用户名: 密码: 验证码:
斗巴W火焰锅炉及多次引射分级燃烧技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无烟煤和贫煤占我国动力用煤的40%以上。针对燃用无烟煤和贫煤而引进的W火焰锅炉近年来在我国得到广泛应用,目前已投运和在建的W火焰锅炉约达130台。但实际运行表明采用引进技术制造的W火焰锅炉存在煤粉气流着火晚、结渣严重、燃烧不对称、燃尽差和NO_x排放超高等诸多问题。根据新的《火电厂大气污染物排放标准》(GB13223–2011),W火焰锅炉NO_x最高允许排放浓度为200mg/m~3(折6%O_2),靠尾部脱硝很难达到这一排放标准,必需同时借助于炉内低NO_x燃烧改造。此外,对于超临界W火焰锅炉,因水冷壁温度偏差过大而导致的水冷壁鳍片拉裂甚至是爆管事故,已严重影响到锅炉的安全运行。为全面解决锅炉存在的上述问题,本文提出了W火焰锅炉多次引射分级燃烧技术,即在拱上由炉膛中心向前后墙依次布置一次风、内二次风、乏气、外二次风,在拱下布置下倾三次风,在拱部靠近喉口处布置燃尽风。其技术原理在于:在静压差作用下,低速的一次风粉由内、外二次风和三次风依次引射携带下行,从而使煤粉颗粒获得较大的下射深度而维持较高燃尽;三次风下倾和特殊的燃烧器喷口布置方式建立对称燃烧;内、外二次风和三次风以及燃尽风分级给入构建了炉内深度分级燃烧,从而抑制NO_x生成;高速的内、外二次风近前后墙集中布置,三次风高速下倾喷入而贴向冷灰斗近壁区域,加之炉内形成对称燃烧,为控制水冷壁壁温和减小壁温偏差创造了有利条件。本文除对W火焰锅炉多次引射分级燃烧技术开展研究并将其投入工业应用外,还借助于冷态单相/气固两相模化试验、工业实验和数值计算,对斗巴W火焰锅炉炉内流动特性和运行状况进行了系统研究;与斗巴技术相比,采用多次引射分级燃烧技术的W火焰锅炉在炉内燃烧状况、NO_x排放、结渣趋势和锅炉安全运行上明显优越。
     分别对3台斗巴W火焰锅炉(即350MW和300MW亚临界锅炉和600MW超临界锅炉)进行工业实验,结果表明:3台锅炉炉内燃烧均严重不对称,前、后墙侧温差达300°C,采用改变配风等初级手段很难消除这一现象;满负荷下飞灰可燃物含量可高达15%,锅炉效率最低仅为83%,NO_x排放量为1100~1700mg/m~3(折6%O_2);下炉膛结渣严重,尤其是在翼墙及侧墙敷设卫燃带区域;此外,600MW超临界锅炉还存在水冷壁壁温偏差过大且壁温严重超出允许值的问题。
     对3台锅炉分别建立冷态模化试验台,借助于冷态单相/气固两相流模化试验,发现3台锅炉炉内均形成偏斜流场,它是导致炉内燃烧不对称的根本原因;偏斜流场的形成与锅炉配风、燃烧器结构和三次风喷射角度设计不合理有关。借助于300MW亚临界锅炉的冷态模化试验,发现采用低三次风率、三次风下倾、在靠炉膛中心侧封堵二次风喷口部分面积、构建二次风在前后拱(或三次风在前后墙)不对称分配等措施,均能有效缓解甚至消除流场偏斜。发现二次风离开喷口后迅速与一次风混合,这是引起煤粉气流着火晚和NO_x排放高的主要原因;另外,炉内分级燃烧有限(三次风率一般不超过15%)也是导致锅炉NO_x排放高的原因之一。发现二次风携带颗粒冲刷前后水冷壁、高温烟气携带颗粒向翼墙和侧墙膨胀而使颗粒物冲刷炉壁,这是造成下炉膛结渣严重的主要原因。
     以350MW亚临界锅炉为对象对多次引射分级燃烧技术开展了一系列研究:在冷态试验台上研究了三次风率、三次风倾角、燃尽风率和燃尽风倾角对炉内单相流动特性的影响,利用数值计算研究了燃尽风布置位置和主燃区化学当量比对炉内燃烧和NO_x生成的影响。基于这些研究结果,确定该技术的参数设置为:三次风率25%,三次倾角45°,燃尽风率20%,燃尽风倾角40°,燃尽风布置在拱部靠近喉口处,保持拱下燃烧器区域化学当量比为0.66时主燃区化学当量比宜取0.96。在此锅炉上用这一技术替代斗巴W火焰燃烧技术,计算结果表明先前不对称的流场、温度场和烟气组分浓度场均转变为对称分布;在前后墙和冷灰斗的近壁区形成有利于减轻结渣的低温高氧浓度区域;NO_x排放降幅达50%且不影响燃尽。
     最后,将这一技术在2台新建的600MW超临界W火焰锅炉上进行工业示范。未设置燃尽风时,冷态单相/气固两相模化试验结果表明炉内流场对称,在拱下燃烧器区域内靠向炉膛中心侧形成高颗粒浓度且低气流速度区(这有利于及时着火和抑制NO_x生成)。热态测试结果表明:设置燃尽风和针对三次风的改造均不影响满负荷下炉内对称燃烧的形成;未设置燃尽风时飞灰可燃物含量在4%以内,但NO_x排放量仍在1000mg/m~3(折6%O_2)以上,且冷灰斗水冷壁还存在因火焰下冲过深而导致的热疲劳问题。增设燃尽风且将三次风倾角调小至20°后,炉内烟温下降但冷灰斗内烟温仍处于较高水平,在燃尽风挡板开度40~70%内开大燃尽风,NO_x排放量大幅下降而飞灰可燃物含量显著上升;在高燃尽风开度下,随三次风开大,飞灰可燃物含量下降而NO_x排放量有所升高;这一阶段NO_x排放量可控制在878mg/m~3(折6%O_2)的同时飞灰可燃物含量约10%。将三次风调至水平喷入且加大三次风面积后,在高的二、三次风开度下(均为75%)燃尽效果得以改善且冷灰斗区域烟温降至较安全水平;飞灰可燃物含量受燃尽风影响较小,NO_x排放随燃尽风开大而显著下降;经此次改进后,NO_x排放可降至867mg/m~3(折6%O_2)的同时控制飞灰可燃物含量为5.4%;此外,在300、450和600MW负荷下均无水冷壁壁温偏差过大和壁温严重超出允许值的情况。因而,相对于引进的W火焰锅炉燃烧技术,多次引射分级燃烧技术在保证锅炉安全运行、构建对称燃烧、防止结渣、实现高效燃尽和低NO_x排放上优势明显。
Anthracite and lean coal account for more than40%of power coal in China.Down-fired boilers, designed specifically for the industrial firing of anthracite and leancoal, have become popular in China in recent years. Currently, approximately130down-fired boilers are either in service or are under construction in China. Operatingresults reveal that down-fired boilers suffer from various problems such as late coalignition, heavy slagging, asymmetric combustion, poor burnout, and high NO_xemissions. According to newly promulgated emission standards for air pollutants fromthermal power plants (GB13223–2011), the allowed NO_xemission concentration fordown-fired boilers in power plants in China is200mg/m~3at6%O_2. These newguidelines require that most down-fired boilers must be retrofitted with low-NO_xcombustion and flue gas denitration processes. Again, problems of fin cracking andtube bursting in water-cooled walls, caused by large differences in water-cooled walltemperatures and these temperatures exceeding allowable values excessively, affect thesafe operation of down-fired supercritical utility boilers. In this dissertation, a newdown-fired combustion technology, i.e., multi-injection multi-stage combustiontechnology, has been developed to resolve these problems. This new technologycombustion system is characterized by three features:(i): in the burner configuration,the fuel-rich coal/air flow nozzles, inner secondary-air ports, fuel-lean coal/air flownozzles, and outer secondary-air ports are located in order on the furnace arches fromthe side near the furnace center to the side near the front and rear walls;(ii) tertiary airis fed into the lower furnace through the lower part of the front and rear walls; and (iii)over-fire air (OFA) is positioned on the furnace arches in the zone near the furnacethroat. Three technical principles govern the new down-fired combustion technology.(i)Air-driving mechanism—Because of static-pressure differences between the low-speedfuel-rich coal/air flow and three high-speed jets (i.e., inner secondary, outer secondary,and tertiary air), the fuel-rich coal/air flow is guided downstream by these high-speedjets into the hopper region to prolong the residence time of the pulverized coal in thefurnace and enable efficient fuel combustion.(ii) Symmetrical combustion—Thedeclivitous tertiary air and unique burner configuration establish a symmetricalcombustion pattern in the furnace.(iii) Deep-air-staging combustion—Multiple airinjections consisting of inner and outer secondary air, tertiary air, and OFA alongthe flame travel form deep-air-staging conditions in the furnace, which inhibitsignificantly the NO_xformation. Moreover, a centralized layout of the high-speedinner and outer secondary air in the zone near the front and rear walls, the high-speedtertiary air jet in the near-wall zone in the hopper, and the symmetrical combustionformation, prevent large differences in water-cooled wall temperatures and these temperatures exceeding allowable values significantly. Besides the investigations intovarious parameter optimizations and industrial applications for the new down-firedcombustion technology, this dissertation also provides a study on the flowcharacteristics and operation status of Doosan Babcock (DB) down-fired boilers,determined by cold single-phase and gas/solid two-phase flow experiments, industrialmeasurements, and numerical simulation. In comparison with DB down-firedcombustion technology, down-fired boilers with this new technology exhibit goodburnout, low-NO_xproduction, low slagging tendency and safe operation.
