用户名: 密码: 验证码:
基于磁流变阻尼器的汽车悬架系统切换控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展和技术的进步,人们对汽车行驶舒适性提出了更高的要求,而悬架系统的减振效果一直是影响舒适性的关键性因素。上个世纪磁流变阻尼器的出现促进了减振技术的新发展,它具有抗干扰能力强、响应速度快和能量消耗低等优点,为其在汽车悬架系统中的应用奠定了物理基础。然而由于磁流变阻尼器具有复杂的非线性物理特征,目前基于磁流变阻尼器悬架系统的控制多采用智能控制算法和天棚控制策略,但是智能控制算法存在控制精度低,频响速度慢等缺点,而天棚控制策略未能充分利用磁流变阻尼器输出库伦力连续可控的优点,难于进一步改善磁流变阻尼器悬架系统的性能。本论文针对如何解决目前控制策略存在的问题展开研究。
     论文首先讨论了磁流变阻尼器悬架系统模型建立问题。在系统建模中,基于Bingham模型提出了一种新的磁流变阻尼力的处理方法,该方法仅将其中同速度方向有关而与速度大小无关的库伦力单独分离出来考虑,使磁流变库伦力对于悬架系统而言不仅在形式上而且在某些特定状态条件下等效为一个主动执行力;然后又提出一种磁流变库伦力静态非线性的反函数拟合串联校正线性化方法,该方法先对磁流变库伦力关于其控制电流的复杂非线性函数的反函数进行多项式拟合,再将这种拟合处理环节串入磁流变阻尼器控制电流输入通道,从而消除了磁流变阻尼器库伦力复杂非线性给悬架系统控制带来的困扰;最后基于以上处理,从控制系统角度出发对磁流变阻尼器悬架系统进行了深入的理论分析,并建立了相对完善的磁流变阻尼器悬架系统的控制系统模型,此外结合车辆行驶时的状况,建立了扰动模型和舒适性评价指标,为磁流变阻尼器悬架系统的控制和性能评价奠定了基础。
     其次本文系统地研究了天棚控制和被动悬架系统的车辆行驶平顺性、舒适性和操纵稳定性,提出了库伦力多分段悬架系统切换控制方法,该方法综合了天棚控制和被动悬架系统的优点。数值仿真结果表明,该方法不仅能够获得比天棚控制方法更好的车辆行驶平顺性、舒适性,而且也能获得比被动悬架系统更优的车辆操纵稳定系。
     进一步针对具有饱和及不确定性的磁流变阻尼器悬架系统,提出了一种基于状态反馈闭环控制的多反馈矩阵切换控制方法,并利用公共李雅普诺夫函数对切换系统进行了稳定性分析和证明。该方法针对磁流变悬架系统的运行特性,分别设计三种不同状态反馈矩阵,其中一个闭环控制子系统的状态反馈矩阵根据H∞性能指标最优来设计,以保证悬架系统切换到此闭环控制模式时能获得最佳的减振性能;然后设计一个切换控制律,使悬架系统运行于不同的状态反馈闭环控制模式,确保磁流变悬架系统在任何运行状态下都能为车辆提供良好的行驶平顺性和乘员乘坐舒适性。
     此外,由于在实际工程中有些状态变量往往难于测量,限制了状态反馈矩阵切换控制在实际工程中的应用,为此本文针对具有饱和及不确定性的磁流变阻尼器悬架系统提出了一种多输出反馈参数切换控制方法。该方法根据设计的切换控制律使悬架系统在三种不同闭环子系统控制模式间交替切换以确保车辆具有良好的行驶平顺性。其中一个闭环控制子系统设计时先基于可降低求解保守性的ILMI技术将以H∞性能优化设计的BMI约束条件等效转化为LMI约束条件,然后采用交替迭代方法求解出其静态输出反馈控制参数,以保证悬架系统运行在此闭环控制模式时能获得最佳的减振性能。数值仿真结果表明,多输出反馈参数切换控制方法对悬架系统的减振效果有明显作用。
     论文最后,设计了磁流变阻尼器悬架系统减振实验台,针对具有饱和及不确定性的磁流变阻尼器悬架系统进行了基于状态反馈矩阵切换控制的半物理仿真实验。实验结果表明,本文所提出磁流变阻尼器悬架系统的控制方法切实有效,并有可能在将来的实际工程得到成功应用。
With the development of society and the advances in technology, people havehigher requirement for vehicle riding comfort, while the reducing vibration ofsuspension systems always is a key factor that affects the improving of thisperformance. In the last century, the invention of a megnetorheological damperpromotes the development of the reducing vibration techniques. Themegnetorheological damper has many advantages such as strong anti-interferencecapability, fast response and low energy consumption and so on. This presents achance to its application in the vehicle suspension system. Since themegnetorheological damper has complex nonlinear physical character, the controlsystem of the suspension system based on a megnetorheological damper usuallyadopt the strategy of the intelligent control or the Skyhook control, but theintelligent control algorithm has some disadvantages such as low control precisionand slowly frequency response and so on, and the Skyhook control strategy hasfailed to make full use of the merit that the coulomb force of a megnetorheologicaldamper can be continuous controlled, so it is difficult to further improve theperformance of the megnetorheological suspension system based on the intelligentcontrol or the Skyhook control. This thesis will research how to solve the problemsexisting in the current control strategies.
