用户名: 密码: 验证码:
地月空间拟周期轨道上航天器自主导航与轨道保持研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地月共线平动点附近轨道上的飞行器适合于科学数据采集、中继通讯以及深空导航组网等任务。研究该轨道上的飞行器具有显著的理论和现实意义。与日地系统相比,地月系统平动点轨道的周期更短、第二主天体的轨道偏心率更大、太阳作为第三引力体对地月系统的引力影响更强烈,圆形限制性三体问题中的周期轨道并不存在于地月平动点附近,取而代之的是一种“拟”周期轨道的形态。因此,地月系统共线平动点轨道上飞行器的任务轨道设计、自主导航以及轨道保持任务将面临更大挑战。论文结合国家自然科学基金群体项目“航天飞行器鲁棒控制理论与应用”中“弱稳定轨道上航天器动力学、导航与鲁棒制导问题研究”,致力于研究地月平动点拟周期轨道上航天器动力学建模、轨道设计、自主导航和轨道保持问题,为我国早日实现地月平动点探测提供技术支持。
     首先,研究了地月平动点拟周期轨道上飞行器的建模问题。由于,圆形限制性三体问题是研究地月平动点拟周期轨道上飞行器的理论基础,因此,本文建立了地月系统的圆形限制性三体模型,给出了地月系统中圆形限制性三体条件下,与共线平动点相关的轨道解析解。然而,仅仅研究圆形限制性三体模型无法真实反映飞行器在地月平动点附近的运动特征,而传统高阶模型存在形式复杂和计算繁琐等不足。因此,本文提出了一种结构简单的高精度地月平动点动力学模型,该模型使用标准星历来表示太阳和月球的运动状态,从而实现了在动力学中考虑太阳的直接引力、间接引力以及月球的偏心率等因素的目的。仿真验证表明,相比圆形限制性三体模型、椭圆形限制性三体模型以及双圆四体模型,本文提出的模型具有更高的精度。
     其次,本文研究了地月平动点拟周期轨道上飞行器任务轨道的设计问题。由于使用限制性三体模型设计任务轨道时会缺乏对摄动因素的考虑,因此,本文沿用了使用高精度星历模型和多步打靶法来设计地月平动点拟周期轨道的思路。更进一步地,针对传统方法的不足提出了两点改进措施:第一,采用了地月平动点拟周期轨道飞行器在地月旋转系下的高精度动力学模型,从而避免了传统设计方法中大量的会合坐标系与惯性坐标系之间的转换以及转换中对于角速度做出的二体假设;第二,根据地月平动点拟周期轨道在瞬时平动点会合坐标系中的轨道特征以及瞬时L2点在地心会合坐标系中的状态来计算拼接点信息,由此,简化了其他文献中所记载的拼接点求取方法。
     再次,本文研究了地月平动点拟周期轨道飞行器的自主导航和轨道保持问题。这是两个相互耦合的问题,由于平动点拟周期轨道处于动力学混沌系统中,其对于轨道初值具有强烈的敏感性。初始入轨偏差会导致飞行器状态很快发散并大范围地偏离设计轨道,因此,轨道保持系统在探测器入轨后不久就必须启动工作,导航系统必须在短弧段测量的条件下提供精确的估计结果以满足弱稳定轨道的需要。
     因此,在自主导航方案的选择中必须考虑来自轨道保持的约束。针对地月L2点探测器所处的弱稳定拟周期轨道,本文论证了基于日地月信息的自主导航方法的可行性。在此基础上,考虑到弱稳定轨道不同于近地强稳定轨道的特性,提出了三种敏感器组合方案,并给出各方案的导航观测方程。借鉴Genesis、ARTEMIS等平动点探测器实际轨道保持过程中对于自主导航的要求,结合非线性可观测性理论,对本文提出的三种敏感器组合的可观测性进行了分析。
     此外,在轨道保持策略设计中必须考虑来自自主导航的约束。因此,本文列出了地月平动点飞行器在实际飞行过程中由动力学环境以及控制执行机构本身对轨道保持算法带来的约束条件,特别的在约束中加入了来自自主导航的约束要求。然后,对常见的几种轨道保持算法进行了约束分析。在满足自主导航约束的基础上,针对存在初始入轨偏差条件下,传统基准轨道靶点法无法保证控制效果的情况,提出了改进的基准轨迹靶点法,并对其进行了仿真验证。
     最后,通过闭环仿真对本文提出的自主导航方案和轨道保持策略的可行性进行了验证。
The probes about the Earth-Moon collinear libration points are suitable forscientific data collection, relay communication and navigation network for deepspace tasks. The study of those orbits has significant theoretical and practicalsignificance. For Earth-Moon system, however, the applications are morechallenging than those in the Sun-Earth system, in part because of the shorter timescales, the larger orbital eccentricity of the secondary, and the fact that the Sun actsas a significant perturbing body in terms of the gravitational force as well as solarradiation pressure. Instead of the periodic orbits in the circular restricted three bodyproblem, the orbits in real Earth-Moon system present the quasi-periodicity.Therefore, the system modeling, orbit design, autonomous navigation and orbitmaintance for the orbits about the Earth-Moon collinear libration points are morechallenging. With the support of the Chinese Science National Foundation-theFundamental Research of Spacecraft Robust Control and Application, thisdissertation focuses on modeling, orbit design, autonomous navigation and orbitmaintance for the probes about the Earth-Moon collinear libration points.
