用户名: 密码: 验证码:
徐变对大跨度钢管混凝土拱桥静力及动力可靠性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来我国钢管混凝土拱桥建设长足发展。目前其综合时效问题非常突出,长期性能已开始成为影响该种桥型发展的重要因素。混凝土徐变效应对钢管混凝土拱桥的依时行为影响显著,是钢管混凝土拱桥基础理论研究中特别需要深入关注的问题。进一步开展钢管混凝土拱桥徐变静动力效应的理论研究工作,从广度上而言,意味着需从静力范畴拓展到动力范畴去认识徐变对结构的影响,推动徐变相关的静、动力交叉问题研究;从深度上而言,意味着需从确定性问题领域过渡到随机问题领域,从概率角度出发,研究徐变对结构可靠度的影响。基于以上两方面的考虑,取二者交点为主题,本文重点研究了徐变对钢管混凝土拱桥静力可靠性、随机振动响应以及动力可靠性的影响。
     本文从分析混凝土的变形性能和徐变机理入手,基于现有的徐变试验数据并以混凝土徐变微观本构模型为工具,首先在材料层次研究了混凝土徐变的基本性质,提出了含不同掺和材料的混凝土的徐变数学模型。在材料模型的基础上,利用数值方法分析了钢管高强混凝土、钢管粉煤灰混凝土轴心受压构件的徐变行为,并与试验结果进行对比验证,为后面延续到结构层次的徐变研究打下基础。
     在徐变对结构的静力行为影响方面,本文引入来自于混凝土徐变模型、材料以及结构几何三方面的不确定性因素,利用基于拉丁超立方体抽样方法的Monte Carlo法对考虑输入变量随机性的结构进行了徐变效应的概率分析,同时给出了徐变对结构时变可靠度影响的评价方法,以及结构徐变效应的敏感性分析方法。
     在徐变对结构的动力行为影响方面,本文系统地分析了静动力行为、持续荷载与瞬时荷载、长期效应与瞬时响应之间的联系,阐释了徐变对结构动力行为影响的机制,以长期持续荷载作用后混凝土力学性能试验为基础,提出了混凝土徐变后效的预测模型。以此为基础,本文首先分析了徐变对钢管混凝土拱桥动力特性以及不同激励作用下确定性动力响应的影响,然后采用结构随机振动分析的虚拟激励方法,以钢管混凝土拱桥在一致、非一致地震激励作用下的随机振动分析结果为依据,在均方响应的意义上揭示了徐变对其随机地震响应的影响规律,对徐变与结构动力性能关系的研究作了进一步深化。最后,本文以考虑徐变影响的结构随机振动分析结果为基础,依据符合Poisson假设的首次超越破坏准则,分析和评价了徐变对大跨度钢管混凝土拱桥动力可靠性的影响。
Rapid development of concrete filled steel tube (CFST) arch bridges is inevitably accompanied by special attention paid to the issue of long-term performance, which is significantly influenced by concrete creep. Further carrying out the theoretical research on creep effects of CFST arch bridges, in terms of breadth, means that the understanding on structural creep effects should be expanded from static area to dynamic area; in terms of deapth, means that the study on creep effects should be extended from deterministic area to probabilistic area, and be from the angle of reliability. In view of the two points mentioned above, this paper focuses on the influence of creep on the static reliability, random vibration response and dynamic reliability of CFST arch bridges.
     Based on creep test data and a micro constitutive model of concrete creep, this paper proposes creep models for concrete containing silica fume or fly ash. On the basis of the material models, creep of CFST columns is analyzed by numerical method.
     In the field of creep effect on static behaviors of structures, this paper presents a probability analysis to investigate the creep effect on structural serviceability reliability by Monte Carlo simulation with Latin Hypercube sampling method, considering random variables involved in three aspects:creep model uncertainty and variations of material and geometrical properties.
     In the field of creep effect on dynamic behaviors of structures, this paper analyzes the relationships between instantenous and sustained loadings, and between instantenous and long-term responses, and explains the mechamism of creep influence on structural dynamic behavior. According to tests on concrete mechamical properties after a sustained loading, this paper develops a model to predict elastic modulus of concrete having subjected to the effect of sustaind loading. Based on this, this paper analyzes the creep influence on structural dynamic properties, deterministic dynamic responses and random dynamic responses. In accordance with first-passage failure criterion, this paper finally assesses the creep influence on the dynamic reliability of CFST arch bridges.
引文
[1]陈宝春.钢管混凝土拱桥[M].第二版.北京.人民交通出版社.2007.
    [2]王光远.论时变结构力学[J].土木工程学报.2000.33(6).105-108.
    [3]Bazant, Z.P., Wittmann, F.H. Creep and Shrinkage in Concrete Structures [M]. London. John Wiley & Sons.1982.
    [4]Bazant, Z.P. Mathematical Modeling of Creep and Shrinkage of Concrete [M]. Chichester, New York. John Wiley & Sons.1988.
    [5]Neville, A.M., Dilger, W.H., Brooks, J.J. Creep of Plain and Structural Concrete [M]. London, New York. Construction Press.1983.
    [6]Neville, A.M. Creep of concrete and behavior of structures. Part Ⅰ:problems [J]. Concrete International.2002.24(5).59-66.
    [7]钟善铜.钢管混凝土结构[J].第三版.北京.清华大学出版社.2003.
    [8]Bradford, M.A. Generic modelling of composite steel-concrete slabs subjected to shrinkage, creep and thermal strains including partial interaction [J]. Engineering Structures.2010.32(5). 1459-1465.