     In this thesis, that how to establish the model of the suspension system basedon the megnetorheological damper is discussed firstly. In the processes ofestablishing model, a new processing method that handles megnetorheologicaldamping force in Bingham model is proposed. This method separates the coulombforce only related with the speed direction from megnetorheological damping forceto make megnetorheological coulomb force for the suspension system be equivalentto an active execution force in form and under some particular state conditions. Andthen a linearization method is given, which introduce the fitting function of the static nonlinear inverse function of megnetorheological coulomb force to the frontof the megnetorheological damper so as to eliminate the complex nonlinear. Finally,based on the control system point of view and according to the above processing,the thorough theoretical analysis of the megnetorheological damper suspensionsystem is presented and a relatively perfect control system model of themegnetorheological damper suspension system is established. In addition,according to the condition of road surface, a perturbation model and a comfortevaluation index are set up. This builds the foundation for the control systemanalysis and performance evaluation of the suspension system with themegnetorheological damper.
     Secondly, the vehicle riding comfort and handing stability of the suspensionsystem with the Skyhook control and the passive suspension system aresystematically studied in this thesis, and then multiple segmented coulomb forceswitched control method is put forward, this method takes advantages of both theSkyhook control and the passive suspension. The numerical simulation results showthat this method not only can gain vehicle riding comfort better than the Skyhookcontrol but also can obtain vehicle handing stability better than the passivesuspension system.
     Furthermore, aimed at the megnetorheological damper suspension system withinput saturation and uncertain, put forward a multiple feedback matrix switchedcontrol method based on the state feedback closed loop control and the stability ofthis switched control system has be analyzed and proved by common Lyapunovfunction. Based on the running characteristics of the megnetorheological dampersuspension system, three different state feedback matrixes, one of the feedbackmatrixes can let the corresponding closed-loop sub-system obtain the optimal H∞performance thereby ensure that the suspension system under this closed loopcontrol mode can get the best vibration reduction performance, are designedrespectively. Then according to the state running track of the suspension system todesign a switched law to guarantee the suspension system can provide vehicle with better riding comfort in any switched state.
     In addition, considering some state variables are often difficult to be measuredin the actual engineering, which limits the switched control based on the statefeedback matrix switching be used in the practical engineering, for this reason, anew control method based on multiple output feedback parameters switching isproposed for the megnetorheological damper suspension system with the inputsaturation and uncertain parameters in this thesis. The method, according to thedesigned switching control law, lets the suspension system alternately run underthree kinds of closed-loop sub-system control modes to ensure better rideperformance of the vehicle. Using ILMI technology which reduces the solvingconservatism, the BMI constraints based on H∞optimization performance istransformed into LMI constraints. Then by the alteration iteration method, one ofthe closed-loop control sub-systems static output feedback controller parameters aregot to ensure the suspension system running in this closed-loop control mode canobtain the best vibration reduction performance. The numerical simulation resultsshow that the control method based on the multiple output feedback parametersswitching has obvious effect on the vibration reduction of the suspension system.
     Lastly, the vibration experiment bench of the megnetorheological dampersuspension system is designed, and then the semi-physical simulation experimenthas been done for the megnetorheological damper suspension system based on statefeedback matrixes switched control. Experimental results show that the presentedswitched control method for the megnetorheological damper suspension system iseffective and is likely to be successfully applied to practical engineering in thefuture.
引文
[1] Sun W, Zhao Y, Li J, et al. Active suspension control with frequency bandconstraints and actuator input delay[J]. Industrial Electronics, IEEETransactions on,2012,59(1):530-537.