     First of all, since the Circular Restricted Three-body Problem (i.e CR3BP) isthe basic model for the Earth-Moon libration missions, the Earth-Moon system isdecribed in the CR3BP condition as well as the analytical solutions for Earth-Moonlibration orbits. However, the CR3BP cannot precisely reflect the motions of theprobes around the Earth-Moon libration points and the traditional high-order modelis too complex. Therefore, this dissertation proposes an accurate model for theprobes around the Earth-Moon libration points with simple structure, which usesthe standard ephemeris to represent the motions of the Sun and the Moon in order totake the direct and indirect influence of the Sun into account as well as theeccentricity of the Moon. Simulation shows that, compared with the CR3BP, theelliptic restricted three-body model and restricted four-body model, the proposedmodel is more accurate.
     Secondly, this dissertation studies orbit design problem for the Earth-Moonlibration quasi-periodic orbit. Designing orbit with multiple shooting method andhigh-accuracy ephemeris model is the latest method which can overcome sometraditional defects in the restricted three-body problem, such as the disregard for theSun’s perturbation. Due to complex calculations for patch points and lots ofcoordinate transformations involved in this method, two improvements areproposed in this dissertation to ameliorate the condition. Firstly, the traditionalephemeris model is reformed and established in the Earth-Moon rotating frame,which can avoid large amounts of coordinate transformations during the multipleshooting. Secondly, based on the characteristics of quasi-periodic orbits about thetranslunar libration point, instead of massive calculations, simple coordinatetransformations can provide necessary information for patch points of multipleshooting. Simulation results show that the proposed method can be used effectivelyto design quasi-periodic orbits about the translunar libration point.
     Subsequently, this dissertation studies the autonomous navigation andstationkeeping problem, which are mutual coupling problems. An initial error couldtrigger a fast divergence of the unstable state and drift a probe far away from thenominal orbit. The station-keeping system must be started soon after the probe isinjected, while the navigation system should provide convergent results within ashort period and the results need to be accurate enough for the station-keepingsystem.
     Therefore, the constraints from the stationkeeping system must be consideredduring the design of autonomous navigation. Sun-Earth-Moon (i.e., SEM)autonomous navigation problem is investigated for the quasi-lissajous orbit and theQuasi-periodic Halo orbit about the translunar libration point. Generally, SEMnavigation method can offer a convergent estimation by using orientationinformation. However, due to the unstable nature of the translunar libration orbit, itis still indispensable to further prove that only orientation information canguarantee the convergence. Therefore, three sensor configurations are studied tofind an appropriate sensor configuration for translunar libration probe. The observability analysis and experiences from Genesis probe, ARTEMIS probe areused to evaluate the feasibility of each sensor configuration. Autonomousnavigation is obtained by extended Kalman Filtering.
     In addition, the constraints from the autonomous navigation system must beconsidered during the design of stationkeeping. Several stationkeeping strategiesare analysed based on the constraints from dynamical environment, actuator andautonomous navigation system. Then, an impoved control-point strategy isproposed which can provide converged results when initial injection error,navigation error and execution error are considered.
     Finally, a closed-loop simulation of autonomous navigation and stationkeepingstrategy is performed to verify the feasibility.
引文
[1] Belbruno E, Gidea M, Topputo F. Weak stability boundary and invariantmanifolds[J]. SIAM J. Applied Dynamical,2010,9(3):1061-1089
    [2] Farquhar R. The control and use of libration-point satellites [D]. Stanford:Department of Aeronautics and Astronautics, Stanford University,1968.
