用户名: 密码: 验证码:
FRP约束钢筋混凝土柱非线性阻尼性能及动力响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
FRP加固混凝土已成为广泛应用的工程结构加固技术。但FRP约束混凝土作为新型组合材料,其阻尼性能的研究还处在起步阶段,在进行FRP约束混凝土结构抗震分析时,一般取其阻尼比与混凝土结构相同进行计算,这将使其动力分析结果的可靠性受到很大影响。由于机理尚不非常清楚,试验与理论研究复杂,对于FRP约束混凝土结构的阻尼目前国内外还没有专门研究、尚处空白。
     本文针对FRP约束钢筋混凝土及损伤钢筋混凝土材料的非线性阻尼特性进行研究。首先采用试验方法测定FRP约束钢筋混凝土柱的阻尼比以及在水平反复荷载作用下的滞回耗能性能。然后,研究考虑初始损伤以及强弱约束条件下的FRP约束钢筋混凝土柱的滞回性能和阻尼耗能特性,建立其非线性材料阻尼计算公式。基于所建的非线性阻尼模型,建立非线性阻尼系统的动力响应分析方法,对FRP约束无损伤及有损伤钢筋混凝土柱的地震响应进行分析。该项研究有助于非线性阻尼理论和FRP约束混凝土结构抗震分析理论的发展及应用。主要研究工作如下:
     (1)试验研究了FRP约束无损伤及不同初始损伤的钢筋混凝土柱在水平反复荷载作用下的破坏过程、滞回性能、刚度退化和耗能性能;通过模态识别方法,测试并分析了FRP约束无损伤及不同初始损伤的钢筋混凝土柱的基频、阻尼比随不同参数的变化规律。
     (2)利用OpenSees系统(Open System for Earthquake Engineering Simulation),采用FRP强弱约束混凝土本构模型、考虑初始损伤及损伤发展的约束混凝土本构模型及Karsan-Jirsa加卸载准则,对FRP约束无损伤及有损伤钢筋混凝土柱滞回性能进行了模拟,并将计算结果与试验结果进行了对比。
     (3)在Lazan对材料阻尼及应力关系研究的基础上,分别计算了FRP约束无损伤及不同初始损伤的钢筋混凝土压弯柱的单位体积损耗能量,在分析各种因素对耗能影响的基础上,通过SPSS统计分析软件回归建立了FRP约束无损伤及有损伤钢筋混凝土压弯柱的非线性阻尼理论计算公式。
     (4)在复阻尼动力系统内,采用有限元法,通过建立的非线性阻尼模型,迭代计算了FRP约束无损伤及有损伤的钢筋混凝土柱阻尼值及相应的动力响应,并与取常阻尼系数计算的动力响应进行了对比,定量分析了不同参数对材料阻尼及动力响应的影响规律。
     (5)将非线性阻尼模型引入到结构动力方程中,计算了FRP约束无损伤及有损伤钢筋混凝土柱在单、双向简谐及地震荷载作用下的动力响应,结果表明:非线性阻尼下的振动反应与常阻尼比下的振动反应有着较大的差异。从设计角度来讲,常阻尼比计算模型的分析结果将偏于不安全。同时分析了混凝土强度、纵筋率、初始损伤和FRP率对FRP约束钢筋混凝土柱阻尼和自振频率的影响。
Externally wrapping fiber-reinforced polymer (FRP) composites has gotten increasingly wide applications in strengthening and retrofitting of existing concrete structures. However, as a new kind of composite material, the study for material damping of FRP-confined concrete is still in the initial stage. In the seismic analysis of FRP-confined reinforced concrete (RC)structures, the constant damping ratio of general RC structures, instead of a proper damping value, is usually adopted at present due to the complexity in mechanism and the difficulty in experiment, which, greatly affects the reliability of the dynamic analysis results. The proper damping model of FRP-confined RC structures has not yet been set up.
     This paper aims to explore into the non-linear damping characteristics of FRP-confined RC and damaged RC materials. Firstly, a series of tests are conducted to observe the damping and hysteretic energy dissipation of FRP-confined RC columns. Subsequently, hysteretic performance and hysteretic energy dissipation characteristics of FRP-confined RC columns are investigated considering initial damage and different confinement levels to establish the non-linear damping formulas. Finally, based on the proposed damping models, an improved method for dynamic analysis considering non-linear damping is developed to analyze the seismic response of FRP-confined RC and damaged RC columns. This study is helpful to the development and application of non-linear damping theory and anti-seismic analysis theory of FRP-confined RC structures. Main researching works of this dissertation are as following:
     (1) Test process is designed to study the hysteretic performance of FRP-confined RC and damaged RC columns, and carrying capacity decline and stiffness degenerate of FRP-confined concrete under cyclic loading. By using the modal identification method, the effects of different parameters on the natural frequencies and damping ratio of FRP-confined RC columns are tested and analyzed.
     (2) FRP-confined concrete constitution models considering initial damage and different confinement levels and Karsan-Jirsa unloading-reloading law are utilized to compute the hysteretic performance of FRP-confined RC and damaged RC columns subjected to compression and bending by the OpenSees program. The results of program are in good agreement with the experimental results.