    [2] Sunwoo M, Cheok K C, Huang N J. Model reference adaptive control forvehicle active suspension systems[J]. Industrial Electronics, IEEE Transactionson,1991,38(3):217-222.
    [3] Li H, Gao H, Liu H. Robust quantised control for active suspension systems[J].IET control theory&applications,2011,5(17):1955-1969.
    [4] Cao J, Liu H, Li P, et al. State of the art in vehicle active suspension adaptivecontrol systems based on intelligent methodologies[J]. IntelligentTransportation Systems, IEEE Transactions on,2008,9(3):392-405.
    [5] Canale M, Milanese M, Novara C. Semi-active suspension control using―fast‖model-predictive techniques[J]. Control Systems Technology, IEEETransactions on,2006,14(6):1034-1046.
    [6] Sun W, Gao H, Kaynak O. Finite frequency H∞control for vehicle activesuspension systems[J]. IEEE Transactions on Control Systems Technology,2011,19(2):416-422.
    [7] Qiu J, Ren M, Zhao Y, et al. Active fault-tolerant control for vehicle activesuspension systems in finite-frequency domain[J]. Control Theory&Applications, IET,2011,5(13):1544-1550.
    [8] Wang H, Shi X. Semi-Active Suspension Control Using the RNN InverseSystem of MR Dampers[C]//Intelligent Systems and Applications (ISA),20102nd International Workshop on. IEEE,2010:1-4.
    [9]方子帆,邓兆祥,郑玲,淑红宇.汽车半主动悬架系统研究进展.重庆大学学报[J],2003,26(1):104-108.
    [10]胡海岩,郭大蕾,翁建生.振动半主动控制技术的进展.振动、测试与诊断[J],2001,21(4):235-291.
    [11] Cornejo C, Alvarez-Icaza L. Vibration control of a building with magneto-rheological-dampers based on interconnection and dampingassignment[C]//Decision and Control,200645th IEEE Conference on. IEEE,2006:6549-6554.
    [12] Li R, Chen W M, Yu M, et al. Fuzzy intelligent control of automotive vibrationvia magneto-rheological damper[C]//Cybernetics and Intelligent Systems,2004IEEE Conference on. IEEE,2004,1:503-507.
    [13] Wei L, Wen-ku S, Da-wei L, et al. Experimental modeling of magneto-rheological damper and PID neural network controller design[C]//NaturalComputation (ICNC),2010Sixth International Conference on. IEEE,2010,4:1674-1678.
    [14] Zhao Y, Sun W, Gao H. Robust control synthesis for seat suspension systemswith actuator saturation and time-varying input delay[J]. Journal of Sound andVibration,2010,329(21):4335-4353.
    [15] Lozoya-Santos J J, Tudon-Martinez J C, Morales-Menendez R, et al.Comparison of On-Off Control Strategies for a Semi-Active AutomotiveSuspension using HiL[J]. Latin America Transactions, IEEE (Revista IEEEAmerica Latina),2012,10(5):2045-2052.
    [16]马宁,李长明.汽车悬架发展概述[J].科技资讯,2007,(34):221-221.
    [17]梁新成,黄志刚,朱亭,穆以东.汽车悬架的发展现状和展望[J].北京工商大学学报,2006,24(2):30-33.
    [18]王国丽,顾亮,孙逢春.车辆主动悬架技术的现状和发展趋势[J].兵工学报,2000,21(8):80-83.
    [19] Dyke S J, Spencer Jr B F, Sain M K, et al. Seismic response reduction usingmagnetorheological dampers[C]//Proceedings of the IFAC World Congress.1996,50:145-150.
    [20] Dyke S J, Spencer Jr B F, Sain M K, et al. Modeling and control ofmagnetorheological dampers for seismic response reduction[J]. SmartMaterials and Structures,1996,5(5):565-575.
    [21] Poussot-Vassal C, Sename O, Dugard L, et al. A new semi-active suspensioncontrol strategy through LPV technique[J]. Control Engineering Practice,2008,16(12):1519-1534.
    [22]李宏男,常治国,王苏岩.基于智能算法的MR阻尼器半主动控制[J].振动工程学报,2004,(03):96-101.
    [23] Rabinow J. Magnetic Fluid Clutch. Tehnical News Bulletin[J],1948,32(4):54-60.
    [24] Hesselbach J, Abel-Keilhack C. Active hydrostatic bearing withmagnetorheological fluid[J]. Journal of applied physics,2003,93(10):8441-8443.