    [3] Hill K, Born G. Autonomous interplanetary orbit determination using satellite-to-satellite tracking [J]. Journal of Guidance, Control, and Dynamics,2007,30(3):679-686.
    [4] Hill K, Lo M, Born G H. Autonomous orbit determination from lunar haloorbits using crosslink range [J]. Journal of Spacecraft and Rockets,2008,45(3):548-553
    [5] Grebow D. Trajectry Design in the earth-moon system and lunar south[D].West Lafayette: School of Aernautics and Astronautics, Purdue University,2010.
    [6] Farquhar R, Dunham D, Guo Y. Utilization of libration points for humanexploration in the Sun-Earth-Moon system and beyond [J]. Acta Astronautica,2004,55:678-700
    [7] Pernicka H, Henry D, Chan M. Use of halo orbits to provide a communicationlink between earth and mars[C]. AAS/AIAA Astrodynamics Conference,Hilton Head, SC,1992.
    [8]郝万宏,李海涛,拉格朗日点L4,5在空间VLBI中的应用[C].中国宇航学会深空探测技术专业委员会第五届学术年会论文集,湖南长沙,2008.
    [9] Russell J, Folta D, Moreau M, et al. Libration point navigtion conceptssupporting the vision for space exploration[C]. AIAA/AAS AstrodynamicsSpecialist Conference, Providence, Rhode Island,2004.
    [10] Folta D, Sweetser T. ARTEMIS mission overview: from concept to operations[C]. AIAA/AAS Astrodynamics Specialist Conference, Girdwood, Alaska,2011.
    [11] Angelopoulos V. The THEMIS Mission[J]. Space Science Reviews,2008,141(4):5-34.
    [12] Zhou W, Meng L, Rao W, Huang J. Chang’e-2satellite lagragrange L2pointmission [C].63rd International Astronautical Congress, Naples, Italy,2012.
    [13] Farquhar R, Kamel A. Quasi-periodic orbit about the translunar libration[J].Celestial Mech,1973,7:458-473.
    [14] Brown E. An introductory treatise on the lunar theory[M]. New York: DoverPublications, Inc.,1960
    [15] Szebehely V. Theory of orbits: the restricted problem of three bodies[M]. NewYork: Academic Press, Inc.,1967
    [16] Howell K C. Spencer D. B. Periodic orbits in the restricted four-bodyproblem[J]. Acta Astronautica,1986,13(8):473-479.
    [17]刘林,王歆.月球探测器轨道力学[M].北京:国防工业出版社,2006
    [18] Tapley B D, Lewallen J M. Solar influence on satellite motion near the stableearth-moon libration points [J]. AIAA Journal,1964,2(4):728-732
    [19] Schechter H B. Three-dimensional nonlinear stability analysis of the sun-perturbed earth-moon equilateral points[J]. AIAA Journal,1968,6(7):1223-1228.
    [20] Huang S S, Very Restricted four-body problem[R]. Goddard Space FlightCenter. Technical Report. NASA TN D-501,1960
    [21] Nicholson F T. Effect of solar perturbation on motion near the collinear earth-moon libration points[J]. AIAA Journal,1967,5(12):2237-2241
    [22] Howell K C, Spencer D B. Periodic orbits in the restricted four-bodyproblem[J]. Acta Astronautica,1986,13(8):473-479
    [23] Castelli R. Regions of prevalence in the coupled restricted three-bodyproblems approximation [J]. Communications in Nonlinear Science andNumerical Simulation,2012,17(2):804-816.
    [24] Guzman J J. Space trajectory design in the context of a coherent restrictedfour-body problem [D]. West Lafayette: School of Aeronautics andAstronautics, Purdue University,2008.
    [25] Andreu M A. The Quasi-bicircular problem [D]. Barcelona, Spain: Universitatde Barcelona,1999.
    [26]刘林,刘慧根.地月系中探测器定点在三角平动点附近的位置漂移及其控制问题[J].宇航学报,2008,29(4):1222-1227
    [27]徐明,徐世杰.地月系平动点及Halo轨道的应用研究[J].宇航学报,2006,27(4):695-699
    [28]李明涛,共线平动点任务节能轨道设计与优化[D].北京:中国科学院空间科学与应用研究中心,2010.
    [29] Anderson R, Parker J. Comparison of low-energy lunar transfer trajectories toinvariant manifolds[J].Celestial Mechanics&Dynamical Astronomy,2013,115(3):311-331
    [30] Wu W, Liu Y, Liu L, et al. Pre-LOI trajectory maneuvers of the CHANG'E-2libration point mission [J]. Science China-Information Science,2012,55(6):1249-1258
    [31] Folta D, Woodard M, Howell K, et al. Applications of multi-body dynamicalenvironments: the ARTEMIS transfer trajectory design[J]. Acta Astronautica,2012,73:237-249.