     (3) Based on the study for the relation between material damping and stress of Lazan, the energy dissipation of FRP-confined RC and damaged RC columns are computed. Further, the effect of a few parameters on energy dissipation is analyzed, and the non-linear damping formulas of FRP-confined RC and damaged RC columns subjected to compression and bending are set up by non-linear regression with a commercial software SPSS.
     (4) Based on the proposed damping models, Finite Element Method is adopted to obtain the real material damping values and corresponding dynamic responses of FRP-confined RC and damaged RC columns iteratively in dynamic system with hysteretic damping, and the results are compared with the dynamic responses by constant material damping. Influencing law of parameters on the material damping and dynamic responses is analyzed quantitatively.
     (5) By introducing the the non-linear damping models into the structural dynamic equation, the responses of FRP-confined RC and damaged RC columns under the uniaxial and biaxial harmonic and earthquake loadings are calculated, the analytical results indicate that there are remarkable differences between the dynamic response based on non-linear damping and constant damping. In view of design, the seismic response level based on constant damping recommended by current code for seismic design of FRP-confined RC component may be significant underestimate. The effects of the concrete strength, longitudinal reinforcement ratio, initial damage level and FRP volume ratio on the damping and natural frequencies time history of FRP-confined RC columns are analyzed.
引文
[1]Teng J G, Lam L. FRP-strengthened RC structures[M]. London:John Wiley & Sons,2002.
    [2]岳清瑞,杨勇新.复合材料在建筑加固、修复中的应用[M].北京:化学工业出版社,2006.
    [3]Report on fiber-reinforced polymer (FRP) reinforcement for concrete structures[R]. Detroit: American Concrete Institute (ACI),2008.
    [4]Japan Concrete Institute (JCI). Non-metallic (FRP) reinforcement for concrete structures[S]. Tokyo,1997.
    [5]Canadian Standard Association (CSA)-CSA-S806-2002. Design and construction of building components with fibre-reinforced polymers[S]. Toronto,2002.
    [6]American Concrete Institute (ACI)-ACI-440. Guide for the design and construction of externally bonded FRP system for strengthening concrete structures [S]. Detroit,2002.
    [7]Research National Council-CNR-DT 200/2004. Instructions for design, execution and control of strengthening interventions by means of fibre-reinforced composites[S].2004.
    [8]中华人民共和国建设部.GB50367-2006.混凝土结构加固设计规范[S].北京:中国建筑工业出版社,2006.
    [9]Egyptian Ministry of Housing, Utilities, Urban Development. Egyptian code for the use of fiber reinforced polymers (FRP) in the construction fields[S]. Cairo,2005.
    [10]Makris N. Causal hysteretic element[J]. Journal of Engineering Mechanics,1997,123(11): 1209-1214.
    [11]Glanville M J, Kwok K C S, Denoon R O. Full-scale damping measurements of structures in Australia[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,59:349-364.
    [12]刘洪瑞.地震荷载作用下梁桥弹塑性阻尼变化规律探讨[J].中南公路工程,1995,6(2):38-41.
    [13]王卓,闫维明,秦栋涛,等.钢混简支梁加载损伤后耗能特征试验研究[J].振动、测试与诊断,2009,29(1):66-70.
    [14]马中华,韩福生,魏健宁,等.宏观体缺陷对材料阻尼行为的影响[J].中国科学(A辑),2001,31(3):255-260.
    [15]张相庭.结构阻尼耗能假设及在振动计算中的应用[J].振动与冲击,1982,2:12-22.
    [16]Newmark N. M., Hall, W. J., Seismic design criteria for nuclear reactor facilities[A]. Proceedings of Fourth World Conference on Earthquake Engineering [C]. Santiago,1969.
    [17]Lam L, Teng J G. Strength models for fiber-reinforced plastic-confined concrete[J]. Journal of Structural Engineering,2002,128(5):612-623.
    [18]Samaan M, Mirmiran A, Shahawy M. Model of concrete confined by fiber composites[J]. Journal of Structural Engineering,1998,124(9):1025-1031.
    [19]Fardis M N, Khalili H. Concrete encased in fiber glass-reinforced plastic[J]. ACI Journal,1981, 78(6):440-446.
    [20]Fujikake K, Mindess S, Xu H. Analytical model for concrete confined with fiber reinforced polymer composite[J]. Journal of Composites for Construction,2004,8(4):341-351.
    [21]Spoelstra M R, Monti G FRP-confined concrete model[J]. Journal of Composites for Construction,1999,3(3):143-150.
    [22]Mirmiran A, Shahawy M, Samaan M, et al. Effect of column parameters on FRP-confined concrete[J]. Journal of Composites for Construction,1998,2(4):175-185.
    [23]Xiao Y, Wu H. Compressive behavior of concrete confined by carbon fiber composite jackets[J]. Journal of Materials in Civil Engineering,2000,12(2):139-146.