    [9]Rafael, M., Miroslav, O. Parrotts Ferry Bridge Retrofit [R]. T.Y. Lin International.1994.
    [10]陈开利.帕劳共和国的桥梁倒塌事故[J].国外公路.1998.18(3).31-33.
    [11]杨志平,朱桂新,李卫.预应力混凝土连续刚构桥挠度长期观测[J].公路.2004.8.285-289.
    [12]陈明宪,彭建新,颜东煌,余钱华.钢管混凝土拱桥收缩徐变问题综述[J].长沙交通学院学报.2004.20(2).19-24.
    [13]Gianluca, R., Graziano, L., Riccardo Z. State of the art on the time-dependent behaviour of composite steel-concrete structures [J]. Journal of Constructional Steel Research.2013.80. 252-263.
    [14]周耀,王元丰.考虑徐变的钢管混凝土拱桥动力分析[J].大连理工大学学报.2006.46(增刊).82-87.
    [15]Ma, Y.S., Wang, Y.F., Mao, Z.K. Creep effects on dynamic behavior of concrete filled steel tube arch bridge [J]. Structural Engineering and Mechanics.2011.37(3).321-330.
    [16]辛兵,徐升桥.大跨度钢管混凝土拱桥的徐变分析[J].铁道标准设计.2003.4.31-33.
    [17]郝超.钢管混凝土拱桥的徐变效应计算分析[J].公路交通科技.2006.23(6).69-71.
    [18]张治成.大跨度钢管混凝土拱桥的徐变分析[J].工程力学.2007.24(5).151-160.
    [19]Shams, M., Ala, S.M. State-of-the-art of concrete-filled steel tubular columns [J]. ACI Structural Journal.1997.94(5).558-571.
    [20]Kitada, T. Ultimate strength and ductility of state-of-the-art concrete-filled steel bridge piers in Japan [J]. Engineering Structures.1998.20(4-6).347-54.
    [21]Roeder, C.W., Brown, C.B. Composite action in concrete filled tubes [J]. Journal of Structural Engineering.1999.125(5).477-484.
    [22]Shams, M., Saadeghvaziri, M. Nonlinear response of concrete-filled steel tubular columns under axial loading [J]. ACI Structural Journal.1999.96(6).1009-1017.
    [23]Oyawa, W.O., Sugiura, K., Watanabe, E. Polymer concrete-filled steel tubes under axial compression [J]. Construction and Building Materials.2001.15(4).187-197.
    [24]Furlong, R.W. Strength of steel-encased concrete beam-columns [J]. Journal of the Structural Division.1967.93(5).113-124.
    [25]Uy, B. Static long-term effects in short concrete-filled steel box columns under sustained loading [J]. ACI Structural Journal.2001.98(1).96-104.
    [26]Nakai, H., Kurita, A., Ichinose, L.H. An experimental study on creep of concrete filled steel pipes [C]. Proceedings of the 3rd International Conference on Steel and Concrete Composite Structures. Fukuoka, Japan.1991.55-60.
    [27]Terrey, P.J., Bradford, M.A., Gilbert, R.I. Creep and shrinkage of concrete in concrete-filled circular steel tubes [C]. Proceedings of the 6th International Symposium on Tubular Structures, Melbourne, Australia.1994.293-298.
    [28]Morino, S., Kswaguchi, J., Cao, Z.S. Creep behavior of concrete-filled steel tubular members [C]. Proceedings of Engineering Foundation Conference on Composite Construction in Steel and Concrete Ⅲ. Irsee, Germany.1997.514-525.
    [29]Ichinose, L.H., Watanabe, E., Nakai, H. An experimental study on creep of concrete filled steel pipes [J]. Journal of Constructional Steel Research.2001.57(4).453-466.
    [30]Naguib, W., Mirmiran, A. Creep modeling for concrete-filled steel tubes [J]. Journal of Constructional Steel Research.2003.59(11).1327-1344.
    [31]Kwon, S.H., Kim, Y.Y., Kim, J.K. Long-term behaviour under axial service loads of circular columns made from concrete filled steel tubes [J]. Magazine of Concrete Research.2005. 57(2).87-99.
    [32]Kwon, S.H., Kim, T.H., Kim, Y.Y., Kim, J.K. Long-term behaviour of square concrete-filled steel tubular columns under axial service loads [J]. Magazine of Concrete Research.2007. 59(1).53-68.
    [33]谭素杰,齐加连.长期荷载对钢管混凝土受压构件强度影响的实验研究[J].哈尔滨建筑工程学院学报.1987.20(2).10-24.
    [34]吴波.钢管混凝土柱收缩产生的截面内力重分布计算[J].重庆交通学院学报.1991.10(3).102-109.
    [35]王湛.钢管膨胀混凝土的徐变[J].哈尔滨建筑工程学院学报.1994.27(3).14-17.
    [36]韩冰,王元丰.钢管混凝土轴心受压短柱的徐变分析[J].铁道学报.1999.21(6).87-90.
    [37]王元丰,韩冰.钢管混凝土轴心受压构件的徐变分析[J].中国公路学报.2000.13(2).57-60.
    [38]韩林海,陶忠,刘威,陈宝春.长期荷载作用下方钢管混凝土轴心受压柱的变形特性[J].中国公路学报.2001.14(2).52-57.
    [39]梁亚平,王元丰.方钢管混凝土轴心受压构件的徐变分析[J].北方交通大学学报,2003.27(1).59-62,68.