     Industrial measurements in three DB down-fired boilers (i.e., two subcriticalboilers with capacities of350and300MWeand a600MWesupercritical boiler) revealthat severely asymmetric combustion characterized by gas temperature differences ashigh as300°C arising between the regions near the front and rear walls, developed inall three furnaces. Primary measures such as parametric tuning of operating conditionsfailed to eliminate this asymmetric combustion phenomenon. At normal full load, thehighest carbon content in fly ash, the lowest boiler efficiency, and NO_xemissions were15%,83%and1100–1700mg/m~3(at6%O_2), respectively. Heavy slagging occurredin the lower furnaces of the350and300MWeboilers, especially the wing-andside-wall regions with refractory coverage. Additionally, large differences inwater-cooled wall temperatures occurred in the600MWesupercritical boiler and thesetemperatures exceeded the allowable values significantly.
     Using cold single-phase and gas/solid two-phase flow experiments in small-scalemodel test facilities, it was found that a deflected flow field appeared in all three boilers.This explains the severely asymmetric combustion in real furnaces. Unreasonabledesigns in air distribution, burner arrangement, and staged-air supply direction favor theflow-field deflection formation. Cold small-scale airflow experiment results for the300MWeboiler showed that various methods such as reducing the tertiary-air ratio,inclining downward tertiary air, shortening the secondary-air port area in the side nearthe furnace center, and constructing an asymmetric secondary-air distributionbetween the front and rear arches (or asymmetric tertiary-air distribution between thefront and rear walls), could mitigate or eliminate the flow-field deflection. Afterleaving the port outlet, secondary air with higher velocity than that of the fuel-richcoal/air flow mixes rapidly with the slower flow. This process dilutes the pulverizedcoal concentration, increases the fuel-rich flow velocity in the burner zone, andfacilitates the early ignition of pulverized coal in an oxygen-rich atmosphere, therebydelaying coal ignition and producing a large amount of fuel-NO_x. In conjunction withlow tertiary-air ratios (below15%) forming shallow staging conditions in these furnace,high levels of NO_xemissions are unavoidable. The high-velocity secondary air carryingthe fuel-rich coal/air flow to wash over the front and rear walls and thehigh-temperature flue gas entrained particles expanding towards the wing and side walls, are the main causes of the heavy slagging in the furnaces.
     Using cold small-scale airflow experiments and numerical simulations, theimpact of various parameters settings in the new technology such as tertiary-airratio, tertiary-air declination angle, OFA ratio, and OFA declination angle on theflow field was determined for the350MWeboiler. This was in addition to the effect ofOFA location and air stoichiometric ratio in the primary combustion zone (SRp) on thecombustion characteristics and NO_xformation in the furnace. Using a series ofoptimization investigations, the optimal setup for the new technology was finallydetermined, i.e.,25%and20%for the tertiary-air and OFA ratios,45°and40°forthe tertiary-air and OFA declination angles, the arch zone close to the furnace throatfor the OFA positioned location, and0.96for the SRpvalue when the airstoichiometric ratio in the burner zone is set at0.66, respectively. Application of thenew technology as a replacement for the prior DB art in the350MWeboiler led tothree furnace performance improvements as identified by numerical simulations.(i)The original asymmetric flow field, gas temperature, and gas componentdistributions in the furnace all develop a symmetrical pattern.(ii) Relatively low gastemperatures and high O_2concentrations exist in near-wall zones, therebymitigating slagging in the lower furnace.(iii) NO_xemissions decrease by as much as50%, without increasing levels of unburnt carbon in fly ash.
     Finally, the new technology was applied to two newly designed down-fired600MWesupercritical utility boilers. Before applying the OFA system, results from thecold single-phase and gas/solid two-phase flow experiments for one of the twoboilers revealed that a well-formed symmetrical flow field developed in the furnace.A high-particle-concentration and low-velocity zone existed in the burner zone inthe cold gas/particle flow field. This could facilitate timely coal ignition andfuel-NO_xreduction in the real furnace. Industrial measurements showed that thefurnace achieved well-formed symmetrical combustion and the symmetrical patternwas not affected by the latter OFA application and two retrofits in tertiary air.Before the OFA application, the furnace had below4%carbon in fly ash, relativelyhigh NO_xemissions (above1000mg/m~3at6%O_2) and thermal fatigue ofwater-cooled walls in the hopper slope because the too deep flame penetration depthproduced gas temperatures of up to1350°C in the hopper region. After applying OFAand reducing the staged-air declination angle from45to20°, the hopper region stillmaintained relatively high gas temperature levels, despite gas temperaturesdecreasing in the lower furnace. With increasing the OFA damper opening in therange of40–70%, NO_xemissions decreased significantly and carbon in fly ashincreased sharply. Fixing the OFA damper at an opening of50%and increasing thestaged-air flux reduced carbon in fly ash and raised NO_xemissions slightly. Byadjusting the air distribution, NO_xemissions could be reduced to approximately878 mg/m~3at6%O_2, with relatively high carbon in fly ash of approximately10%.Fortunately, the latter retrofit where tertiary air is supplied horizontally and thetertiary-air slot area is increased resulted in decreased gas temperatures in the hopperregion to safe levels of approximately1110°C and relatively low carbon in fly ash (i.e.,approximately5%) with high secondary-and tertiary-air damper openings of75%.This improved the previously deteriorated burnout and resolved the thermal fatigueproblem in the hopper region. Under these circumstances, opening OFA affected theburnout rate slightly but reduced s NO_xemissions significantly. The furnace couldfinally attain a well furnace performance with low NO_xemissions (867mg/m~3at6%O_2) and relatively high burnout rate (carbon in fly ash of5.4%). In addition, largedifferences in water-cooled wall temperatures and phenomenon of the water-cooledwall temperatures exceeding allowable values were absent at boiler loads of300,450,and600MWe. In comparison with the imported down-fired combustion technologiessuffering from the problems mentioned above, the proposed multi-injectionmulti-stage combustion technology has been confirmed to be excellent in attainingsafe boiler operation, symmetrical combustion, weak slagging tendency, goodburnout, and low NO_xemissions.