    [24]王元丰.AFRP约束混凝土柱性能理论[M].北京:科学出版社,2011
    [25]Sheikh S A, Yau G Seismic behavior of concrete columns confined with steel and fiber-reinforced polymers[J]. ACI Structural Journal,2002,99(1):72-80.
    [26]Iacobucci R D, Sheikh S A, Bayrak O. Retrofit of square concrete columns with carbon fiber-reinforced polymer for seismic resistance[J]. ACI Structural Journal,2003,100(6): 785-794.
    [27]Seible F, Innamorato D, Baumgartner J, et al. Seismic retrofit of flexural bridge spandrel columns using fiber reinforced polymer composite jackets[J]. ACI Special Publication,1999, 188:919-932.
    [28]Saadatmanesh H, Ehsani M R, Jin L. Seismic retrofitting of rectangular bridge columns with composite straps[J]. Earthquake Spectra,1997,13(2):281-304.
    [29]Haroun M A, Elsanadedy H M. Behavior of cyclically loaded squat reinforced concrete bridge columns upgraded with advanced composite-material jackets[J]. Journal of Bridge Engineering, 2005,10(6):741-748.
    [30]Yalcin C, Kaya O, Sinangil M. Seismic retrofitting of RC columns having plain bars using CFRP sheets for improved strength and ductility[J]. Construction and Building Materials,2008, 22(3):295-307.
    [31]Seible F, Priestley M J N, Hegemier G A, et al. Seismic retrofit of RC columns with continuous carbon fiber jackets[J]. Journal of Composites for Construction,1997,1(2):52-62.
    [32]魏文晖,熊耀清,卢哲安.CFRP加固混凝土框架结构非线性有限元动力分析[J].世界地震工程,2003,19(4):83-87.
    [33]江理平,唐寿高,宋玮,等.碳纤维包覆混凝土框架结构动力响应分析[J].工程力学,2004,21(2):194-198.
    [34]刘保东,牛晓斐,王建兵.FRP加固钢筋混凝土桥墩的抗震性能分析[J].工程抗震与加固改造,2006,28(6):85-89.
    [35]Meftah S A, Yeghnem R, Tounsi A, et al. Seismic behavior of RC coupled shear walls repaired with CFRP laminates having variable fibers spacing[J]. Construction and Building Materials, 2007,21:1661-1671.
    [36]Chiewanichakorn M, Aref A J, Alampalli S. Dynamic and fatigue response of a truss bridge with fiber reinforced polymer deck[J]. International Journal of Fatigue,2007,29:1475-1489.
    [37]Hamed E, Rabinovitch O. Dynamic Behavior of Reinforced Concrete Beams Strengthened with Composite Materials[J]. Journal of Composites for Construction,2005,9(5):429-440.
    [38]Abdessemed M, Kenai S, Bali A, et al. Dynamic analysis of a bridge repaired by CFRP: Experimental and numerical modeling[J]. Construction and Building Materials,2011,25(3): 1270-1276.
    [39]Bonfiglioli B, Pascale G, Martinez de Mingo S. Dynamic Testing of Reinforced Concrete Beams Damaged and Repaired with Fiber Reinforced Polymer Sheets[J]. Journal of Materials in Civil Engineering,2004,16(5):400-406.
    [40]Chang S Y, Li Y F, Loh C H. Experimental study of seismic behaviors of as-built and carbon fiber reinforced plastics repaired reinforced concrete bridge columns[J]. Journal of Bridge Engineering,2004,9(4):391-402.
    [41]Tedesco J W, Stallings J M, EI-Mihilmy M. Finite element method analysis of a concrete bridge repaired with fiber reinforced plastic laminates[J]. Computers and Structures,1999,72: 379-407.
    [42]Capozucca R, Nilde Cerri M. Static and dynamic behaviour of RC beam model strengthened by CFRP-sheets[J]. Construction and Building Materials,2002,16(2):91-99.
    [43]Baghiee N, Reza Esfahani M, Moslem K. Studies on damage and FRP strengthening of reinforced concrete beams by vibration monitoring[J]. Engineering Structures,2009,31(4): 875-893.
    [44]Nashif A D. Vibration damping[M]. New York:John Wiley & Sons,1985.
    [45]Zbigniew O. Damping of vibrations[M]. Netherlands:A.A.Balkema,1998.
    [46]Beards C F. Structural vibration:analysis and damping[M]. Great Britain:Arnold,1996.
    [47]瑞斯尼克R,哈里德D.物理学[M].北京:科学出版社,1979.
    [48]王光远.建筑结构的振动[M].北京:科学出版社,1978.
    [49]Jacobsen L S. Steady forced vibration as infuenced by damping[J]. Transactions of the American Society of Mechanical Engineers,1930,52(1):169-181.
    [50]唐谢兴.钢筋混凝土受弯构件振动中的阻尼耗能和破坏模型研究[D].长沙:湖南大学,2005.
    [51]Theodorsen T, Garrick IE. Mechanism of flutter-a theoretical and experimental investigation of the flutter problem[R]. National Advisory Committee for Aeronautics,1940:685.