    [40]魏文期,陈政清.茅草街大桥钢管混凝土收缩徐变试验研究[J].兰州铁道学院学报(自然科学版).2003.22(3).62-65.
    [41]Han, L.H., Yang, Y.F. Analysis of thin-walled steel RHS columns filled with concrete under long-term sustained loads [J]. Thin-Walled Structures.2003.41(9).849-870.
    [42]Han, L.H., Tao, Z., Liu, W. Effects of sustained load on concrete-filled hollow structural steel columns [J]. Journal of Structural Engineering.2004.130(9).1392-1404.
    [43]站启芳.钢管混凝土轴心受压构件徐变的计算[J].世界桥梁.2005.2.49-50,60.
    [44]刘可为.温度作用下钢管混凝土轴心受压构件的徐变研究[D].北京.北京交通大学.2006.
    [45]姚宏旭,陈政清,李瑜.钢管混凝土收缩、徐变性能试验研究[J].中外公路.2007.27(6).133-136.
    [46]艾迪华.钢管混凝土轴心受压柱徐变试验研究[J].四川建筑.2007.5.217-218.
    [47]李永进,陶忠.中空夹层钢管混凝土柱在长期荷载作用下的力学性能研究[J].工业建筑.2007.37(12).22-27.
    [48]韩冰,王元丰.圆钢管混凝土轴心受压构件徐变分析的比较[J].中国公路学报.2007.20(2).83-86.
    [49]喻国华,周水兴,张敏.钢管混凝土受压构件徐变分析[J].重庆交通大学学报.2008.27(4).515-519,600.
    [50]Yang, Y.F., Han, L.H., Wu, X. Concrete shrinkage and creep in recycled aggregate concrete-filled steel tubes [J]. Advances in Structural Engineering.2008.11(4).383-396.
    [51]Wang, Y.Y., Geng, Y, Ranzi, G., Zhang, S.M. Time-dependent behaviour of expansive concrete-filled steel tubular columns [J]. Journal of Constructional Steel Research.2011. 67(3).471-483.
    [52]Han, L.H., Li, Y.J., Liao, F.Y. Concrete-filled double skin steel tubular (CFDST) columns subjected to long-term sustained loading [J]. Thin-Walled Structures.2011.49(12). 1534-1543.
    [53]Ma,Y.S., Wang, Y.F. Creep of high strength concrete filled steel tube columns [J]. Thin-Walled Structures.2012.53.91-98.
    [54]陶忠,韩林海,刘威.长期荷载作用下方钢管混凝土压弯构件的力学性能[J].工程力学.2001.增刊.636-640.
    [55]韩冰,王元丰.钢管混凝土小偏心受压构件的徐变分析[J].工程力学.2001.18(6).110-116,133.
    [56]郭薇薇,王元丰,韩冰.钢管混凝土大偏心受压构件的徐变分析[J].工程力学.2003.20(1).91-95.
    [57]程晓东,叶贵如,程莉莎,徐兴.长期荷载作用下钢管混凝土压弯构件徐变的三维有限元分析[J].哈尔滨工业大学学报.2003.35(增刊).129-132.
    [58]程晓东,叶贵如,汪劲丰.长期荷载作用下钢管混凝土徐变的理论研究[J].浙江大学学报.2004.38(8).1000-1008.
    [59]李博.偏心受压状态下钢管混凝土构件收缩徐变分析[D].重庆.重庆交通大学.2007.
    [60]王茜.基于B3模型的钢管混凝土构件徐变研究[D].北京.北京交通大学.2007.
    [61]陈晨.温度作用下钢管混凝土偏心受压构件的徐变研究[D].北京.北京交通大学.2008.
    [62]韩冰,王元丰.钢管混凝土受弯构件徐变分析[J].铁道标准设计.1999.5.19-20.
    [63]韩冰,王元丰.徐变对钢管混凝土受弯构件挠度影响分析[J].工程力学.2000.增刊.602-606.
    [64]韩冰,王元丰,金红光.长期荷载作用下钢管混凝土轴心受压构件初始应力分析[J].北方交通大学学报.2000.24(1).15-18.
    [65]王元丰,韩冰.徐变对钢管混凝土轴心受压短柱紧箍应力影响分析[J].铁道学报.2000. 22(增刊).92-94.
    [66]谢肖礼,秦荣,邓志恒.CFST构件考虑长期荷载作用的设计荷载计算公式[J].广西大学学报(自然科学版).2001.26(4).246-249.
    [67]韩林海,陶忠,刘威,陈宝春.长期荷载作用对方钢管混凝土柱承载力的影响[J].中国公路学报.2001.14(3).57-61,66.
    [68]韩林海,刘威.长期荷载作用对圆钢管混凝土压弯构件力学性能影响的研究[J].土木工程学报.2002.35(2).8-19.
    [69]陶忠,韩林海,刘威.长期荷载作用下方钢管混凝土压弯构件承载力简化计算[J].钢结构.2003.18(5).39-41.
    [70]韩冰,王元丰.长期荷载作用下钢管混凝土受弯构件承载力的计算[J].公路交通科技.2005.22(5).114-116.
    [71]Wang, Y.F., Han, B., Zhang, D.J. Advances in creep of concrete filled steel tube members and structures [C]. Proceedings of the 8th Concreep Conference. Ise-Shima, Japan.2008. 595-600.
    [72]王元丰.钢管混凝土徐变[M].北京.科学出版社.2006.