引文
[1]赵剑峰.低碳经济视角下煤炭工业清洁利用分析及政策建议[J].煤炭学报,2011,36(3):514-518.
    [2]刘炯天.关于我国煤炭能源低碳发展的思考[J].中国矿业大学学报(社会科学版),2011,13(1):5-12.
    [3]张国宝.加快推动煤炭行业科学发展[N].人民日报,2010-11-26.
    [4]吴贵辉.我国能源形势及发展对策[J].中国工程科学,2011,13(4):4-8.
    [5]曹湘洪.实现我国煤化工、煤制油产业健康发展的若干思考[J].化工进展,2011,30(1):80-87.
    [6]汪建平.中国能源战略与“十二五”能源发展论坛文集:关于“十二五”电力发展规划[C].中国能源研究会,2010:71-75.
    [7]冯俊凯,沈幼庭,杨瑞昌.锅炉原理及计算(第三版)[M].北京:科学出版社,2003:25-42.
    [8]裴西平.中国无烟煤生产、消费及进出口分析[J].中国煤炭,2009,35(6):14-19.
    [9]毕玉森,陈国辉.低挥发分煤种与W型火焰锅炉[J].热力发电,2005,34(7):7-10.
    [10]徐旭常,王云山,金茂庐,赵平.关于煤粉火焰稳定性和煤粉预燃室及火焰稳定船的作用[J].工程热物理学报,1988,9(4):384-389.
    [11]姜鹏志,施学贵,徐旭常.具有火焰稳定船的直流煤粉燃烧器内三维湍流流场的实验研究[J].工程热物理学报,1990,11(1):109-111.
    [12]靳世平,钱壬章.开缝钝体燃烧器回流加热链着火分析[J].燃烧科学与技术,2003,9(3):244-246.
    [13] Xiao L.S., Cheng J.F., Zeng H.C. Effects of Bluff-Body Burner and CoalParticle Size on NOxEmissions and Burnout[J]. Journal of the Institute ofEnergy,1999,72(493):112-126.
    [14] Ge B., Zang S.S., Guo P.Q. Experimental Study on Turbulent Structure ofHumid Air Flame in a Bluff-Body Burner[J]. Journal of Thermal Science,2009,18(2):185-192.
    [15]徐通模,惠世恩,许晋源,郭家(马昌),胡勇,魏新建.夹心风II型燃烧器的研究[J].西安交通大学学报,1986,20(6):9-20.
    [16]赵仲琥,王春昌,聂剑平.新型煤粉燃烧器在我国火电厂中的应用[J].热力发电,1990,19(1):1-40.
    [17]秦裕棍,范卫东,林正春,高继慧,孙绍增,陈力哲,吴少华.百叶窗浓缩器气固两相流动的试验研究[J].工程热物理学报,2000,21(4):501-504.
    [18] Goran., Stevan N., Predrag S., Predrag R. Numerical Simulation of theInfluence of Stationary Louver and Coal Particle Size on Distribution ofPulverized Coal to the Feed Ducts of a Power Plant Burner[J]. ThermalScience,2009,13(4):79-90.
    [19]石伟,周志军,周俊虎,赵翔,曹欣玉,岑可法.内二次风旋流强度对PAX燃烧器出口流场的影响[J].动力工程,2003,23(1):2168-2172.
    [20] Zhao L.L., Zhou Q.T., Zhao C.S. Flame Characteristics in a Novel Petal SwirlBurner[J]. Combustion and Flame,2008,155(1-2):277-288.
    [21]赵伶玲.花瓣燃烧器的稳燃性能与应用研究[D].南京:东南大学博士学位论文,2005:1-101.
    [22] Reason J. How Fuel Volatility Impacts Boiler Design and Operation[J]. Power,1983,8(12):35-48.
    [23]车刚,郝卫东,郭玉泉. W型火焰锅炉及其应用现状[J].电站系统工程,2004,20(1):38-40.
    [24]袁颖,相大光.我国W火焰双拱锅炉燃烧性能调查研究[J].中国电力,1999,32(11):1-6.
    [25]许传凯.低挥发分煤的燃烧与“W”型火焰锅炉若干问题研究[J].中国电力,2004,37(7):37-40.
    [26]许传凯,许云松.我国低挥发分煤燃烧技术的发展[J].热力发电,2001,30(5):2-6.
    [27]许传凯,袁颖.大型燃煤电厂锅炉运行现状分析[J].中国电力,2003,36(1):1-5.
    [28]何佩敖.无烟煤粉的U型、W型火焰燃烧技术[J].电站系统工程,1989,5(2):44-60.
    [29] Ruth L.A. Advanced Coal-Fired Power Plants[J]. Journal of Energy ResourcesTechnology,2001,123(1):4-9.
    [30] Garcia-Mallol J.A., Morristown N.J. Furnace Firing Apparatus and Method forBurning Low Volatile Fuel[P]. USA Patent: No.5199357,1993-04-06.
    [31] Garcia-Mallol J.A., Kukoski A.E., Winkin J.P. Anthracite Firing at CentralPower Stations for the21st Century[C]. Sixteenth Annual InternationalPittsburgh Coal Conference, Pittsburgh, USA,1999.
    [32] Borondy E.Z. Foster Wheeler Anthracite Fired Units in Spain[C]. Low-VolatileFuels, Double Arch Firing Technology Applications Symposium, Beijing,China,1992.
    [33] Fang Q.Y., Wang H.J., Zhou H.C., Lei L., Duan X.L. Improving theperformance of a300MW down-fired pulverized-coal utility boiler byinclining downward the F-layer secondary air[J]. Energy&Fuels,2010,24(9):4857-4865.
    [34] Brower P.H., Winkin J.P., Ge C.Q. Anthracite Firing: Largest SteamGenerators[C]. Power-Gen Europe Conference, Milan, Italy,1998.
    [35] Zhou J. Burning Low Volatile Coals in Utility Boilers with High efficiency andClean Environment[C]. Pittsburgh Coal Conference, Taiyuan, China,1997.
    [36] Huang M.D. U-Flame and Its Properties of Slagging[C]. Coal CombustionSymposium, Beijing, China,1991.
    [37] Malaubier F. Combustion of Lean Coals and Anthracite in Pulverized CoalBoilers[C]. Coal Combustion Symposium, Beijing, China,1991.
    [38] Peet W.J., Kannan V. Utility Boiler Design for Low Volatile Coal[C]. TsinghuaCoal Combustion Seminar, Beijing, China,1987.
    [39]柳宏刚,白少林.现役各类W火焰锅炉NOx排放对比分析研究[J].热力发电,2007,36(3):1-4.
    [40]任枫. FW型W火焰锅炉高效低NOx燃烧技术研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2010:1-213.
    [41]李争起,任枫,刘光奎,陈智超,朱群益,孙锐. W火焰锅炉高效低NOx燃烧技术[J].动力工程学报,2010,30(9):645-651.
    [42]徐鸿恩,柳成亮,徐少平,程润,贾继鹏,赵小平. FW型W火焰锅炉灭火原因探究[J].电力学报,26(6):512-516.
    [43] Eberle J.S., Garcia-Mallol J.A., Simmerman R.N. Advanced FW Arch Firing:NOxReduction in Central Power Station[C]. Pittsburgh Coal Conference,Pittsburgh, USA,2002.
    [44] Goidich S.J., Garcia-Mallol J.A., Seltzer A.H., Wagner D.E. Integration of theArch Furnace and BENSON Vertical OTU Technologies for High EfficiencyLow Volatile Fuel Combustion[C]. POWER-GEN International, Orlando, USA,2006.