    [25] Ngatu G T, Wereley N M. Viscometric and sedimentation characterization ofbidisperse magnetorheological fluids[J]. Magnetics, IEEE Transactions on,2007,43(6):2474-2476.
    [26] Chiriac H, Stoian G. Influence of the Particles Size and Size Distribution on theMagnetorheological Fluids Properties[J]. Magnetics, IEEE Transactions on,2009,45(10):4049-4051.
    [27] Winter S H, Bouzit M. Use of magnetorheological fluid in a force feedbackglove[J]. Neural Systems and Rehabilitation Engineering, IEEE Transactionson,2007,15(1):2-8.
    [28] Paciello V, Pietrosanto A. Magnetorheological Dampers: A New Approach ofCharacterization[J]. Instrumentation and Measurement, IEEE Transactions on,2011,60(5):1718-1723.
    [29] Grad P. Against the flow-Smart fluids that can change their viscosity in realtime[J]. Engineering&Technology,2006,1(9):34-37.
    [30] Winter S H, Bouzit M. Use of magnetorheological fluid in a force feedbackglove[J]. Neural Systems and Rehabilitation Engineering, IEEE Transactionson,2007,15(1):2-8.
    [31] Blake J, Gurocak H B. Haptic glove with MR brakes for virtual reality[J].Mechatronics, IEEE/ASME Transactions on,2009,14(5):606-615.
    [32] Fujitani H., H. Sodeyama, T. Tomura, et al.Development of400kNmagenetorheological damper for a real base-isolated building[C].Proceedingsof SPIE-Smart Structures and Materials: Damping and Isolation.San DiegoUSA,2003:265-276.
    [33]王修勇,陈振清,倪一清.斜拉桥风雨振观测及控制.土木工程学报[J],2003,36(6):53-59.
    [34]陈政清,曹宏,禹见达.磁流变阻尼器在洪山大桥拉索减振中的应用.中南公路工程[J],2005,30(4):27-30.
    [35]李金海,关新春,刘敏.斜拉索磁流变液阻尼器半主动振动控制系统的设计与应用.功能材料[J],2006,37(5):827-830.
    [36] Karnopp D, Crosby M J, Harwood R A. Vibration control using semi-activeforce generators[J]. Journal of Engineering for Industry,1974,96:619-626.
    [37] Long-ming G, Wen-ku S, Wei L. A semi-active suspension design for off-roadvehicle base on Magneto-rheological technology[C]//Fuzzy Systems andKnowledge Discovery (FSKD),20129th International Conference on. IEEE,2012:2565-2568.
    [38] Spencer B F, Dyke S J, Sain M K, et al. Phenomenological model formagnetorheological dampers[J]. Journal of engineering mechanics,1997,123(3):230-238.
    [39] Zapateiro M, Luo N, Karimi H R, et al. Vibration control of a class ofsemiactive suspension system using neural network and backsteppingtechniques[J]. Mechanical Systems and Signal Processing,2009,23(6):1946-1953.
    [40] Song X, Ahmadian M, Southward S, et al. Parametric study of nonlinearadaptive control algorithm with magneto-rheological suspension systems[J].Communications in Nonlinear Science and Numerical Simulation,2007,12(4):584-607.
    [41]郑军.磁流变传动理论与试验研究[D].重庆:重庆大学博士学位论文,2008.
    [42]方子帆,邓兆祥.磁流变阻尼器简化力学模型研究[J].工程力学,2007,24(11):32-35.
    [43]丁阳,张路,李忠献.阻尼力双向调节磁流变阻尼器的结构设计与性能预估[J].工程力学,2009,26(5):73-79.
    [44]王昊,胡海岩.磁流变阻尼器的模糊逼近[J].振动工程学报,2006,19(1):31-36.
    [45]马新娜,杨绍普,刘晓星,等.磁流变阻尼器系统的非线性动力学分析[J].振动与冲击,2011,30(6):31-35.
    [46]王修勇,陈政清,高赞明,倪一清.磁流变阻尼器对斜拉索振动控制研究[J].工程力学,2002,19(6):22-26.
    [47]刘永强,杨绍普,申永军.基于磁流变阻尼器的汽车悬架半主动相对控制[J].振动与冲击,2008,27(2):154-161.
    [48]黄昆,邹立华.基于磁流变阻尼器的多单体组合结构模糊控制[J].振动与冲击,2006,25(5):116-119.
    [49]郭迎庆,徐赵东,费树岷,陈勇.磁流变智能结构的微粒子群优化控制[J].振动与冲击,2011,30(9):59-63.