    [73]邵旭东,成尚锋,李立峰.钢管混凝土拱肋节段模型试验[J].长安大学学报(自然科学版).2003.23(4).34-37.
    [74]彭建新,邵旭东,程翔云,黄政宇.钢管混凝土拱肋徐变研究[J].工程力学.2007.24(6).79-85.
    [75]吴波,瞿光义.钢管砼拱桥徐变产生的截面内力重分布计算[J].西安公路学院学报.1991.11(4).22-28.
    [76]谢肖礼,秦荣.收缩徐变对钢管混凝土拱桥影响的理论研究[J].桥梁建设.2001.4.1-4.
    [77]谢肖礼,秦荣,谢开仲.徐变对钢管混凝土拱桥拱肋截面应力重分布的影响[J].广西科学.2001.8(1).22-25.
    [78]谢肖礼,秦荣,彭文立,邓志恒.钢管混凝土劲性骨架拱桥收缩徐变影响理论研究[J].中国工程科学.2001.3(3).80-84.
    [79]顾建中,刘西拉,陈卫峰.考虑徐变的钢管混凝土拱桥结构分析[J].上海交通大学学报.2001.35(10).1574-1577.
    [80]熊红霞,刘志宏.基于ANSYS的钢管混凝土拱桥收缩徐变分析[J].桂林电子工业学院学报.2004.24(5).55-58.
    [81]熊红霞,刘沐宇.钢管混凝土拱桥收缩徐变的有限元分析[J].武汉理工大学学报.2005.27(4).51-53,78.
    [82]韩冰,杜金生,王元丰.徐变对钢管混凝土拱桥的影响分析[J].公路交通科技.2005.22(6).75-77,93.
    [83]马秀君,郑敏朝.梅溪河大桥徐变效应研究[J].天津建设科技.2005.增刊.34-36.
    [84]田仲初,刘雪锋,颜东煌,谷云秋.钢管混凝土拱桥的徐变计算方法探讨[J].湖南科技大学学报(自然科学版).2007.22(2).48-51,101.
    [85]尹凌,曹毅.徐变对钢管混凝土拱桥内力影响分析[J].公路交通技术.2007.增刊.74-76.
    [86]Wang, Y.F., Han, B., Du, J.S., Liu, K.W. Creep analysis of concrete filled steel tube arch bridges [J]. Structural Engineering and Mechanics.2007.27(6).1-12.
    [87]毛忠坤.基于B3模型的徐变对钢管混凝土拱桥静动力性能影响分析[D].北京.北京交通大学.2007.
    [88]邓思溢.温度作用下钢管混凝土结构的徐变研究[D].北京.北京交通大学.2009.
    [89]Shao, X.D., Peng, J.X., Li, L.F., Yan, B.F., Hu, J.H. Time-dependent behavior of concrete-filled steel tubular arch bridge [J]. Journal of Bridge Engineering.2010.15(1). 98-107.
    [90]Bradford, M.A., Pi, Y.L., Qu, W.L. Time-dependent in-plane behaviour and buckling of concrete-filled steel tubular arches [J]. Engineering Structures.2011.33(5).1781-1795.
    [91]Pi, Y.L., Bradford, M.A., Qu, W.L. Long-term non-linear behaviour and buckling of shallow concrete-filled steel tubular arches [J]. International Journal of Non-Linear Mechanics.2011. 46(9).1155-1166.
    [92]Bazant, Z.P., Baweja, S. Justification and refinements of Model B3 for concrete creep and shrinkage 1. Statistics and sensitivity [J]. Materials and Structures.1995.28.415-430.
    [93]Bazant, Z.P. Prediction of concrete creep and shrinkage:past, present and future [J]. Nuclear Engineering and Design.2001.203(1).27-38.
    [94]Madsen, H.O., Bazant, Z.P. Uncertainty analysis of creep and shrinkage effects in concrete structures [J]. ACI Journal.1983.80(13).116-127.
    [95]Ditlevsen, O. Stochastic visco-elastic strain modeled as a second moment white noise process [J]. International Journal of Solids and Structures.1982.18(1).23-25.
    [96]nlar, E., Bazant, Z.P., Osman, E. Stochastic process for extrapolating concrete creep [C]. ASCE Proceedings.1977. V.103, EM6.1069-1088.
    [97]Teply, B., Kersner, Z., Novak, D. Sensitivity study of BP-KX and B3 creep and shrinkage models [J]. Material and Structure.1996.29(8).500-505.
    [98]Keitel, H., Dimmig-Osburg, A. Uncertainty and sensitivity analysis of creep models for uncorrelated and correlated input parameters [J]. Engineering Structures.2010.32(11). 3758-3767.
    [99]Bazant, Z.P., Liu, K.L. Random creep and shrinkage in structures:sampling [J]. Journal of Structural Engineering.1985.111 (5).1113-1134.
    [100]Kfistek, V., Bazant, Z.P. Shear lag effect and uncertainty in concrete box girder creep [J]. Journal of Structural Engineering.1987.113(3).557-574.
    [101]Xi, Y.P., Bazant, Z.P. Sampling analysis of concrete structures for creep and shrinkage with correlated random material parameters [J]. Probabilistic Engineering Mechanics.1989.4(4). 174-186.
    [102]Bazant, Z.P., Xi, Y.P. Stochastic drying and creep effects in concrete structures [J]. Journal of Structural Engineering.1993.119(1).301-322.