    [52]Myklestad N O. The concept of complex damping[J]. Journal of Applied Mechanics,1952, 19(3):20-30.
    [53]Liang Z, Lee G C. Representation of damping matrix[J]. Journal of Engineering Mechanics, 1991,117(5):560-565.
    [54]Lazan B J. Damping of material and members in structural mechanics[M]. London:Pergamon Press,1968.
    [55]石建军,胡绍全.钢筋混凝土材料阻尼值的试验研究[J].四川建筑科学研究,2003,29(3):14-15.
    [56]陈振富等.钢筋混凝土小变形阻尼研究[J].四川建筑科学研究,2004,30(2):10-12.
    [57]尚世英,董至仁.钢筋混凝土构件阻尼值试验研究[J].工程抗震,1993,12(4):18-19.
    [58]马宁.几种构件的非比例阻尼比试验研究[J].工程抗震,2003,1:37-41.
    [59]柯国军,郭长青,胡绍全,等.混凝土阻尼比研究[J].建筑材料学报,2004,7(1):35-40.
    [60]柯国军,郭长青.轻骨料混凝土阻尼比研究[J].混凝土,2002,(10):34-37.
    [61]柯国军.混凝土阻尼试验研究及其机理分析[J].噪声与振动控制,2005,5:60-63.
    [62]刘铁军,欧进萍.水泥砂浆强度和阻尼增强掺料及试验[J].低温建筑技术,2003,1:7-9.
    [63]黄宗明.结构地震反应时程分析中的阻尼研究[D].重庆:重庆建筑大学,1995.
    [64]Morita K, Kand J. Experimental evaluation of amplitude dependent natural period and damping ratio of a multi-story structure [A]. The 11th WCEE[C]. Mexico,1996.
    [65]Suda K, Satake N. Damping properties of buildings in Japan[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,59:383-392.
    [66]Lee J H. Development of new technique for damping identification and sound transmission analysis of various structures[D]. Cincinnati:University of Cincinnati,2001.
    [67]黄本才.高层建筑钢结构振动阻尼比测试与分析[J].结构工程师,1997,4:20-24.
    [68]Inaudi J A, Kelly J M. Linear hysteretic damping and the Hilbert transform[J], Journal of Engineering Mechanics,1995,121:662-632.
    [69]何钟怡.关于复阻尼理论的几点注记[J1.地震工程与工程振动,2002,22(1):1-6.
    [70]Maia N. Reflections on the hysteretic damping model[J]. Shock and Vibration,2009,16: 529-542.
    [71]Crandall S H. The role of damping in vibration theory[J]. Journal of Sound and Vibration,1970, 11(1):3-18.
    [72]朱镜清.结构抗震分析原理[M].北京:地震出版社,2002.
    [73]Ribeiro A M R, Maia N M M, Silva J M M. On the modelling of damping in structural vibrations[A]. Proceedings of ISMA 2006, Noise and Vibration Engineering[C]. Leuven: Belgium,2006.
    [74]Chen K F, Zhang S W. On the impulse response precursor of an ideal linear hysteretic damper [J]. Journal of Sound and Vibration,2008,312:576-583.
    [75]Chen J T, You D W. An integral-differential equation approach for the free vibration of a SDOF system with hysteretic damping[J]. Advances in Engineering Software,1999,30:43-48.
    [76]何钟怡.复本构理论中的对偶原则[J].固体力学学报,1994,15(2):177-180.
    [77]王建平,刘宏昭.含复阻尼振动系统的对偶原则及其数值方法研究[J].振动工程学报,2004,17(1):62-65.
    [78]朱敏,朱镜清.逐步积分法求解复阻尼结构运动方程的稳定性问题[J].地震工程与工程振动,2001,21(4):59-62.
    [79]潘玉华,王元丰.含复阻尼振动系统的逐步积分法稳定性研究[J].土木工程学报,2010,43:502-507.
    [80]Henwood D J. Approximating the hysteretic damping matrix by a viscous matrix for modelling in the time domain[J]. Journal of Sound and Vibration,2001,254(3):575-593.
    [81]Lin R M, Zhu J. On the relationship between viscous and hysteretic damping models and the importance of correct interpretation for system identification[J]. Journal of Sound and Vibration, 2009,325:14-33.
    [82]Biot M A. Linear thermodynamics and the mechanics of solids[A], Proceedings of the Third U.S. National Congress on Applied Mechanics[C]. New York:ASCE,1958:1-18.
    [83]潘玉华,王元丰.复阻尼结构动力方程的高斯精细时程积分法[J].工程力学,2012,29(2):16-20.
    [84]McTavish D J, Hughes P C. Modeling of linear viscoelastic space structures[J]. Journal of Vibration and Acoustics,1993,115(1):103-110.
    [85]Woodhouse J. Linear damping models for structural vibration[J]. Journal of Sound Vibration, 1998,215(3):547-69.
    [86]Adhikari-S. Dynamics of nonviscously damped linear systems[J]. Journal of Engineering Mechanics,2002,128(3):328-339.
