2803-2812.
    【235】Y. Gao, K. Uchino, and D. Vielhland, Effects of thermal and electrical histories on hard piezoelectrics: Acomparison of internal dipolar fields and external dc bias [J], J. Appl. Phys., Vol.101,054109(2007)1-6.
    【235】Y. Gao, K. Uchino, and D. Viehland, Domain wall release in “hard” piezoelectric under continuous largeamplitude ac excitation [J], J. Appl. Phys., Vol.101,114110,2007, pp.1-7.
    【236】Y. N. Huang, Y. N. Wang, H. M. Shen, Internal friction and dielectric loss related to domain walls Phys.Rev. B, Vol.46,1992, pp.3290-3295.
    【237】C.Wang, Q. F. Fang, Y. Shi, Z. G. Zhu, Internal friction study on oxygen vacancies and domain walls inPb(Zr,Ti)O3ceramics [J], Materials Research Bulletin, Vol.36,2001, pp.2657–2665.
    【238】H. Frayssignesa, M. Gabbaya, G. Fantozzia, N. J. Porchb, B. L. Chengc, T. W. Buttonb, Internal friction inhard and soft PZT-based ceramics [J], Journal of the European Ceramic Society, Vol.24,2004, pp.2989–2994.
    【239】贺连星,李承恩,陈廷国,王志勇,晏海学, PZT陶瓷中由氧空位与畴壁相互作用引起的内耗[J],Vol.7, No.1,200l, pp-16-19.
    【240】贺连星,李承恩,鉴壁旦,刘卫,朱震刚,水嘉鹏,偏铌酸铅陶瓷低频内耗的研究[J],无机材料学报,Vol. l5, No.5,2000, pp.827-832.
    【241】Z. Y. Wang, T. G. Chen, W. M. Zhu et al., Low—frequency internal friction study for SiBi2TaO9ferroelectric ceramics [J], Acta Physica Sinica, Vol.7, No.10,1998, pp.764-772.
    【242】E. M. Bourim, H. Idrissi, B. Cheng et al., Elastic modu1ous and mechanical loss associated with phasetransitions and domain walls motion in PZT based ceramics [J], De Physique IV, Vol.6,1996. pp.633-636.
    【243】B. I. Halperin, C. M. Vatma, Defects and the central peak near structure phase transitions [J], P Phys. Rev.B, Vol.14,1976, pp.4030-4044.
    【244】D. A. Hall, Review Nonlinearity in piezoelectric ceramics [J],.J. Mater. Sci.,Vol.36,2001, pp.4575-4601.
    【245】S. O, S. Tuncdemir, Y. Zhuang and K. Uchino, Development of a high power piezoelectric characterizationSystem and its application for resonance/antiresonance mode characterization [J], Jpn. J. Appl. Phys., Vol.48,056509,2009, pp.1-5.
    【246】E. M. Dayaa, L. Azrarb, M. Potier-Ferrya, An amplitude equation for the non-linear vibration ofviscoelastically damped sandwich bar [J], Journal of Sound and Vibration, Vol.271,2004, pp.789–813.
    【247】D. Jiles, Introduction to Magnetism and Magnetic Materials, London: Chapman and Hall,1991, pp.95.
    【248】L. Neel Theory of Rayleigh's law of magnetization [J], Cahiers Phys., Vol.12,1942, pp.1–20.
    【249】Q. M. Zhang, W. Y. Pan, S. J. Jang and L. E. Cross, Domain wall excitations and their contributions to theweak signal response of doped lead zirconate titanate ceramics [J], J.Appl. Phys., Vol.64,1988, pp.6445–6451.
    【250】S. Li, W. Cao and L. E. Cross, The extrinsic nature of nonlinear behavior observed in lead zirconatetitanate ferroelectric ceramic [J], J. Appl. Phys., Vol.69,1991, pp.7219–7224.
    【251】B. Peng, Z. Yue, and L. Li, Evaluation of domain wall motion during polymorphic phase transition in (K,Na)NbO3-based piezoelectric ceramics by nonlinear response measurements [J], J. Appl. Phys., Vol.109,054107,2011, pp.1-4.
    【252】H. Zhang, S. Jiang and K. Kajiyoshi, Nonlinear dielectric properties of (Bi0.5Na0.5)TiO3-based lead-freepiezoelectric thick films [J], Appl. Phys. Lett., Vol.98,072908,2011, pp.1-3.
    【253】R. E. Eitel, T. R. Shrout and C. A. Randall, Nonlinear contributions to the dielectric permittivity andconverse piezoelectric coefficient in piezoelectric ceramics [J],.J. Appl. Phys., Vol.99,124110,2006, pp.1-7.
    【254】P. A. Johnson, B. Zinszner and P. J. Rasolofosaon, Dynamic measurements of the nonlinear elasticparameter in rock under varying conditions [J], J. Geophys. Reseach., Vol.109,2004, pp.10129-10139.
    【255】孟杰,径向振动模式亚东年变压器的等效电路模型,哈尔滨大学,硕士论文,2008,7.
    【256】苏聖琪,相位控制之压电式变压器应用于背光反流器,台湾大学,硕士论文,2007,6.
    【257】何忠骏,高功率零压电切换压电变压器与均流架构设计,台湾大学,硕士论文,2007,6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700