    [45] Garcia-Mallol J.A., Parham D.J. Large Capacity Steam Generator DesignChallenges for Anthracite[C]. Power-Gen Asia Conference, Singapore,1995.
    [46]毕玉森. W型火焰锅炉及其NOx排放[J].热力发电,1994,23(4):5-11.
    [47]张文元,刘春明,赵运亮,高春文.中储式热风送粉W型火焰锅炉燃烧调整分析[J].电力学报,2002,17(2):112-115.
    [48]黄伟,李文军,张建玲,彭敏,熊蔚立,谢国胜.600MW超临界W型火焰无烟煤锅炉调试技术与实践[J].锅炉技术,2011,42(2):53-57.
    [49]王希寰.超临界W火焰锅炉水冷壁拉裂问题探讨[J].湖南电力,2012,32(1):48-52.
    [50]刘静宇,秦淇,王磊,李有信,程金武.超临界“W”火焰锅炉试运中的泄漏浅析[J].锅炉技术,2011,42(6):56-59.
    [51]李振宁.国投北部湾发电有限公司W形火焰锅炉的煤种适应性[J].热力发电,2007,36(4),58-60.
    [52]李文军,黄伟,曾伟胜,刘赞衡. EI-XCL双调风旋流燃烧器在W型锅炉上的试验研究[J].华中电力,2006,19(2):25-28.
    [53]张绮,潘挺. W型火焰锅炉燃烧系统的设计与优化[J].发电设备,2010,24(3):180-184.
    [54]李端开,李争起,顾宇,张学文,李国堂,宋景明,董炳南.旋流燃烧器W型火焰锅炉特点及研究进展[J].节能技术,2009,27(3):195-200.
    [55]邹文华,唐方,王岩,谢成,王立.鸭河口电厂锅炉及制粉系统特点介绍
    [C].中国电机工程学会低挥发分煤的燃烧与W型火焰锅炉专题研讨会论文集,太原,2001,132-140.
    [56]车刚,何立明,惠世恩,徐通模.改造W型火焰锅炉结构的实验研究[J].锅炉技术,2000,31(5):6-11.
    [57]樊险峰. W型火焰锅炉炉内空气动力场的试验研究[D].哈尔滨:哈尔滨工业大学工程硕士学位论文,2003:1-73.
    [58]周刚.珞璜电厂W型火焰锅炉低负荷稳燃及调峰性能研究[D].武汉:武汉大学硕士学位论文,2001:1-69.
    [59]王春昌.缝隙式燃烧器与“W”火焰锅炉的燃烧稳定性[J].中国电力,2009,42(1):58-61.
    [60]李建波.1160t/h W型火焰燃煤锅炉的燃烧调整[J]华东电力,1999,27(3):39-42.
    [61]陶洪才.“W”型火焰稳定燃烧的实践与分析[J].华东电力,1996,24(4):26-28.
    [62]车刚,苗长信.菏泽1025t/h W型火焰锅炉的技术特点[J].锅炉技术,2005,36(4):19-22.
    [63]赵铁军,宋绍伟.“W”型火焰锅炉节油技术应用[J].中国电力,2009,42(9):61-65.
    [64]苗长信,车刚,王建伟,张志俊,陈亮.600MW“W”型火焰锅炉燃烧优化调试[J].中国电力,2003,36(8):16-19.
    [65]车刚.聊城2027t/h W型火焰锅炉的技术特点[J].电站系统工程,2007,23(3):41-44.
    [66]赵宪忠.山东聊城发电厂600MW机组“W”型火焰锅炉的燃烧调整[C].全国火电大机组(600MW级)竞赛第8届年会论文集,内蒙古伊敏,2004,17-44.
    [67]李占宏,黎中涛,张建兴.纳雍二电厂300MW机组W火焰锅炉燃烧器改造及运行[J].贵州电力技术,2006,18(6):39-43.
    [68]马王鹏.超临界600MW机组W火焰锅炉的特点[J].华电技术,2009,31(5):22-23.
    [69]王通,胡凌峰,李争起,王忠霞,高萍.镇雄600MW超临界锅炉“W”火焰无烟煤燃烧系统的设计和开发[J].黑龙江电力,31(5):338-340.
    [70]杨雄文. W型火焰锅炉结渣分析及对策[J].热能动力工程,2002,17(5):527-529.
    [71]苗长信,车刚,刘志超.菏泽发电厂300MW“W”火焰锅炉燃烧调整及运行特性分析[J].中国电力,2002,35(7):13-17.
    [72]苗长信,王卫东,王建伟. MBEL“W”火焰锅炉燃烧特性试验研究[J].山东电力技术,2004,9(1):6-12.
    [73]苗长信,王建伟.600MW机组W火焰锅炉“偏烧”问题分析[J].热力发电,2005,34(12):48-51.
    [74]侯昭毅.基于“MBEL”W火焰锅炉结焦现象原因分析及其对策[J].锅炉技术,2010,41(6):37-41.
    [75]韩奎华,高寒,翟雷,刘江,王道福.600MW“W”火焰锅炉结焦原因分析与防止措施[J].锅炉技术,2005,36(5):47-50.
    [76]夏良伟,于泽忠.超临界W火焰锅炉开发研制及技术特点[C].中国动力工程学会第九届锅炉专业委员会第一次学术交流会议论文集,无锡,2008,85-92.
    [77] Blas J.Q. Spanish Experience with Burning Low-Grade Coal[J]. Combustion,1970,42(3):6-13.
    [78] Plumed A., Ca adas L., Otero P., Espada M.I., Castro M., Gonzálcz J.F.,Rodríguez F. Primary Measures for Reduction of NOxin Low Volatile CoalsCombustion[J]. Coal Science and Technology,1995,24:1783-1786.
    [79] Ca adas L., Cortés V., Rodríguez F., Otero P., González J.F. NOxReduction inArch-Fired Boilers by Parametric Tuning of Operating Conditions[C]. EPRI/EPAMegasymposium, Washington, DC, USA,1997.
    [80] Fueyo N., Gambón V., Dopazo C., González J.F. Computational Evaluation ofLow NOxOperating Conditions in Arch-Fired Boilers[J]. Journal of Engineeringfor Gas Turbines and Power,1999,121(4):735-740.
    [81] Garcia-Mallol J.A. Steitz T., Chu C.Y., Jiang P.Z. Ultra-Low NOxAdvancedFW Arch Firing: Central Power Station Applications[C].2ndU.S. China NOxand SO2Control Workshop, Dalian, China,2005.
    [82] Garcia-Mallol J.A., Morristown N.J. Over-Fire Air Control System for aPulverized Solid Fuel Furnace [P]. USA Patent: No.5727480,1998-03-17.
    [83] Goidich S.J., Wagner D.E. Supercritical Boiler Options for Firing Low VolatileChinese Coals[C/OL]. Foster Wheeler North America Corp., America.http://fwci.com/publications/tech_papers/files/TP_CFB_06_04.pdf.
    [84] Goidich S.J. Supercritical Boiler Options to Match Fuel CombustionCharacteristics[C/OL]. Foster Wheeler North America Corp., America.https://www.fwc.com/publications/tech_papers/files/TP_PC_07_01.pdf.
    [85] Leisse A., Lasthaus D. New Experience Gained from Operating DS (SwirlStage) Burners[J]. VGB Power technique,2008,14(11):1-7.
    [86] Fang Q.Y., Zhou H.C., Wang H.J., Yao B., Zeng H.C. Flexibility of a300MWArch Firing Boiler Burning Low Quality Coals[J]. Journal of China Universityof Mining&Technology,2007,17(4):566-571.
    [87] Fang Q.Y., Wang H.J., Wei Y., Lei L., Duan X.L., Zhou H.C. NumericalSimulations of the Slagging Characteristics in a Down-Fired, Pulverized-CoalBoiler Furnace[J]. Fuel Processing Technology,2010,91(1):88-96.