    [103]Li, C.Q., Melchers, R.E. Reliability analysis of creep and shrinkage effects [J]. Journal of Structural Engineering.1992.118(9).2323-2337.
    [104]Stewart, M. Serviceability reliability analysis of reinforced concrete structures [J]. Journal of Structural Engineering.1996.122(7).794-803.
    [105]Oh, B.H., Yang, I.H. Sensitivity analysis of time-dependent behavior in PSC box girder bridges [J]. Journal of Structural Engineering.2000.126(2).171-179.
    [106]Yang, I.H. Uncertainty and sensitivity analysis of time-dependent effects in concrete structures [J]. Engineering Structures.2007.29(7).1366-1374.
    [107]Pan, Z.F., Fu, C.C., Jiang, Y. Uncertainty analysis of creep and shrinkage effects in long-span continuous rigid frame of Sutong Bridge [J]. Journal of Bridge Engineering.2011.16(2). 248-258.
    [108]Guo, T., Sause, R., Frangopol, D.M., Li, A. Time-dependent reliability of PSC box-girder bridge considering creep, shrinkage, and corrosion [J]. Journal of Bridge Engineering.2011. 16(1).29-43.
    [109]Ma, Y.S., Wang, Y.F. Creep effects on the reliability of concrete-filled steel tube arch bridge [J]. Journal of Bridge Engineering.2013.
    [110]郑家树,金邦元.大跨度钢管混凝土拱桥空间地震反应分析[J].西南交通大学学报.2003.38(1).53-56.
    [111]张波,李术才,杨学英,孙国富,李传夫.上承式大跨度钢管混凝土拱桥地震反应分析[J].公路交通科技.2009.26(3).64-67,73.
    [112]贺国京,黄伟.大跨度钢管混凝土拱桥空问地震响应分析[J].中南林业科技大学学报.2008.28(5).119-122.
    [113]李少冲,张毅,范存新.大跨钢管混凝土桁架拱桥的地震反应分析[J].巢湖学院学报.2008.10(6).89-92.
    [114]王浩,乔建东,郭刚,曾储惠,陈正清.茅草街大桥主桥的地震反应分析[J].防灾减灾工程学报.2003.23(3).62-65.
    [115]吴庆雄,陈宝春,高桥和雄.新西海桥的非线性地震响应分析[J].地震工程与工程振动.2008.28(5).55-64.
    [116]白玲.大跨度钢管混凝土拱桥地震响应分析[J].中国铁道科学.2008.29(6).41-45.
    [117]童申家,吴星,李纲.大跨钢管混凝土拱桥地震行波效应分析[J].桥梁建设.2008.2.27-30.
    [118]项少军,陈世民,岳丽娜.大跨径钢管混凝土拱桥在空间响应下的地震分析[J].现代交通技术.2005.2.26-29.
    [119]赵灿晖,周志祥.大跨度钢管混凝土拱桥非线性地震响应分析[J].重庆建筑大学学报.2006.28(2).47-51.
    [120]胡世德,苏虹,王君杰.钢管混凝土拱桥的三维弹塑性地震反应理论分析[J].中国公路学报.2004.17(1).57-61.
    [121]谢开仲,秦荣,李秀梅,林海瑛.钢管混凝土拱桥的材料非线性地震反应分析[J].世界地震工程.2005.21(3).40-44.
    [122]严琨,周亦唐,李睿.钢管混凝土拱桥非线性地震响应分析[J].交通标准化.2008.5.73-76.
    [123]雷昌祥.钢管混凝土拱桥结构的三维非线性地震反应分析[J].武汉工业学院学报.2006.25(3).80-82.
    [124]吴玉华.大跨度钢管混凝土拱桥抗震性能及动力稳定研究[D].浙江.浙江大学.2009.
    [125]刘声树,朱慈勉.钢管混凝土拱桥动力性能及抗震性能研究[J].交通科技.2008.2.9-12.
    [126]吴玉华,楼文娟.桥道系对中承式钢管混凝土拱桥地震响应的影响[J].公路工程.2008.33(2).68-70,90.
    [127]马俊,陈彦江,盛洪飞.横撑及桥面系对钢管混凝土拱桥动力响应的影响分析[J].公路交通科技.2009.26(1).88-92.
    [128]王连华,赵跃宇,易壮鹏.系杆对钢管混凝土拱桥抗震性能的影响[J].地震工程与工程振动.2007.27(1).59-65.
    [129]张博,宰金珉.考虑桩-土动力相互作用的钢管混凝土拱桥地震反应分析[J].南京工业大学学报.2007.29(6).23-27.
    [130]李子奇,樊燕燕,孙明贺.土与结构相互作用对桥梁抗震的影响研究[J].城市道桥与防洪.2008.5.57-59.
    [131]朱位秋.随机振动[M].北京.高等教育出版社.1991.
    [132]欧进萍,王光远.结构随机振动[M].北京.高等教育出版社.1998.
    [133]王克海.桥梁抗震研究[M].北京.中国铁道出版社.2007.
    [134]林家浩,张亚辉.随机振动的虚拟激励法[M].北京.科学出版社.2004.
    [135]赵灿晖.大跨度钢管混凝土拱桥的地震响应研究[D].成都.西南交通大学.2001.
    [136]赵灿晖,周志祥.钢管混凝土拱桥的多维平稳随机地震响应[J].西南交通大学学报.2005.40(2).200-204.
    [137]赵灿晖,周志祥.大跨度钢管混凝土拱桥在多维多点地震激励作用下的平稳随机响应[J].世界地震工程.2007.23(4).66-71.