    [50]汪志昊,陈振清.基于磁流变阻尼器的隔振高架桥Skyhook控制[J].振动与冲击,2010,29(12):196-199.
    [51]赵亮,文桂林,韩旭,等.基于磁流变阻尼器的车辆半主动悬架最优控制的研究[J].汽车工程,2008,30(4):340-344.
    [52]潘之茂,刘佐民.基于PC的磁流变阻尼控制的研制[J].武汉理工大学学报,2002,24(8):67-71.
    [53] Zuo L, Slotine J J E, Nayfeh S A. Model reaching adaptive control forvibration isolation[J]. Control Systems Technology, IEEE Transactions on,2005,13(4):611-617.
    [54]姚嘉凌,郑加强,蔡伟义.车辆半主动悬架模型参考滑膜控制[J].农业机械学报,2008,39(4):5-8.
    [55] Poussot-Vassal C, Sename O, Dugard L, et al. Optimal skyhook control forsemi-active suspensions[C]//Mechatronic Systems.2006,4(1):608-631.
    [56] Sammier D, Sename O, Dugard L. Skyhook and H∞Control of Semi-activeSuspensions: Some Practical Aspects[J]. Vehicle System Dynamics,2003,39(4):279-308.
    [57] Fallah M, Bhat R B, Xie W F. Optimized Control of Semiactive SuspensionSystems Using H Robust Control Theory and Current Signal Estimation[J]. IEEE/ASME Transactions on,2012,17(4):767-778.
    [58]贾启芬,许恒波,王影,刘习军.基于磁流变阻尼器的汽车悬架半主动控制[J].天津大学学报,2006,(07):768-772.
    [59]严天一,刘大维,师忠秀,等.基于地棚控制的半主动悬架车辆道路友好性仿真[J].农业机械学报,2007,38(1):12-16.
    [60] Jie-ping C, Wanshan G, Wutang F, et al. Research of semi-active suspensionself-adjust sky/ground-hook hybrid control simulation[C]//Electric Informationand Control Engineering (ICEICE),2011International Conference on. IEEE,2011:5230-5234.
    [61] De Filippi P, Tanelli M, Corno M, et al. Semi-active steering damper control intwo-wheeled vehicles[J]. Control Systems Technology, IEEE Transactions on,2011,19(5):1003-1020.
    [62] Jie C, Cangsu X, Shaomin L. A sliding mode semi-active control forsuspension based on neural network[C]//Intelligent Control and Automation,2008. WCICA2008.7th World Congress on. IEEE,2008:6143-6148.
    [63] Chen S, Zhao Y. Investigation of semi-active hydro-pneumatic suspensioncontrol using neural network based sliding mode method[C]//AdvancedComputer Control (ICACC),20113rd International Conference on. IEEE,2011:256-260.
    [64]涂建维,刘嘉,瞿伟廉. MR阻尼器的性能测试与逆模式神经网络智能控制方法的研究[J].功能材料,2006,(05):805-807.
    [65]王剑,周春桂,朱长春,等.采用磁流变阻尼器的汽车悬架系统的杂交建模[J].工程力学,2007,(10):170-174.
    [66]郑玲,周忠永.基于自适应神经模糊的磁流变阻尼器非参数化建模[J].振动与冲击,2011,(10):25-29.
    [67]王威,宋玉玲,王体春,崔立.非确定因素下汽车半主动悬架的智能控制[J].工程力学,2012,(09):337-342.
    [68]郭大蕾,胡海岩.基于磁流变阻尼器的车辆悬架半主动控制研究——建模与直接自适应控制[J].振动工程学报,2002,(01):14-18.
    [69]郭大蕾,胡海岩.基于磁流变阻尼器的车辆悬架半主动控制研究——间接自适应控制与实验[J].振动工程学报,2002,(03):41-45.
    [70]周燕.基于磁流变阻尼器的汽车半主动悬架的神经模糊控制[J].南京理工大学学报(自然科学版),2008,(06):715-718.
    [71] Li R, Chen W M, Yu M, et al. Fuzzy intelligent control of automotive vibrationvia magneto-rheological damper[C]//Cybernetics and Intelligent Systems,2004IEEE Conference on. IEEE,2004,1:503-507.
    [72] Shiao Y, Lai C, Nguyen Q. The analysis of a semi-active suspensionsystem[C]//SICE Annual Conference2010, Proceedings of. IEEE,2010:2070-2082.