    [88]方庆艳,周怀春,汪华剑,罗自学,史铁林.3种型号W火焰锅炉结渣特性的数值模拟[J].动力工程,2008,28(5):682-689.
    [89]方庆艳,周怀春,汪华剑,史铁林. W火焰锅炉结渣特性数值模拟[J].中国电机工程学报,2008,28(23):1-7.
    [90] Wang H.J., Huang Z.F., Wang D.D., Luo Z.X., Sun Y.P., Fang Q.Y., Zhou H.C.Measurements on Flame Temperature and Its3D Distribution in a660MWeArch-Fired Coal Combustion Furnace by Visible Image Processing andVerification by Using an Infrared Pyrometer[J]. Measurement Science andTechnology,2009,20(11):4006-4017.
    [91]汪华剑. W型火焰锅炉燃烧检测与优化研究[D].武汉:华中科技大学博士学位论文,2010:1-141.
    [92]张文宏,温龙,葛蓉生,杨君义. W型火焰锅炉炉内空气动力场的实验研究[J].动力工程,1992,12(4):14-23.
    [93]魏小林,徐通模,惠世恩. W型火焰锅炉冷态模型试验及数值计算[J].动力工程,1994,14(1):27-32.
    [94]魏小林,徐通模,惠世恩.在W型火焰锅炉冷模中组织γ型气流的试验研究[J].西安交通大学学报,1995,29(2):48-53.
    [95]许卫疆,闫晓,孙国新,惠世恩,徐通模.三次风对W型火焰锅炉空气动力场的影响[J].西安交通大学学报,2001,35(1):108-110.
    [96]闫晓,许卫疆,孙新国,惠世恩,徐通模.中储式热风送粉W型火焰锅炉炉内空气动力场实验研究[J].热能动力工程,2001,16(3):263-267.
    [97]张杰,余战英,谭厚章,徐通模,惠世恩. W型火焰燃烧的实验研究[J].动力工程,2003,23(5):2632-2634.
    [98] Liu R.W., Hui S.E., Yu Z.Y., Zhou Q.L., Xu T.M., Zhao Q.X., Tan H.Z. Effectof Air Distribution on Aerodynamic Field and Coal Combustion in anArch-Fired Furnace[J]. Energy&Fuels,2010,24(10):5514-5523.
    [99] Xue S., Hui S.E., Zhou Q.L., Xu T.M. Experimental Study on NOxEmissionand Unburnt Carbon of a Radial Biased Swirl Burner for Coal Combustion[J].Energy&Fuels,2009,23(7):3558-3564.
    [100]Gao Z.Y., Chen D.F., Du W.Y., Wu X.F., Wang X.J. Numerical Investigationon the NO Emissions of W-Shaped Boiler At Different Air Distributions[C].Asia-Pacific Power and Energy Engineering Conference (APPEEC), Chengdu,China,2010.
    [101]孙小柱,高正阳,宋玮,陈丹峰.非设计配风条件W火焰锅炉NOx排放特性分析[J].热能动力工程,2010,25(1):57-60.
    [102]高正阳,宋玮,赵锦,孙小柱,严帆帆.变负荷下W型火焰锅炉燃烧特性的数值模拟研究[J].华北电力大学学报,2010,37(2):63-67.
    [103]高正阳,崔伟春,杨毅栎,阎维平.火焰中心高度对W型火焰锅炉燃烧影响的数值模拟研究[J].热力发电,2009,38(11):23-27.
    [104]高正阳,阎维平,刘彦丰.300MW机组W火焰锅炉改造的数值模拟与分析[J].动力工程,2009,29(1):9-15.
    [105]孔凡卓,阎维平,周健,石丽国. W火焰锅炉低NOx燃烧与SNCR联合应用研究[J].热力发电,2009,38(8):31-35.
    [106]刘宏卫.基于W火焰锅炉空气燃烧与O2/CO2燃烧数值模拟的比较[J].华东电力,2009,37(7):1219-1222.
    [107]Li Z.Q., Ren F., Zhang J., Zhang X.H., Chen Z.C., Chen L.Z. Influence of VentAir Valve Opening on Combustion Characteristics of a Down-FiredPulverized-Coal300MWeUtility Boiler[J]. Fuel,2007,86(15):2457-2462
    [108]Ren F., Li Z.Q., Jing J.P., Zhang X.H., Chen Z.C. Zhang J.W. Influence of theAdjustable Vane Position on the Flow and Combustion Characteristics of aDown-Fired Pulverized-Coal300MWeUtility Boiler[J]. Fuel ProcessingTechnology,2008,89(12):1297-1305.
    [109]Li Z.Q., Ren F., Chen Z.C., Wang J.J., Chen Z., Zhang J.W. Influence ofOil-Atomized Air on Flow and Combustion Characteristics in a300MWeDown-Fired Boiler[J]. Asia-Pacific Journal of Chemical Engineering,2010,5(3):488-496.
    [110]Ren F., Li Z.Q., Zhang Y.B., Sun S.Z., Zhang X.H., Chen Z.C. Influence of theSecondary Air-Box Damper Opening on Airflow and CombustionCharacteristics of a Down-Fired300-MWeUtility Boiler[J]. Energy&Fuels,2007,21(2):668-676.
    [111]Ren F., Li Z.Q., Chen Z.C., Wang J.J., Chen Z. Influence of the Down-DraftSecondary Air on the Furnace Aerodynamic Characteristics of a Down-FiredBoiler[J]. Energy&Fuels,2009,23(5):2437-2443.
    [112]Li Z.Q., Ren F., Chen Z.C., Liu G.K., Xu Z.X. Experimental Investigationsinto Gas/Particle Flows in a Down-Fired Boiler: Influence of Down-DraftSecondary Air[J]. Energy&Fuels,2009,23(12):5846-5854
    [113]Ren F., Li Z.Q., Chen Z.C., Xu Z.X., Yang G.H. Experimental Investigationsinto Gas/Particle Flows in a Down-Fired Boiler: Influence of the Vent AirRatio[J]. Energy&Fuels,2010,24(3):1592-1602.
    [114]Ren F., Li Z.Q., Chen Z.C., Xu Z.X., Zhu Q.Y., Yang G.H. ExperimentalInvestigations into Gas/Particle Flows in a Down-Fired Boiler: Influence ofSecondary Air Momentum[J]. Energy&Fuels,2010,24(6):3498-3509.
    [115]Ren F., Li Z.Q., Chen Z.C., Xu Z.X., Yang G.H. Influence of the Over-Fire AirAngle on the Flow Field in a Down-Fired Furnace Determined by a Cold-FlowExperiment[J]. Fuel,2011,90(3):997-1003.
    [116]Ren F., Li Z.Q., Liu G.K., Chen Z.C., Zhu Q.Y. Numerical Simulation of Flowand Combustion Characteristics in a300MWeDown-Fired Boiler withDifferent Overfire Air angles[J]. Energy&Fuels,2011,25(4):1457-1464
    [117]Li Z.Q., Ren F., Chen Z.C., Chen Z., Wang J.J. Influence of DeclivitousSecondary Air on Combustion Characteristics of A Down-Fired300-MWeUtility Boiler[J]. Fuel,2010,89(2):410-416.
    [118]Li Z.Q., Ren F., Chen Z.C., Liu G.K., Xu Z.X. Improved NOxEmissions andCombustion Characteristics for a Retrofitted Down-Fired300-MWeUtilityBoiler[J]. Environmental Science&Technology,2010,44(10):3926-3931
    [119]Ren F., Li Z.Q., Chen Z.C., Fan S.B., Liu G.K. Influence of the Overfire AirRatio on the NOxEmission and Combustion Characteristics of a Down-Fired300-MWeUtility Boiler[J]. Environmental Science&Technology,2010,44(16):6510-6516.