    [138]赵灿晖,周志祥.多分量多点平稳随机地震响应的快速算法[J].西南交通大学学报.2007.42(1).55-60.
    [139]李桂青,曹宏,李秋胜,霍达.结构动力可靠性理论及其应用[M].北京.地震出版社.1993.
    [140]李桂青,李秋胜.工程结构时变可靠度理论及其应用[M].北京.科学出版社.2001.
    [141]Rice, S.O. Mathematical analysis of random noise [J]. Bell System Technical Journal.1944. 23.282-332.
    [142]Siegert, A.J.F. On the first-passage time probability problem [J]. Physical Review.1951.81. 617-623.
    [143]Helmstrom, C.W. Note on a Markov envelop process [R]. Institute of Radio Engineers. Transaction on Information Theory. IT-5.1959.
    [144]Coleman, J.J. Reliability of aircraft structures in resisting chance failure [J]. Operations Research.1959.7(5).639-645.
    [145]Cramer, H., Leadbetter, M.R. Stationary and related stochastic process [M]. John Wiley and Sons Inc., New York.1967.
    [146]Crandall, S.H., Chandiramani, K.L., Cook, R.G. Some first-passage problems in random vibration [J]. Journal of Applied Mechanics.1996.33(3).532-538.
    [147]Yang, J.N., Shinozuka, M. On the first excursion probability in stationary narrow-band random vibration [J]. Journal of Applied Mechanics.1971.38(4).1017-1022.
    [148]Yang, J.N., Shinozuka, M. On the first-excursion probability in stationary narrow-band random vibration, Ⅱ [J]. Journal of Applied Mechanics.1972.39(3).733-738.
    [149]Iyengar, R.N. First passage probability during random vibration [J]. Journal of Sound and Vibration.1973.31(2).185-193.
    [150]Roberts, J.B. Probability of first-passage failure for nonstationary Random vibration [J]. Journal of Applied Mechanics.1975.42(3).716-720.
    [151]Gasparini, D.A. Response of MDOF systems to nonstationary random excitation [J]. Journal of the Engineering Mechanics Division.1979.105(1).13-27.
    [152]Roberts, J.B. First passage time for oscillators with non-linear restoring forces [J]. Journal of Sound and Vibration.1978.56(1).71-86.
    [153]Roberts, J.B. First-passage time for oscillators with nonlinear damping [J]. ASME, Transactions, Journal of Applied Mechanics.1978.45.175-180.
    [154]Roberts, J.B. The energy envelope of a randomly excited non-linear oscillator [J]. Journal of Sound and Vibration.1978.60(2).177-185.
    [155]Iwan, W.D., Spanos, P.T. Response envelope statistics for nonlinear oscillators with random excitation [J]. Journal of Applied Mechanics.1978.45(1).170-174.
    [156]Iwan, W.D., Gates, N.C. Estimating earthquake response of simple hysteretic structures [J]. Journal of the Engineering Mechanics Division.1979.105(3).391-405.
    [157]Larsen, J.W., Nielsen, S.R.K. Non-linear stochastic response of a shallow cable [J]. International Journal of Non-Linear Mechanics.2006.41(3).327-344.
    [158]Zhang, Z.C., Lin, J.H., Zhang, Y.H., Zhao, Y., Howson, W.P., Williams, F.W. Non-stationary random vibration analysis for train-bridge systems subjected to horizontal earthquakes [J]. Engineering Structures.2010.32(11).3571-3582.
    [159]Mahadevan, S., Mehta, S. Dynamic reliability of large frames [J]. Computers and Structures. 1993.47(1).57-67.
    [160]Chaudhuri, A., Chakraborty, S. Reliability evaluations of 3-D frame subjected to non-stationary earthquake [J]. Journal of Sound and Vibration.2003.259(4).797-808.
    [161]Muscolino, G., Palmeri, A. Maximum response statistics of MDoF linear structures excited by non-stationary random processes [J]. Computer Methods in Applied Mechanics and Engineering.2005.194(12-16).1711-1737.
    [162]Kawano, K., Venkataramana, K. Dynamic response and reliability analysis of large offshore structures [J]. Computer Methods in Applied Mechanics and Engineering.1999.168(1-4). 255-272.
    [163]To, C.W.S. Distribution of the first-passage time of mast antenna structures to non-stationary random excitation [J]. Journal of Sound and Vibration.1986.108(1).11-23.
    [164]Becker, G., Camarinopoulos, L., Kabranis, D. Dynamic reliability under random shocks [J]. Reliability Engineering and System Safety.2002.77(3).239-251.
    [165]严松宏.地下结构随机地震响应分析及其动力可靠度研究[D].成都.西南交通大学.2003.
    [166]Shinozuka, M., Tan, R.Y. Seismic reliability of damaged concrete beams [J]. Journal of Structural Engineering.1983.109(7).1617-1643.
    [167]Labeau, P.E., Smidts, C., Swaminathan, S. Dynamic reliability:towards an integrated platform for probabilistic risk assessment [J]. Reliability Engineering and System Safety. 2000.68(3).219-254.
    [168]Ma, J., Gao, W., Wriggers, P., Chen, J.J., Sahraee, S. Structural dynamic optimal design based on dynamic reliability [J]. Engineering Structures,2011.33(2),468-476.
    [169]Chen, J.B., Li, J. Dynamic response and reliability analysis of non-linear stochastic structures [J]. Probabilistic Engineering Mechanics.2005.20(1).33-44.