    [73]王昊,胡海岩.整车悬架的最优模糊半主动控制[J].振动工程学报,2005,(04):438-442.
    [74]王其东,王祺明,陈无畏.磁流变半主动悬架变论域模糊控制研究[J].振动工程学报,2009,(05):512-518.
    [75]董小闵,余淼,廖昌荣,等.汽车磁流变半主动悬架自适应模糊控制研究[J].中国公路学报,2006,(02):111-115.
    [76]郭迎庆,费树岷,徐赵东.磁流变阻尼结构模糊控制器的设计与分析[J].东南大学学报(自然科学版),2007,(06):1027-1031.
    [77]卢少波,李以农.磁流变悬架灰预测模糊控制仿真与试验研究[J].振动与冲击,2011,(05):63-68.
    [78]余淼,廖昌荣,李锐,等.基于小波变换的磁流变悬架模糊控制算法[J].功能材料,2006,(05):786-789.
    [79] Kim H S, Kang J W. Semi-active fuzzy control of a wind-excited tall buildingusing multi-objective genetic algorithm[J]. Engineering Structures,2012,41:242-257.
    [80] Yan G, Zhou L L. Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers[J]. Journal of sound andvibration,2006,296(1):368-382.
    [81] Du H, Zhang N. Application of evolving Takagi–Sugeno fuzzy model tononlinear system identification[J]. Applied Soft Computing,2008,8(1):676-686.
    [82]王广雄,林愈银,谢冰.控制问题中的线性矩阵不等式及其求解[J].电机与控制学报,1998,(04):2-4.
    [83]高金凤,俞立,王春平.线性矩阵不等式及其在控制工程中的应用[J].控制工程,2003,(02):145-148+189.
    [84]何军红,吴旭光,穆向阳.线性矩阵不等式及其在控制系统中的应用[J].系统工程与电子技术,2001,(10):25-30+110.
    [85]胡中骥,施颂椒,翁正新.线性矩阵不等式在控制理论中的应用及发展[J].上海交通大学学报,1999,(11):1458-1461.
    [86] Du H, Yim Sze K, Lam J. Semi-active H∞control of vehicle suspension withmagneto-rheological dampers[J]. Journal of Sound and Vibration,2005,283(3):981-996.
    [87]张孝祖,黄少华.鲁棒μ控制的半主动悬架[J].农业机械学报,2007,(06):19-22.
    [88]石秀东,钱林方,徐亚栋.基于Lyapunov稳定性理论的磁流变半主动悬架整车控制[J].南京理工大学学报(自然科学版),2005,(04):425-429.
    [89] Robinson R, Hu W, Wereley N M. Linking Porosity and Tortuosity to thePerformance of a Magneto-Rheological Damper Employing a Valve FilledWith Porous Media[J]. Magnetics, IEEE Transactions on,2010,46(6):2156-2159.
    [90] Rabinow J. RABINOW: U.S. Patent2,575,360[P].1951-11-20.
    [91] Rabinow J. The magnetic fluid clutch[J]. Electrical Engineering,1948,67(12):1167-1167.
    [92] Lim S T, Cho M S, Jang I B, et al. Magnetorheology of carbonyl-ironsuspensions with submicron-sized filler[J]. Magnetics, IEEE Transactions on,2004,40(4):3033-3035.
    [93] Lim S T, Cho M S, Jang I B, et al. Magnetorheological characterization ofcarbonyl iron based suspension stabilized by fumed silica[J]. Journal ofmagnetism and magnetic materials,2004,282:170-173.
    [94] Jang I B, Kim H B, Lee J Y, et al. Role of organic coating on carbonyl ironsuspended particles in magnetorheological fluids[J]. Journal of applied physics,2005,97(10):10Q912-10Q912-3.
    [95] Choi J S, Park B J, Cho M S, et al. Preparation and magnetorheologicalcharacteristics of polymer coated carbonyl iron suspensions[J]. Journal ofMagnetism and Magnetic Materials,2006,304(1): e374-e376.
    [96] Garcia I, Tercjak A, Zafeiropoulos N E, et al. Generation of core/shell ironoxide magnetic nanoparticles with polystyrene brushes by atom transferradical polymerization[J]. Journal of Polymer Science Part A: PolymerChemistry,2007,45(20):4744-4750.
    [97] Cho M S, Cho Y H, Choi H J, et al. Synthesis and electrorheologicalcharacteristics of polyaniline-coated poly (methyl methacrylate) microsphere:size effect[J]. Langmuir,2003,19(14):5875-5881.