    [120]Li Z.Q., Ren F., Liu G.K., Shen S.P., Chen Z.C. Influence of Angled SecondaryAir on Combustion Characteristics of a660MWeDown-Fired Utility Boiler[J].Combustion Science and Technology,2011,183(3):238-251.
    [121]Ren F., Li Z.Q., Liu G.K., Chen Z.C., Zhu Q.Y. Combustion and NOxEmissionsCharacteristics of a Down-Fired660-MWeUtility Boiler Retrofitted withAir-Surrounding-Fuel Concept[J]. Energy,2011,36(1):70-77.
    [122]Li Z.Q., Liu G.K., Zhu Q.Y., Chen Z.C., Ren F. Combustion and NOxEmissionCharacteristics of a Retrofitted Down-Fired660MWeUtility Boiler atDifferent Loads[J]. Applied Energy,2011,88(7):2400-2406.
    [123]黄伟,杨剑峰,谢国鸿,刘洪文,王方勇,邱应军.大型W火焰锅炉灭火原因分析及对策[J].电站系统工程,2009,26(2):21-23.
    [124]黄伟,李文军,雷霖,俞犇,于鹏峰,阳剑平.600MW亚临界“W”火焰锅炉机组劣质煤燃烧特性[J].中国电力,2009,42(7):51-55.
    [125]段学农,雷霖,朱光明,谢国鸿.“W”火焰锅炉燃烧稳定性差原因分析[J].中国电力,2009,42(1):62-65.
    [126]段宝林,金鑫,魏铜生,杨忠灿,柳宏刚,徐党旗. FW型W火焰锅炉高负荷运行提高氧量困难的研究[J].热力发电,2007,36(4):48-50.
    [127]陈一平,陈耀华,杨剑锋,胡继武.国产首台2030t/h“W”火焰锅炉技术改造[J].中国电力,2009,42(2):40-44.
    [128]党小建,郭俊文,周刚.600MW机组W型火焰锅炉预防受热面超温的措施[J].热力发电,2008,37(4):43-46.
    [129]金鑫,段宝林,魏铜生,杨忠灿,柳宏刚,徐党旗. FW型W火焰锅炉侧墙严重结渣原因探析[J].热力发电,2007,36(2):37-39.
    [130]Chui E.H., Gao H.N., Majeski A., Lee G.K. Reduction of Emissions fromCoal-Based Power Generation[C].1stInternational Conference on ClimateChange, Hong Kong,2007.
    [131]高正阳,孙小柱,宋玮,方立军. W火焰锅炉结构效应对火焰影响的数值模拟[J].中国电机工程学报,2009,29(29):13-18.
    [132]黄良玉,樊全贵. W型火焰锅炉炉内传热与结渣特性的研究[J].动力工程,1992,12(4):24-28.
    [133]孙保民,徐旭常. W型火焰煤粉锅炉炉内过程的综合数值模拟及流场的实验研究[J].中国电机工程学报,1996,16(4):230-235.
    [134]陆肖马,徐旭常,糕玉群. W型火焰煤粉锅炉燃烧室中冷态二维流场测试及火焰三维传热数值计算[J].工程热物理学报,1995,16(2):193-198.
    [135]周昊,池作和,岑可法.采用旋流拱顶燃烧器的W型锅炉炉内流动特性[J].热能动力工程,2000,15(90):611-613.
    [136]周志军,朱自力,赵翔,姚强,曹欣玉,岑可法.旋流强度对W型火焰炉空气动力场的影响[J].动力工程.1999,19(3):33-37
    [137]Fan J.R., Liang X.H., Xu Q.S., Zhang X.Y., Cen K.F. Numerical Simulation ofthe Flow and Combustion Processes in a Three-Dimensional, W-Shaped BoilerFurnace[J]. Energy,1997,22(8):847-857.
    [138]Fan J.R., Liang X.H., Chen L.H., Cen K.F. Modeling of NOxEmissions From aW-Shaped Boiler Furnace Under Diffent Operating Conditions[J]. Energy.1998,23(12):1051-1055.
    [139]Fan J.R., Jin J., Liang X.H., Chen L.H., Cen K.F. Modeling of CoalCombustion and NOxFormation in a W-Shaped Boiler Furnace[J]. ChemicalEngineering Journal,1998,71(3):233-242.
    [140]Liang X.H., Fan W.C., Fan J.R., Cen K.F. Numerical Simulation of theCombustion in a W-Shaped Boiler Furnace Under Different OperatingConditions[J]. International Journal of Energy Research,1999,8(23):707-717.
    [141]Fan J.R., Zha X.D., Cen K.F. Computerized Analysis of Low NOxW-ShapedCoal-Fired Furnaces[J]. Energy&Fuels,2001,15(4):776-782.
    [142]Fan J.R., Zha X.D., Cen K.F. Study on Coal Combustion Characteristics in aW-Shaped Boiler Furnace[J]. Fuel,2001,80(3):373-381.
    [143]Li Z.Q., Fan S.B., Liu G.K., Yang X.H., Chen Z.C., Su W., Wang L. Influence ofStaged-Air on Combustion Characteristics and NOxEmissions of a300MWeDown-Fired Boiler with Swirl Burners[J]. Energy&Fuels,2010,24(1):38-45.
    [144]Fan S.B., Li Z.Q., Yang X.H., Liu G.K., Chen Z.C. Influence of OuterSecondary-Air Vane Angle on Combustion Characteristics and NOxEmissionsof a Down-Fired Pulverized-Coal300MWeUtility Boiler[J]. Fuel,2010,89(7):1525-1533.
    [145]Li Z.Q., Fan S.B., Su W., Chen Z.C., Qin Y.K. Influence of the OuterSecondary Air Vane Angle on the Flow Field of a Down-Fired Pulverized-Coal300MWeUtility Boiler with Swirl Burners[J]. Energy&Fuels,2010,24(7):3884-3889.
    [146]刘庆鑫,湛志钢,宋景慧.600MW“W”火焰锅炉存在问题及探讨[J].锅炉技术,2009,40(6):59-63.
    [147]宋景慧,湛志钢,刘庆鑫.某电厂600MW“W”火焰锅炉燃用劣质无烟煤存在问题分析[J].锅炉技术,2009,40(5):54-58.
    [148]Burdett N.A. The effects of air staging on NOxemissions from a500MW(e)down-fired boiler[J]. Journal of the Institute of Energy,1987,60(444):103-107.
    [149]刘家宝,陈楠.超细粉再燃技术在W火焰锅炉应用[J].锅炉技术,2008,39(4):47-49.
    [150]何立明,张建邦,李晓勇,车刚,徐通模,惠世恩.燃烧器配风对W型火焰锅炉炉内空气动力场影响的实验研究[J].应用力学学报,2002,19(1):18-42.
    [151]车刚,何立明,惠世恩,徐通模. W型火焰锅炉冷态模化的实验研究[J].西安交通大学学报,2000,34(9):38-43.
    [152]何立明,车刚,徐通模,惠世恩,谭厚章,闫晓,许卫疆.炉膛喉口面积对W型火焰锅炉炉内空气动力场的影响[J].西安交通大学学报,2000,34(7):12-15.
    [153]车刚,何立明,徐通模,惠世恩.燃烧器角度对W型火焰锅炉空气动力场的影响研究[J].动力工程,2001,21(1):1132-1136.
    [154]樊险峰,徐宝山,周传平,薛清贵. W型火焰炉冷态空气动力场试验研究及评价[J].锅炉制造,2002,13(2):1-5.
    [155]薛宁,白少林,相大光. W火焰炉低负荷稳燃问题的数值模拟研究[J].热力发电,2003,32(11):27-31.
    [156]苗长信,刘志超.1025t/h“W”火焰锅炉燃烧特性试验研究[J].热能动力工程,2002,17(6):599-602.