    [87]Wagner N, Adhikari S. Symmetric state-space formulation for a class of non-viscously damped systems[J]. AIAA Journal,2003,41(5):951-956.
    [88]Adhikari S, Wagner N. Direct time-domain integration method for exponentially damped linear systems[J]. Computers and Structures,2004,82:2453-2461.
    [89]Cortes F, Mateos M. A direct integration formulation for exponentially damped structural systems[J]. Computers and Structures,2009,87:391-394.
    [90]段中东,沈宏宇.非粘滞阻尼系统时程响应分析的精细积分方法[J].计算力学学报,2009,26(5):638-644.
    [91]文捷,王元丰.钢筋混凝土轴压构件材料阻尼计算及应用公式[J].振动与冲击,2007,26(6):14-16.
    [92]文捷,王元丰.素混凝土轴压构件单位体积材料耗能公式建立[J].北京交通大学学报,2008,32(1):79-32
    [93]文捷,王元丰.钢筋混凝土悬臂梁材料阻尼值计算[J].土木工程学报,2008,41(2):77-80.
    [94]王元丰,文捷,潘玉华.钢管混凝土轴压构件耗能计算及单位体积耗能公式建立[J].振动与冲击,2010,29(4):12-16.
    [95]何益斌,樊海涛,周绪红,等.钢筋混凝土结构非线性阻尼地震反应谱研究[J].建筑结构学报,2010,31(3):38-44.
    [96]何益斌,樊海涛,夏栋舟,等.建筑结构非线性阻尼及其振动反应研究[J].湖南大学学报(自然科学版),2006,33(5):41-47.
    [97]董军,邓洪洲,王肇民.结构动力分析阻尼模型研究[J].世界地震工程,2000,16(4):63-69.
    [98]王元丰,李鹏.材料阻尼对钢筋混凝土框架结构动力响应影响分析[J].土木工程学报,2008,41(11):39-43..
    [99]李鹏,王元丰.黏性阻尼与复阻尼对钢筋混凝土框架结构地震响应影响的分析[J].地震工程与工程振动,2007,27(3):54-57.
    [100]田坤,李鹏,王元丰.结构等效复阻尼模型对钢梁及钢框架结构动力响应影响分析[J].振动与冲击,2008,27(7):118-121.
    [101]张辉东,王元丰.复阻尼模型结构地震时程响应研究[J].工程力学,2010,27(1):109-115.
    [102]张辉东,周颖,王元丰.基于复阻尼理论的流固耦合地震时程响应研究[J].振动与冲击,2010,29(6):194-198.
    [103]张辉东,王元丰,肇成强.复阻尼模型三维钢框架结构动力响应[J].沈阳建筑大学学报(自然科学版),2009,25(1):50-55.
    [104]何益斌,唐谢兴,夏栋舟.钢筋混凝土受弯构件振动中的阻尼耗能研究[J].工业建筑,2006,36(2):11-15.
    [105]樊海涛,何益斌,肖宏彬.钢筋混凝土建筑非线性阻尼性能及阻尼比表达式研究[J].地震工程与工程振动,2005,25(5):85-90.
    [106]中华人民共和国国家标准.GB50011-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.
    [107]杨志勇,李桂青,瞿伟廉.结构阻尼的发展及其研究近况[J].武汉工业大学学报,2000,22(3):38-41.
    [108]Hart G C, Lew M, Dijulio R M. High-rise building response:damping and period nonlinearities[A]. Proceedings of 5th World Conference on Earthquake Engineering[C]. Rome, Italy,1973.
    [109]Cochardt A W. A method for determining the internal damping of machine members[J]. Journal of Applied Mechanics,1954,22:257-262.
    [110]Yorgiadis A. Damping capacity of materials[J]. Product Engineering,1954,32:164-170.
    [111]Hagel W C, Clark J W. The specific damping energy of fixed-fixed beam specimens[J]. Journal of Applied Mechanics,1957,25:426-430.
    [112]Kume Y. Material damping of cantilever beams[J]. Journal of Sound and Vibration,1982, 80(1):1-10.
    [113]Gounaris G D. Structural damping determination by finite element approach[J]. Computers and Structures,1999,73:445-452.
    [114]Gounaris G D. Hysteretic damping of structures vibrating at resonance:An iterative complex eigensolution method based on damping-stress relation[J]. Computers and Structures,2007,85: 1858-1868.
    [115]Jeary A P. Damping in tall building-a mechanism and a predictor[J]. Earthquake Engineering and Structural Dynamics,1986,14:733-750.
    [116]Tamura Y, Suganuma S Y. Evaluation of amplitude-dependent damping and natural frequency of buildings during strong winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996,59:115-130.
    [117]Jeary A P. The description and measurement of nonlinear damping in structures[J]. Journal of wind engineering and industrial aerodynamics,1996,59:103-114.
    [118]Li Q S, Liu D K, Fang J Q, et al. Damping in buildings:its neural network model and AR model[J]. Engineering Structures,2000,22:1216-1223.