    [98] You J L, Park B J, Choi H J. Magnetorheological Characteristics of CarbonylIron Embedded Suspension Polymerized Poly (Methyl Methacrylate) Micro-Bead[J]. Magnetics, IEEE Transactions on,2008,44(11):3867-3870.
    [99] Ginder J M, Davis L C. Shear stresses in magnetorheological fluids: Role ofmagnetic saturation[J]. Applied Physics Letters,1994,65(26):3410-3412.
    [100]Jolly M R, Carlson J D, Munoz B C. A model of the behaviour ofmagnetorheological materials[J]. Smart Materials and Structures,1996,5(5):607-614.
    [101]Grad P. Against the flow-Smart fluids that can change their viscosity in realtime[J]. Engineering&Technology,2006,1(9):34-37.
    [102]Grunwald A, Olabi A G. Design of magneto-rheological (MR) valve[J].Sensors and Actuators A: Physical,2008,148(1):211-223.
    [103]赵强,冯海生.基于磁流变阻尼器的座椅悬架专家PID控制研究[J].森林工程,2010,(01):41-44+64.
    [104]周云,谭平.磁流变阻尼控制理论与技术[M].北京:科学出版社,2007.
    [105]Stanway R, Sproston J L, Stevens N G. Non-linear identification of anelectrorheological vibration damper[C]//IFAC Identification and SystemParameter Estimation.1985,7:195-200.
    [106]Stanway.R, Sproston J L. Nonlinear Modeling of an ElectrorheologicalVibration Damper[J]. Journal of Electrostatics,1987,2:167-184.
    [107]Xu Z D, Shen Y P. Intelligent bi-state control for the structure withmagnetorheological dampers[J]. Journal of intelligent material systems andstructures,2003,14(1):35-42.
    [108]Wereley N M, Pang L. Nondimensional analysis of semi-activeelectrorheological and magnetorheological dampers using approximate parallelplate models[J]. Smart Materials and Structures,1998,7(5):732-743.
    [109]Thanh T D C, Ahn K K. Intelligent phase plane switching control ofpneumatic artificial muscle manipulators with magneto-rheological brake[J].Mechatronics,2006,16(2):85-95.
    [110]徐赵东,沈亚鹏.磁流变阻尼器的计算模型及仿真分析[J].建筑结构,2003,(01):68-70.
    [111]Witters M, Swevers J. Black-box model identification for a continuouslyvariable, electro-hydraulic semi-active damper[J]. Mechanical Systems andSignal Processing,2010,24(1):4-18.
    [112]陈士安,何仁,陆森林.汽车平顺性评价体系[J].江苏大学学报(自然科学版),2006,(03):229-233.
    [113]段俊法,陈思忠.越野车辆悬架系统的评价研究[J].北京汽车,2005,(02):18-21.
    [114]余志生.汽车理论[M].北京:机械工业出版社,2000.
    [115]盛灿花.路面平整度特性研究[D].湖南:湖南大学道路与铁路工程硕士学位论文,2005.
    [116]郭孔辉,李宁,庄晔.轮胎侧向力影响因素试验[J].农业机械学报,2011,42(12):1-5.
    [117]王霞,张丽.汽车操纵稳定性动力学仿真[J].沈阳航空工业学院学报,2008,26(4):24-26.
    [118]兰志宇,田韶鹏.四轮转向汽车操纵稳定性分析研究[J].农业装备与车辆工程,2012,50(4):41-43.
    [119]Jian—yong W U, Hou-jun T, Shao—yuan L I, et al. Vehicle DynamicsController Design for Improving Vehicle Handling and Stability[J].系统仿真学报,2007,19(24):5789-5796.
    [120]Kim D, Hwang S, Kim H. Vehicle stability enhancement of four-wheel-drivehybrid electric vehicle using rear motor control[J]. Vehicular Technology,IEEE Transactions on,2008,57(2):727-735.
    [121]董红亮.汽车四轮转向和主动悬架的综合控制研究[D].重庆:重庆大学重庆大学机械工程学院2009.
    [122]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术社,1991.
    [123]Gillispie T.D. Fundamentals of Vehicle Dynamics[M]. Michigan:Society ofAutomaotive Engineers Incorporated,2000.
    [124]Guvenc B A, Guvenc L, Karaman S. Robust yaw stability controller designand hardware-in-the-loop testing for a road vehicle[J]. Vehicular Technology,IEEE Transactions on,2009,58(2):555-571.