    [157]宋绍伟,邱现堂,杨真学,周海清,李琳,刘晓宏.“W”火焰锅炉炉膛负压波动大的原因分析与对策[J].中国电力,2006,39(8):45-48.
    [158]罗曙炎. W火焰燃煤锅炉运行分析和总结[C].全国火力发电厂锅炉优化燃烧与辅机节能技术研讨会论文集,海口,2007,51-60.
    [159]宋玉宝,牛国平,王晓冰. W火焰锅炉低NOx燃烧优化调整[C].全国火电机组优化运行技术研讨会会议论文集,成都,2005,354-361.
    [160]张磊,郭洪亮.主导火焰技术在600MW机组W型火焰燃烧锅炉中的应用[J].热力发电,2007,36(3):39-41.
    [161]刘晓慧,乔桂增.600MW机组“W”火焰锅炉主导与非主导火焰现象分析及采取措施[C].全国火电大机组(600MW级)竞赛第11届年会论文集(1),上海,2007,202-207.
    [162]朱予东,秦占锋,张伟,王春溪,孙波,李道波,任颖.聊城电厂600MW“W”火焰锅炉优化燃烧[J].中国电力,2007,40(5):51-54.
    [163]He B.S., Chen M.Q., Liu S.M., Fan L.J., Xu J.Y., Pan W.P. Measured VorticityDistributions in a Model of Tangentially Fired Furnace[J]. ExperimentalThermal and Fluid Science,2005,29(5):537-554.
    [164]Zhou Y.G., Xu T.M., Hui S.E., Zhang M.C. Experimental and Numerical Studyon the Flow Fields in Upper Furnace for Large Scale Tangentially FiredBoilers[J]. Applied Thermal Engineering,2009,29(4):732-739.
    [165]Li, Y.Q., Zhou, H.C. Experimental Study on Acoustic Vector Tomography of2-D Flow Field in an Experiment-Scale Furnace[J]. Flow Measurement andInstrumentation,2006,17(2):113-122.
    [166]Pan L.M., Ji H.C., Cheng S.M., Wu C.B., Yong H.Q. An ExperimentalInvestigation for Cold-State Flow Field of Regenerative Heating AnnularFurnace[J]. Applied Thermal Engineering,2009,29(16):3426-3430.
    [167]Zhou Y.G., Zhang M.C., Xu T.M., Hui S.E. Effect of Opposing TangentialPrimary Air Jets on the Flue Gas Velocity Deviation for Large-ScaleTangentially Fired Boilers[J]. Energy&Fuels,2009,23(11):5375-5382.
    [168]Wu J., Zhang M.C., Fan H.J., Fan W.D., Zhou Y.G. A Study on FractalCharacteristics of Aerodynamic Field in Low-NOxCoaxial Swirling Burner[J].Chemical Engineering Science,2004,59(7):1473-1479.
    [169]Li Z.Q., Jing J.P., Liu G.K., Chen Z.C. Fractal and Turbulence Characteristicsof Aerodynamic Fields of Swirl Burners[J]. Chemical Engineering Science,2010,65(3):1253-1260.
    [170]Li Y.Y., Li Y., Lin Z.C., Fan W.D., Zhang M.C. Visualization Research onHigh Efficiency and Low NOxCombustion Technology with MultipleAir-Staged and Large Angle Counter Flow of Fuel-Rich Jet[J]. AIP ConferenceProceedings,2010,1207(1):113-118.
    [171]Dai G.Q., Chen W.M., Li J.M., Chu L.Y. Experimental Study of Solid-LiquidTwo-Phase Flow in a Hydrocyclone[J]. Chemical Engineering Journal,1999,74(3):211-216.
    [172]Bao J., Soo S. L. Measurement of Particle Flow Properties in a Suspension bya Laser System[J]. Powder Technology,1995,85(3):261-268.
    [173]Lu Y., Glass D.H., Easson W.J. An Investigation of Particle Behavior inGas-Solid Horizontal Pipe Flow by an Extended LDA Technique[J]. Fuel,2009,88(12):2520-2531.
    [174]Fan W.D., Li Y.Y., Lin Z.C., Zhang M.C. PDA Research on a NovelPulverized Coal Combustion Technology for a Large Utility Boiler[J]. Energy,2010,35(5):2141-2148.
    [175]Xu M.H., Yuan J.W., Han C.Y., Zheng C.G. Investigation of ParticleDynamics and Pulverized Coal Combustion in a Cavity Bluff-Body Burner[J].Fuel,1995,74(12):1913-1917.
    [176]Chen Z.C., Li Z.Q., Jing J.P., Wang F.Q., Chen L.Z., Wu S.H. The Influenceof Fuel Bias in the Primary Air Duct on the Gas/Particle Flow CharacteristicsNear the Swirl Burner Region[J]. Fuel Processing Technology,2008,89(10):958-965.
    [177]Chen Z.C., Li Z.Q., Wang F.Q., Jing J.P., Chen L.Z., Wu S.H. Gas/ParticleFlow Characteristics of a Centrally Fuel Rich Swirl Coal CombustionBurner[J]. Fuel,2008,87(10-11):2102-2110.
    [178]Fan W.D., Lin Z.C., Li Y.Y., Zhang M.C. Experimental Flow FieldCharacteristics of OFA for Large-Angle Counter Flow of Fuel-Rich JetCombustion Technology[J]. Applied Energy,2010,87(8):2737-2745.
    [179]Jing J.P., Li Z.Q., Zhu Q.Y., Chen Z.C., Wang L., Chen L.Z. Influence of theOuter Secondary Air Vane Angle on the Gas/Particle Flow CharacteristicsNear the Double Swirl Flow Burner Region[J]. Energy,2011,36(1):258-267.
    [180]Chen Z.C., Li Z.Q. Gas/Particle Flow and Combustion Characteristics andNOxEmissions of a New Swirl Coal Burner[J]. Energy,2011,36(2):709-723.
    [181]Sun Q.Q., Zhu W.B., Zhang X.B., Gao J.M. Gas-Solid Two Phase Flow inInternally Circulating Two-Stage Spouted Desulfurization Tower[C]. InternationalConference on Computer Distributed Control and Intelligent EnvironmentalMonitoring, Changsha, China,2011.
    [182]Lin Z.C., Fan W.D., Li Y.Y., Li Y.H., Zhang M.C. Research of Low NOxCombustion with Large-Angle Counter Flow of a Fuel-Rich Jet and ItsParticle-Dynamics Anemometer (PDA) Experiment[J]. Energy&Fuels,2009,23(2):744-753.
    [183]Gillandt I., Fristching U., Bauckhage K. Measurement of Phase Interaction inDispersed Gas/Particle Two-Phase Flow[J]. Journal of Multiphase Flow,2001,27(8):1313-1332.
    [184]Zhou H., Cen K.F., Fan J.R. Experimental Investigation on Flow Structuresand Mixing Mechanisms of a Gas-Solid Burner Jet[J]. Fuel,2005,84(12-13):1622-1634.
    [185]Chen Z.C., Li Z.Q., Wang Z.W., Liu C.L., Chen L.Z., Zhu Q.Y., Li Y. TheInfluence of Distance between Adjacent Rings on the Gas/Particle FlowCharacteristics of Conical Rings Concentrator[J]. Energy,2011,36(5):2557-2564.
    [186]Costa M., Azevedo J.L.T., Carvalho M.G. Combustion Characteristics of aFront-Wall-Fired Pulverized-Coal300MWeUtility Boiler[J]. CombustionScience and Technology,1997,129(1):277-293.
    [187]Costa M., Silva P., Azevedo J.L.T. Measurements of Gas Species, Temperature,and Char Burnout in a Low-NOxPulverized-Coal-Fired Utility Boiler[J].Combustion Science and Technology,2003,175(2):271-289.
    [188]Costa M., Azevedo J.L.T. Experimental Characterization of an IndustrialPulverized Coal-fired Furnace under Deep Staging Conditions[J]. CombustionScience and Technology,2007,179(9):1923-1935.