    [119]Fang J Q, Jeary A P, Li Q S, et al. Random damping in buildings and its AR model[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,79:159-167.
    [120]Kareem A, Gurley K. Damping in structure:its evaluation and treatment of uncertainty[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,59:134-157.
    [121]Gulkan P, Sozen M A. Inelastic responses of reinforced concrete structures to earthquake motions[J].ACI Journal,1974,71(12):604-610.
    [122]Lu Y, Hao H, Carydis P G, et al. Seismic performance of RC frames designed for three different ductility levels[J]. Engineering Structures,2001,23(5):537-547.
    [123]Kowalsky M J, Priestley M J N, Macrae G A. Displacement-based design of RC bridge columns in seismic regions[J]. Earthquake Engineering and Structural Dynamics,1995,24(12): 1623-1643.
    [124]Sergio F B, Benjamin M S. Hysteretic Behavior of Bridge Columns with FRP-Jacketed Lap Splices Designed for Moderate Ductility Enhancement[J]. Journal of Composites for Construction,2007,11(6):565-574.
    [125]Wen J, Wang Y F. The influence of damping change on dynamic response of concrete-filled steel tubular arch bridges[A], The Proceedings of the 4th International Conference on Advances in Steel Structures[C]. Shanghai, China,2005.
    [126]Schutz H. Statical and dynamical behavior of machine tool frames made of polymer concrete[A]. Proceedings of the 4th ICPIC[C]. Darmstadt, Germany,1984:19-21.
    [127]Tanner H. Application of polymer concrete in the machine design[A]. Proceedings of the 4th ICPIC[C]. Darmstadt, Germany,1984:139-144.
    [128]Orak S. Investigation of Vibration Damping on Polymer Concrete with Polyster Resin[J].Cement and Concrete Research,2000,30(2):171-174.
    [129]Wong W G, Fang P, Pan J K. Polymer effects on the vibration damping behavior of cement[J]. Journal of Materials in Civil Engineering,2003,15(6):554-556.
    [130]胡佳山,李仕群,宋方臻,等.环氧树脂混凝土阻尼性能的研究[J].中国建材科技,1994,3(1):8-11.
    [131]Sayir M B, Pfaffli F, Partl M. Elastodynamic behaviour of fibre reinforced cement[J].Construction and Building Materials,1991,5(4):211-216.
    [132]Wu Q. Experimental investigation of damping ratios for steel fiber reinforced concrete[D]. Reno:University of Nevada,1995.
    [133]Chung D D L. Structural composite materials tailored for damping[J]. Journal of Alloys and Compounds,2003,355 (1-2):216-223.
    [134]Fu X, Chung D D L. Vibration damping admixtures for cement[J]. Cement Concrete Research, 1996,26(1):69-75.
    [135]Wang Y, Chung D D L. Effects of sand and silica fume on the vibration damping behavior of cement[J]. Cement Concrete Research,1998,28(10):1353-1356.
    [136]Wen S H, Chung D D L. Enhancing the vibration reduction ability of concrete by using steel reinforcement and steel surface treatments[J], Cement and Concrete Research,2000,30(8): 327-330.
    [137]Chen P W, Chung D D L. Carbon fiber reinforced concrete as a smart material capable of nondestructive flaw detection[J]. Smart Materials and Structures,1993,1(2):22-30.
    [138]Fu X, Li X, Chung D D L. Improving the vibration damping capacity of cement[J]. Journal of Materials Science,1998,33 (14):3601-3605.
    [139]Hou J, Fu X, Chung D D L. Improving both bond strength and corrosion resistance of steel rebar in concrete by water immersion or sand blasting of rebar[J]. Cement and Concrete Research,1997,27 (5):679-684.
    [140]刘铁军,欧进萍.聚合物阻尼增强水泥砂浆性能的试验研究[J].新型建筑材料,2003,(4):7-9.
    [141]刘铁军,欧进萍,李家和.硅粉的硅烷化对水泥砂浆阻尼性能的影响[J].硅酸盐学报,2003,31(11):1125-1129.
    [142]Kersevicius V, Skripkiunas G. Physical properties and durability of concrete with elastic additive from rubber waste[J]. Materials Science,2002,8(3):293-298.
    [143]Eldin N N, Senouci A B. Rubber-Tire particles as concrete aggregate[J]. Journal of Materials in Civil Engineering,1993,5(4):478-496.
    [144]Bignozzi MC, Saccani A, Sandrolini F. New polymer mortars containing polymeric wastes Part 2. Dynamic mechanical and dielectric behaviour[J]. Composites Part A-Applied Science and Manufacturing,2002,33 (2):205-211.
    [145]谢旭,张鹤,中永刚.钢和CFRP拉索的振型阻尼特性研究[J].工程力学,2008,25(3):151-157.
    [146]Ohta Y, Narita Y, Nagasaki K. On the damping analysis of FRP laminated composite plates[J]. Composite Structures,2002,57:169-175.
    [147]Maheri M R, Adams R D. Model vibration damping of anisotropic FRP laminates using the Rayleigh-Ritz energy minimization scheme[J]. Journal of Sound and Vibration,2003,259(1-2): 17-29.