    [125]Jia Y. Robust control with decoupling performance for steering and traction of4WS vehicles under velocity-varying motion[J]. Control Systems Technology,IEEE Transactions on,2000,8(3):554-569.
    [126]Priyandoko G, Mailah M, Jamaluddin H. Vehicle active suspension systemusing skyhook adaptive neuro active force control[J]. Mechanical Systems andSignal Processing,2009,23(3):855-868.
    [127]Yoshimura T, Isari Y, Li Q, et al. Active suspension of motor coaches usingskyhook damper and fuzzy logic control[J]. Control Engineering Practice,1997,5(2):175-184.
    [128]Yang M G, Chen Z Q, Hua X G. An experimental study on using MR damperto mitigate longitudinal seismic response of a suspension bridge[J]. SoilDynamics and Earthquake Engineering,2011,31(8):1171-1181.
    [129]Xu Z D, Guo Y Q. Neuro-fuzzy control strategy for earthquake-excitednonlinear magnetorheological structures[J]. Soil Dynamics and EarthquakeEngineering,2008,28(9):717-727.
    [130]任晓崧,许奇. MR阻尼器的状态跳跃控制参数[J].力学季刊,2004,25(1):145-151.
    [131]Guan X C, Guo P F, Ou J P. Modeling and Analyzing of Hysteresis Behaviorof Magneto Rheological Dampers[J]. Procedia Engineering,2011,14:2756-2764
    [132]Branicky M S. Multiple Lyapunov functions and other analysis tools forswitched and hybrid systems[J]. Automatic Control, IEEE Transactions on,1998,43(4):475-482.
    [133]赵云堂,陈思忠,冯占宗,等.磁流变半主动悬架的天棚控制方法研究[J].汽车工程学报,2011,1(2):127-132.
    [134]陈云微,赵强.车辆半主动座椅悬架滑膜变结构控制研究.哈尔滨工程大学学报[J],2012,33(6):1-7.
    [135]张保军,韩印.轮胎非稳态侧偏特性对汽车操纵稳定性仿真的影响[J].黑龙江工程学院学报,2001,(03):41-45.
    [136]Hu T, Lin Z, Chen B M. Analysis and design for discrete-time linear systemssubject to actuator saturation[J]. Systems&Control Letters,2002,45(2):97-112.
    [137] Hu T, Lin Z, Chen B M. An analysis and design method for linear systemssubject to actuator saturation and disturbance[J]. Automatica,2002,38(2):351-359.
    [138] Hu T, Lin Z, Chen B M. Analysis and design for discrete-time linear systemssubject to actuator saturation[J]. Systems&Control Letters,2002,45(2):97-112.
    [139] Boyd S, El Ghaoul L, Feron E, et al. Linear matrix inequalities in system andcontrol theory[M]. Society for Industrial and Applied Mathematics,1987.
    [140] Cao Y Y, Lin Z. Stability analysis of discrete-time systems with actuatorsaturation by a saturation-dependent Lyapunov function[J]. Automatica,2003,39(7):1235-1241.
    [141]DeCarlo R A, Branicky M S, Pettersson S, et al. Perspectives and results onthe stability and stabilizability of hybrid systems[J]. Proceedings of the IEEE,2000,88(7):1069-1082.
    [142]Zheng F, Wang Q G, Lee T H. A heuristic approach to solving a class ofbilinear matrix inequality problems[J]. Systems&control letters,2002,47(2):111-119.
    [143]Cao Y Y, Lam J, Sun Y X. Static output feedback stabilization: an ILMIapproach[J]. Automatica,1998,34(12):1641-1645.
    [144]Crusius C A R, Trofino A. Sufficient LMI conditions for output feedbackcontrol problems[J]. Automatic Control, IEEE Transactions on,1999,44(5):1053-1057.
    [145]Ding D W, Yang G H. Static output feedback control for discrete-timepiecewise linear systems: an LMI approach[J]. Acta Automatica Sinica,2009,35(4):337-344.
    [146]Zuo Z, Wang J, Huang L. Output feedback H∞controller design for lineardiscrete-time systems with sensor nonlinearities[J]. IEE Proceedings-ControlTheory and Applications,2005,152(1):19-26.
    [147]王茂,樊友高,邱剑彬.饱和不确定离散切换系统的静态输出反馈控制[J].决策与控制,2010,25(10):1479-1483.
    [148]王茂,樊友高,邱剑彬,顾玥.饱和切换系统鲁棒H∞静态输出反馈控制[J].哈尔滨工业大学学报,2011,43(7):12-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700