    [189]Nazeer W.A., Pickett L.M., Tree D.R. In-Situ Species, Temperature andVelocity Measurements in a Pulverized Coal Flame[J]. Combustion Scienceand Technology,1999,143(1):63-77.
    [190]Su S., Pohl J.H., Holcombe D., Hart J.A. Techniques to Determine Ignition,Flame Stability and Burnout of Blended Coals in P.F. Power Station Boilers[J].Progress in Energy and Combustion Science,2001,27(1):75-98.
    [191]Li S., Xu T.M., Hui S.E., Wei X.L. NOxEmission and Thermal Efficiency of a300MWeUtility Boiler[J]. Applied Energy,2009,86(9):1797-1803.
    [192]Pedersen K.H., Jensen A.D., Berg M., Olsen L.H., Dam-Johansen K. TheEffect of Combustion Conditions in a Full-Scale Low-NOxCoal Fired Unit onFly Ash Properties for Its Application in Concrete Mixtures[J]. Fuel ProcessingTechnology,2009,90(2):180-185.
    [193]Butler B.W., Webb B.W. Measurement of Radiant Heat Flux and Local Particleand Gas Temperatures in a Pulverized Coal-Fired Utility-Scale Boiler[J].Energy&Fuels,1993,7(6):835-841.
    [194]Ribeirete A., Costa M. Impact of the Air Staging on the Performance of aPulverized Coal Fired Furnace[J]. Proceedings of the Combustion Institute,2009,32(2):2667-2673.
    [195]Wang X.B., Tan H.Z., Niu Y.Q., Pourkashanian M., Ma L., Chen E.Q., Liu Y.,Liu Z.N., Xu T.M. Experimental Investigation on Biomass Co-firing in a300MW Pulverized Coal-Fired Utility Furnace in China[J]. Proceedings of theCombustion Institute,2011,33(2):2725-2733.
    [196]Tsumura T., Okazaki H., Dernjatin P., Savolainen K. Reducing the MinimumLoad and NOxEmissions for Lignite-Fired Boiler by Applying a Stable-FlameConcept[J]. Applied Energy,2003,74(3-4):415-424.
    [197]Tanetsakunvatana V., Kuprianov V.I. Experimental Study on Effects ofOperating Conditions and Fuel Quality on Thermal Efficiency and EmissionPerformance of a300-MW Boiler Unit Firing Thai Lignite[J]. Fuel ProcessingTechnology,2007,88(2):199-206.
    [198]Jing J.P., Li Z.Q., Chen Z.C., Liu G.K., Liu C.L. Study of the Influence ofVane Angle on Flow, Gas Species, Temperature, and Char Burnout in a200MWeLignite-Fired Boiler[J]. Fuel,2010,89(8):1973-1984.
    [199]Li Z.Q., Jing J.P., Liu G.K., Chen Z.C., Liu C.L. Measurement of Gas Species,Temperatures, Char Burnout, and Wall Heat Fluxes in a200-MWeLignite-FiredBoiler at Different Loads[J]. Applied Energy,2010,87(4):1217-1230.
    [200]De, D.S. Measurement of flame temperature with a multi-element thermocouple[J].Journal of the Institute of Energy,1981,54(6):113-116.
    [201]Al-Abbas A.H., Naser J., Dodds D. CFD Modeling of Air-Fired and Oxy-FuelCombustion of Lignite in a100KW Furnace[J]. Fuel,2011,90(5):1778-1795.
    [202]Fan J.R., Sun P., Zheng Y.Q., Ma Y.L., Cen K.F. Numerical and ExperimentalInvestigation on the Reduction of NOxEmission in a600MW Utility Furnaceby Using OFA[J]. Fuel,1999,78(12):1387-1394.
    [203]Yin C., Caillat S., Harion J., Baudoin B., Perez E. Investigation of the Flow,Combustion, Heat-Transfer and Emissions from a609MW UtilityTangentially Fired Pulverized-Coal Boiler[J]. Fuel,2002,81(8):997-1006.
    [204]Habib M.A., Ben-Mansour R., Antar M.A. Flow Field and ThermalCharacteristics in a Model of a Tangentially Fired Furnace under DifferentConditions of Burner Tripping[J]. Heat Mass Transfer,2005,41(10):909-920.
    [205]Modlinski N. Computational Modeling of a Utility Boiler Tangentially-FiredFurnace Retrofitted with Swirl Burners[J]. Fuel Processing Technology,2010,91(11):1601-1608.
    [206]Asotani T., Yamashita T., Tominaga H., Uesugi Y., Itaya Y., Mori S. Predictionof Ignition Behavior in a Tangentially Fired Pulverized Coal Boiler UsingCFD[J]. Fuel,2008,87(4-5):482-490.
    [207]Choi C.R., Kim C.N. Numerical Investigation on the Flow, Combustion and NOxEmission Characteristics in a500MWeTangentially Fired Pulverized-CoalBoiler[J]. Fuel,2009,88(9):1720-1731.
    [208]Tian Z.F., Witt P.J., Schwarz M.P., Yang W. Numerical Modeling of VictorianBrown Coal Combustion in a Tangentially Fired Furnace[J] Energy&Fuels,2010,24(9):4971-4979.
    [209]Backreedy R.I., Jones J.M., Ma L., Pourkashanian M., Williams A., ArenillasA., Arias B., Pis J.J., Rubiera F. Prediction of unburned carbon and NOxin aTangentially Fired Power Station Using Single Coals and Blends[J]. Fuel,2005,84(17):2196-2203.
    [210]Shen Y.S., Guo B.Y., Yu A.B., Austin P.R., Zulli P. Three-DimensionalModelling of In-Furnace Coal/Coke Combustion in a Blast Furnace[J]. Fuel,2011,90(2):728-738.
    [211]Zeng L.Y., Li Z.Q., Zhao G.B., Shen S.P., Zhang F.C. Numerical Simulation ofCombustion Characteristics and NOxEmissions in a300MWeUtility Boilerwith Different Outer Secondary-Air Vane Angles[J]. Energy&Fuels,2010,24(10):5349-5358
    [212]周力行.湍流气粒两相流动和燃烧的理论与数值模拟[M].北京:科学出版社,1994:153-200.
    [213]Hill S.C., Smoot L.D. Modeling of Nitrogen Oxides Formation and Destructionin Combustion Systems[J]. Progress in Energy and Combustion Science,2000,26(4-6):417-458.
    [214]Smoot L.D., Smith P.J. Coal Combustion and Gasification[M]. New York:Plenum Press,1989:163-264.
    [215]袁远.含典型气溶胶粒子的大气辐射传输与反演[D].哈尔滨:哈尔滨工业大学博士学位论文,2012:45-53.
    [216]谈和平.红外辐射特性与传输的数值计算:计算热辐射学[M].哈尔滨:哈尔滨工业大学出版社,2006:152-153.
    [217]Kobayashi H., Howard J.B., Sarofim A.F. Coal Devolatilization at HighTemperatures[J]. Symposium (International) on Combustion,1977,16(1):411-425.
    [218]邹冲,张生富,温良英,白晨光,吕学伟,王昆.无烟煤燃烧过程的热分析动力学研究[J].煤炭学报,2011,36(8):1370-1374.
    [219]De Soete G.G. Overall Reaction Rates of NO and N2Formation from FuelNitrogen[C]. Proceedings of the15thInternational Symposium on Combustion,Pittsburgh, USA,1975.
    [220]Zhao S., Hui S.E., Liang L., Zhou Q.L., Zhao Q.X., Li N. Effect of theMomentum Flux Ratio of Vertical to Horizontal Component on CoalCombustion in an Arch-Fired Furnace with Upper Furnace Over-Fire Air[J].Experimental Thermal and Fluid Science,2013,45:180-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700