    [148]Guan Y J, Wei Y T. A new effective 3-D FE formulation of FRP structural modal damping for thick laminate[J]. Composite Structures,2009,87(3):225-231.
    [149]Wang X, Wu Z S. Modal damping evaluation of hybrid FRP cable with smart dampers for long-span cable-stayed bridges[J]. Composite Structures,2011,93(4):1231-1238.
    [150]Saadatmanesh H, Ehsani MR, Jin L. Seismic strengthening of circular bridge pier models with fiber composites [J]. ACI Struct Journal,1996,93 (6):639-647.
    [151]Nesheli K N, Meguro K. Seismic retrofitting of earthquake-damaged concrete columns by lateral pre-tensioning of FRP belts[A].Proceedings of the 8th U.S. National Conference on Earthquake Engineering[C]. San Francisco, California, USA,2006:18-22.
    [152]Saiidi MS, Cheng Z. Effectiveness of composites in earthquake damage repair of reinforced concrete flared columns[J]. Journal of Composites for Construction,2004,8(4):306-314.
    [153]Cheng C T, Yang J C, Yeh Y K, et al. Seismic performance of repaired hollow-bridge piers[J]. Construction and Building Materials,2003,17(5):339-351.
    [154]Youm K S, Lee Y H, Choi Y M, et al. Seismic performance of lap-spliced columns with glass FRP[J]. Magazine of Concrete Research,2007,59(3):189-198.
    [155]Xiao Y, Ma R. Seismic retrofit of RC circular column using prefabricated composite jacketing [J]. Journal of Structural Engineering,1997,123(10):1357-1364.
    [156]赵彤,谢剑.碳纤维布补强加固混凝土结构新技术[M].天津:天津大学出版社,2001.
    [157]Chang S Y, Li Y F, Loh C H. Experimental study of seismic behavior of as-built and carbon fiber reinforced plastics repaired reinforced concrete bridge columns[J]. Journal of Bridge Engineering,2004,9(4):391-402.
    [158]Si B J, Sun Z G, Wang Q X. Rapid repair of severely earthquake-damaged bridge piers[A]. The 8th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures[C]. Greece,2007:16-18.
    [159]Ye L P, Zhang K, Zhao S H, et al. Experimental study on seismic strengthening of RC columns with wrapped CFRP sheets[J]. Construction and Building Materials,2003,17(6-7):499-506.
    [160]Clough R W, Penzien J. Dynamics of Structures[M]. New York:McGraw-Hill,1975.
    [161]Rayleigh L. Theory of sound (two volumes), second edition[M]. New York:Dover Publications,1945.
    [162]Caughey T K. Classical normal modes in damped linear dynamic dynamic systems[J]. Journal of Applied Mechanics,1960,27:259-269.
    [163]Claret A M, Venancio-Filbo F. A model superposition pseudo-force method for dynamic analysis of structural systems with non-proportional damping[J].Earthquake Engineering and Structural Dynamics,1991,20(4):303-315.
    [164]Veletson A S, Ventura C E. Model analysis of non-classically damped linear systems[J]. Earthquake Engineering and Structural Dynamics,1986,14(2):217-243.
    [165]Warburton G B, Soni S R. Errors in response calculations for non-classically damped structures [J]. Earthquake Engineering and Structural Dynamics,1977,5(4):365-376.
    [166]Bert C W. Material damping:An introductory review of mathematical models. Measures and experimental techniques [J]. Journal of Sound and Vibration,1973,29(2):129-153.
    [167]Miline H K. The impulse response function of a single degree of freedom system with hysteretic damping[J]. Journal of Sound and Vibration,1985,29:590-593.
    [168]胡海岩.结构阻尼模型及系统时域动响应[J].振动工程学报,1993,10(1):34-43.
    [169]杨志勇,范么清,华明.两种摩擦力滑移隔震结构地震响应的研究[J].武汉理工大学学报,2003,25(7):34-37.
    [170]樊剑,唐家祥.滑移隔震结构的动力特性及地震反应[J].土木工程学报,2000,33(4):30-34.
    [171]张文芳,程文瀼.基础隔震结构设置摩擦阻尼器的地震反应研究[J].土木工程学报,2001,34(5):1-9.
    [172]季葆华,王乐天.汽轮机叶片干摩擦阻尼机理及其数学描述[J].汽轮机技术,1997,39(6):345-39.
    [173]Zhu Z Y, Ahmad I, Mirmiran A. Fiber element modeling for seismic performance of bridge columns made of concrete-filled FRP tubes[J]. Engineering Structures,2006,28:2023-2035.
    [174]金熙男,潘景龙,刘广义,等.增强纤维约束混凝土轴压应力应变关系试验研究[J].建筑结构学报,2003,24(4):47-53.
    [175]魏洋,吴刚,吴智深,等.FRP约束混凝土矩形柱有软化段时的应力-应变关系研究[J].土木工程学报,2008,41(3):21-28.