    [170]Chen, J.B., Li, J. The extreme value distribution and dynamic reliability analysis of nonlinear structures with uncertain parameters [J]. Structural Safety.2007.29(2).77-93.
    [171]Au, S.K., Beck, J.L. First excursion probabilities for linear systems by very efficient importance sampling [J]. Probabilistic Engineering Mechanics.2001.16(3).193-207.
    [172]Au, S.K. First passage probability of elasto-plastic systems by importance sampling with adapted process [J]. Probabilistic Engineering Mechanics.2008.23(2-3).114-124.
    [173]He, J. An efficient numerical method for estimating reliabilities of linear structures under fully nonstationary earthquake [J]. Structural Safety.2010.32(3).200-208.
    [174]Bazant, Z.P., Li, G.H. Comprehensive database on concrete creep and shrinkage [R]. Structural Engineering Report No.08-3/A210c. Infrastructure Technology Institute. Northwestern University. Illinois, USA.2008.
    [175]ACI Committee 209. Mechanisms of creep and shrinkage [R]. Report by Subcommittee Ⅲ. American Concrete Institute. Detroit.1972.
    [176]惠荣炎,黄国兴,易若冰.混凝土的徐变[M].北京.中国铁道出版社.1988.
    [177]Vaishnav, R.N., Kesler, C.E. Correlation of creep of concrete with its dynamic properties [R]. T. and A.M. Report No.603. University of Illinois. Urbana.1961.
    [178]Bazant, Z.P., Prasannan, S. Solidification theory for concrete creep. Ⅰ:Formulation [J]. Journal of Engineering Mechanics.1989.115(8).1691-1703.
    [179]Bazant, Z.P., Prasannan, S. Solidification theory for concrete creep. Ⅱ:Verification and application [J]. Journal of Engineering Mechanics.1989.115(8).1704-1725.
    [180]Bazant, Z.P. Viscoelasticity of a solidifying porous material-concrete [J]. Journal of Engineering Mechanics.1977.103.1049-1067.
    [181]Bazant, Z.P., Baweja, S. Creep and shrinkage prediction model for analysis and design of concrete structures:Model B3 [R]. Adam Neville Symposium:Creep and shrinkage-structural design effects. Michigan.2000.1-83.
    [182]Goel, R., Kumar, R., Paul, D.K. Comparative study of various creep and shrinkage prediction models for concrete [J]. Journal of Materials in Civil Engineering.2007.19(3).249-260.
    [183]Al-Khaja. Strength and time-dependent deformations of silica fume concrete for use in Bahrain [J]. Construction and Building Materials.1994.8(3).169-172.
    [184]Khatri, R.P., Sirivivatnanon, V., Gross, W. Effect of different supplementary cementitious materials on mechanical properties of high performance concrete [J]. Cement and Concrete Research.1995.25(1).209-220.
    [185]Persson, B. Quasi-instantaneous and long-term deformations of high performance concrete with sealed curing [J]. Advanced Cement Based Materials.1998.8(1).1-16.
    [186]Persson, B. Correlating laboratory and field tests of creep in high-performance concrete [J]. Cement and Concrete Research.2001.31(3).389-395.
    [187]Li, J.Y., Yao, Y. A study on creep and drying shrinkage of high performance concrete [J]. Cement and Concrete Research.2001.31(8).1203-1206.
    [188]Mazloom, M., Ramezanianpour, A.A., Brooks, J.J. Effect of silica fume on mechanical properties of high-strength concrete [J]. Cement and Concrete Composites.2004.26(4). 347-357.
    [189]Mazloom, M. Estimating long-term creep and shrinkage of high-strength concrete [J]. Cement and Concrete Composites.2008.30(4).316-326.
    [190]Townsend, B.D. Creep and shrinkage of a high strength concrete mixture [D]. Virginia Polytechnic Institute and State University, Blacksburg, Virginia,2003.
    [191]吴彬,张璐明,张美玲,吴英俊.100MPa粉煤灰高性能混凝土的研究[J].粉煤灰.2002. 14(3).7-9.
    [192]秦鸿根,潘钢华,孙伟.掺粉煤灰高性能桥用混凝土变形性能研究[J].东南大学学报(自然科学版).2002.32(5).779-782.
    [193]邹建喜,李显金,迟培云.粉煤灰混凝土的变形性能研究[J].混凝土.2003.6.38-39,49,58.
    [194]赵庆新,孙伟,缪昌文,田倩,郑克仁,林玮.磨细矿渣和粉煤灰对高性能混凝土徐变性能的影响[J].武汉理工大学学报.2005.27(11).35-38.
    [195]赵庆新,孙伟,郑克仁,陈惠苏,秦鸿根,刘建忠.粉煤灰掺量对高性能混凝土徐变性能的影响及其机理[J].硅酸盐学报.2006.34(4).446-451.
    [196]Ghosh, R.S., Timusk, J. Creep of Fly Ash Concrete [J]. ACI Journal.1981.78(5).351-357.
    [197]Alexander, K.M., Wardlaw, J., Ivanusec, I. A 4:1 range in concrete creep when cement SO3 content, curing temperature and fly ash content are varied [J]. Cement and Concrete Research. 1986.16(2).173-180.
    [198]赵华耕,彭劲,周明凯.粉煤灰、矿粉对高性能混凝土体积稳定性的影响[J].武汉理工大学学报.2005.27(7).36-38.
    [199]徐勇.三峡工程永久船闸粉煤灰混凝土徐变试验研究[J].粉煤灰.2007.19(1).8-11.