    [176]吴刚,吴智深,吕志涛.FRP约束混凝土圆柱有软化段时的应力-应变关系研究[J].土木工程学报,2006,39(11):7-14.
    [177]敬登虎,曹双寅.方形截面混凝土柱FRP约束下的轴向应力-应变曲线计算模型[J].土木工程学报,2005,38(12):32-37.
    [178]Zeris C A, Mahin S A. Analysis of reinforced concrete beam-columns under uniaxial excitation [J]. Journal of Structural Engineering,1988,114(4):804-820.
    [179]Zeris C A, Mahin S A. Behavior of reinforced concrete structures subjected to biaxial excitation[J]. Journal of Structural Engineering,1991,117(9):2657-2673.
    [180]Spacone E, Filippou F C, Taucer F F. Fiber beam-column model for non-linear analysis of R/C frames:part 1. formulation[J]. Earthquake Engineering and Structural Dynamics,1996,25(7): 711-725.
    [181]Taucer F F, Spacone E, Filippou F C. A fiber beam-column element for seismic response analysis of RC structures[R]. Berkeley:Earthquake Engineering Research Center, University of California,1991.
    [182]Scott B D, Park R, Priestley M J N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates[J]. ACI Journal,1982,79 (1):13-27.
    [183]Karsan I D, Jirsa J O. Behavior of concrete under compressive loading[J]. Journal of Structural Division,1969,95(ST12):2543-2563.
    [184]赵彤,刘明国,谢剑,等.应用碳纤维布增强钢筋混凝土柱抗震能力的研究[J].地震工程与工程振动,2000,20(4):66-72.
    [185]Lam L, Teng J G. Design-oriented stress-strain model for FRP-confined concrete[J]. Construction and Building Materials,2003,17 (6-7):471-489.
    [186]Lam L, Teng J G. Design-oriented stress-strain model for FRP-confined concrete in rectangular columns[J]. Journal of Reinforced Plastics and Composites,2003,22(13): 1149-1186.
    [187]Mander J, Priestley M, Park R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering,1988,117(8):1804-1826.
    [188]李伟.碳纤维约束高强混凝土圆柱抗震性能研究[D].哈尔滨:哈尔滨土业大学,2007.
    [1891 Yoneda K, Kawashima K, Shoji G Seismic retrofit of circular reinforced bridge columns by wrapping of carbon fiber sheets[J]. Journal of Structural Mechanics and Earthquake Engineering,2001,682:41-56.
    [190]陶忠,于清.新型组合结构柱-试验、理论与方法[M].北京:科学出版社,2006.317-335.
    [191]Aire C, Gettu R, Casas JR. Study of the compressive behavior of concrete confined by fiber reinforced composites[A]. Proceedings of the International Conference[C]. Netherlands:A.A. Balkema Publishers,2001:239-243.
    [192]Loland K E. Continuous damage models for load-response estimation of concrete[J]. Cement and Concrete Research,1980, (10):392-402.
    [193]Mazars J, Pijaudier-Cabot G Continuum damage theory-application to concrete [J], Journal of Engineering Mechanics,1989,115(2):345-365.
    [194]Supartono F, Sidoroff F. Anisotropic damage modeling for brittoe elastic materials [C]. Symposium of Franc-Poland,1984.
    [195]余天庆.混凝土的分段线性损伤模型[J].岩石、混凝土断裂与强度,1985,2:56-60.
    [196]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    [197]何明,徐道远.混凝土的损伤模型[J].福州大学学报,1994,4:109-114.
    [198]刘仲波,王海龙,钟铭.高强钢筋混凝土梁的静载试验研究与分析[J].石家庄铁道学院学报,2004,17(3):63-66.
    [199]钟铭.钢筋混凝土桥墩低周疲劳损伤后性能试验及理论研究[D].北京:北京交通大学土木建筑工程学院,2010.
    [200]Kawashima K, Shoji G. Sakakibara Y. A cyclic loading test for clarifying the plastic hinge length of reinforced concrete piers [J]. Journal of Structural Engineering,2000,46A(2): 767-776.
    [201]Kumath S K. Cumulative seismic damage of reinforced concrete bridge piers[R]. New York: National Center for Earthquake Engineering Research,1997.
    [202]Park YJ, Ang AHS, Wen YK. Seismic damage analysis and damage-limiting design of RC buildings[R]. Illinois:University of Illinois at Urbana-Champaign,1984:163-163.
    [203]刁波,李淑春,叶英华.反复荷载作用下混凝土异形柱结构累积损伤分析及试验研究[J].建筑结构学报,2008,29(1):57-63.
    [204]李洪鹏.损伤后碳纤维约束高强混凝土圆柱剩余抗震能力试验研究[D].哈尔滨:哈尔滨上业大学,2007.
    [205]Saadatmanesh H, Ehsani MR, Jin L. Repair of earthquake-damaged RC columns with FRP wraps[J]. ACI Structural Journal,1997,94(2):206-214.
    [206]张双寅,刘济庆,于晓霞,等.复合材料结构力学性能[M].北京:北京理工大学出版社,1992:67-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700