    [200]中国-工程建设标准化协会.高强混凝土结构技术规程(CECS 104:99)[S].中国.北京.1999.
    [201]Jordaan, I.J., Illston, J.M. Time-dependent strains in sealed concrete under multiaxial compressive stress [J]. Magazine of Concrete Research.1971.23(75-76).79-88.
    [202]Gopalakrishnan, K.S., Neville, A.M., Ghali, A. A hypothesis on mechanism creep of concrete with reference to multiaxial compression [J]. ACI Journal.1970.67(3).29-35.
    [203]Persson, B. Experimental studies on shrinkage of high-performance concrete [J]. Cement and Concrete Research.1998.28(7).1023-1036.
    [204]Persson, B. Eight-year exploration of shrinkage in high-performance concrete [J]. Cement and Concrete Research.2002.32(8).1229-1237.
    [205]Sapountzakis, E.J., Katsikadelis, J.T. Creep and shrinkage effect on the dynamic analysis of reinforced concrete slab-and-beam structures [J]. Journal of Sound and Vibration.2003. 260(3).403-416.
    [206]Sapountzakis, E.J. Dynamic analysis of composite steel-concrete structures with deformable connection [J]. Computers & Structures.2004.82(9-10).717-729.
    [207]Bazant, Z.P. Prediction of concrete creep effects using age-adjusted effective modulus method [J]. ACI Journal.1972.69(20).212-217.
    [208]金成棣.混凝土徐变对超静定结构变形及内力的影响——考虑分段加载龄期差异及延迟弹性影响[J].十木工程学报.1981.14(8).19-33.
    [209]Kececioglu, D. Reliability engineering handbook [M]. Prentice-Hall Inc., Englewood Cliffs, New Jersey.1991.
    [210]Davis, R.E., Davis, H.E. Flow of concrete under the action of sustained load [J]. Journal of the American Concrete Institute.1931.2(7).837-901.
    [211]Washa, G.W., Fluck, P.G. Effect of sustained loading on compressive strength and modulus of elasticity of concrete [J]. Journal of the American Concrete Institute.1950.21(9).693-700.
    [212]Cook, D.J., Chindaprasirt, P. Influence of loading history upon the compressive properties of concrete [J]. Magazine of Concrete Research.1980.32(111).89-100.
    [213]Federation Internationale du Beton (FEB). CEB-FIP Model Code 2010 [S].2010.
    [214]范立础.桥梁抗震[M].同济大学出版社.1997.
    [215]陈玲莉.工程结构动力分析数值方法[M].西安交通大学出版社.2006.
    [216]胡世德,王君杰,魏红一,叶爱君.丫髻沙大桥主桥抗震性能研究[J].铁道标准设计.2001.21(6).21-25.
    [217]徐升桥.丫髻沙大桥主桥设计研究[J].铁道标准设计.2001.21(6).2-7.
    [218]王亚勇.结构抗震设计时程分析法中地震波的选择[J].工程抗震.1988.4.15-22.
    [219]王社良.抗震结构设计[M].武汉理工大学出版社.2007.
    [220]陈兵.桥梁抗震分析的随机理论及应用研究[D].成都.西南交通大学.2008.
    [221]Housner, G.W. Characteristic of strong motion earthquakes [J]. Bulletin of Seismic Society of America.1947.37.17-31.
    [222]Kanai, K. An empirical formula for the spectrum of strong earthquake motions [J]. Bulletin of Earthquake Research Institute. University of Tokyo.1961.39(1).85-95.
    [223]胡聿贤,周锡元.弹性体系在平稳和平稳化地面运动下的反应[R].地震工程研究所报告集第一集.1962.
    [224]Ruiz, P., Penzien, J. Probabilistic study of the behavior of structures during earthquakes [R]. Report No. EERC 69-03. Earthquake Engineering Research Center. University of California, Berkeley.1969.
    [225]欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程振动.1991.11(3).45-53.
    [226]杜修力,陈厚群.地震动随机模拟及其参数确定方法[J].地震工程与工程振动.1994.14(4).1-5.
    [227]杜修力.水工建筑物抗震可靠度设计和分析用的随机地震输入模型[J].地震工程与工程振动.1998.18(4).76-81.
    [228]Oliveira, C.S., Hao, H., Penzien, J. Ground motion modeling for multiple-input structural analysis [J]. Structural Safety.1991.10.79-93.
    [229]冯启民,胡聿贤.空间相关地面运动的数学模型[J].地震工程与工程振动.1981.1(2).1-8.
    [230]Harichandran, R.S., Vanmarcke, E.H. Stochastic variation of earthquake ground motion in space and time [J]. Journal of Engineering Mechanics.1986.112(2).154-175.
    [231]Loh, C.H., Yeh. Y.T. Spatial variation and stochastic modeling of seismic differential ground movement [J]. Earthquake Engineering and Structural Dynamics.1988.16(5).583-596.
    [232]屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型[J].地震学报.1996.18(1).55-62.
    [233]建筑抗震设计规范(GB 50011-2001)[S].中华人民共和国国家标准.2001.
    [234]潘晓东.非平稳随机地震下堤坝非线性有效应力动力响应可靠度分析[D].浙江.浙江大学.2004.
    [235]陈仁福.大跨悬索桥理论[M].西南交通大学出版社.1994.
    [236]韩立中.大跨度自锚式斜拉悬索桥分析方法与性能研究[D].大连.大连理工大学.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700