    [32]郑建华,高怀宝,刘正常. IPS理论与技术在深空探测中的应用[J].宇航学报,2008,29(1):13-17,33.
    [33] Moulton F. Periodic orbits[M]. Washington D.C.: Carnegie Institute ofWashington,1920.
    [34] Szeehely V. Theory of orbits: the restricted problem of three bodies [M].NewYork:Academic Press,1967.
    [35] Richardson D, Cary N. A uniformly valid solution for motion about the interiorlibration point of the perturbed elliptic-restricted problem[C]. AAIA/AASAstrodynamics Conference, Nassau, Bahamas,1975.
    [36] Goodrich E. Numerical determination of short-period trojan orbits in therestricted three-body problem [J]. The Astronomical Journal,1966,71(2):88-93.
    [37] Bray T, Goudas L. Doubly symmetric orbits about the collinear lagrangianpoints[J]. The Astronomical Journal,1967,72(2):202-213.
    [38] Zagouras C, Kazantzis P. Three-dimensional periodic oscillations generatingfrom plane periodic ones around the collinear lagrangian points[J].Astrophysics and Space Science,1979,61(2):389-409.
    [39] Breakwell J, Brown J. The ‘halo’ family of3-dimensional periodic orbits in theearth-moon restricted3-body problem[J]. Celestial Mechanics,1979,20:389-404
    [40] Robin I, Markellos V. Numerical determination of three-dimensional periodicorbits generated from vertical self-resonant satellite orbits[J]. CelestialMechanics,1980,21:395-434
    [41] Howell K C. Three-dimensional periodic ‘halo’ orbits[J]. Celestial Mechanics,1984,32(1):53-71.
    [42] Howell K C, Pernicka H. Numerical determination of lissajous trajectories inthe restricted three-body problem[J]. Celestial Mechanics,1988,41:107-124.
    [43] Hughes S, Cooley D, Guzmán J. A direct method for fuel optimal maneuversof distributed spacecraft in multiple flight regimes[C]. Space Flight MechanicsMeeting, Copper Mountain, Colorado,2005.
    [44] Marchand B, Howell K C. Aspherical formations near the libration points inthe sun-earth/moon ephemeris system[C].14th AAS/AIAA Space FlightMechanics Conference, Maui, Hawaii,2004.
    [45] Richardson D L. Analytic construction of periodic orbits about the collinearpoints[J]. Celestial Mechanics,1980,22:241-253.
    [46] Kim M. Lyapunov and quasi-periodic orbits about L2[C]. AIAA/AASAstrodynamics Specialist Conference, Quebec City, Canada,2001.
    [47] Andreu M A, Simo C. Translunar halo orbits in the quasi-bicircular problem[J].NATO ASI,1997:309-314.
    [48] Andreu M A. Dynamic in the center manifold around L2in quasi-bicircularproblem[J]. Celestial Mechanics and Dynamical Astronomy,2002,84(2):105-133.
    [49] Folta D C, Pavlak T A, Howell K C, et al. Stationkeeping of lissajoustrajectories in the earth-moon system with applications to ARTEMIS[C].20thAAS/AIAA Space Flight Mechanics Meeting, San Diego, California,2010.
    [50] Pavlak T A, Howell K C. Strategy for long-term libration point orbitstationkeeping in the earth-moon system[C]. AAS/AIAA AstrodynamicsSpecialist Conference, Girdwood, Alaska,2011.
    [51]张守余,杜兰,王丹丹.太阳系真实力模型下Halo轨道的寻找[J].测绘科学技术学报,2009,26(2):144-147.
    [52]徐明,徐世杰.地-月系平动点及Halo轨道的应用研究[J].宇航学报,2006,27(4):695-699
    [53]于锡峥,郑建华,高怀宝等.地月系L1点和L2点间转移轨道设计[J].吉林大学学报,2008,38(3):741-745
    [54]周天帅,李东.国外日地平衡电卫星应用及转移轨道实现方式[J].导弹与航天运载技术,2004,272:29-34
    [55]胡少春,孙承启,刘一武.基于序优化理论的晕轨道转移轨道设计[J].宇航学报,2010,31(3):662-668.
    [56] Gmez G, Koon W S, Lo M W, et al. Invariant manifolds, the spatial three-bodyproblem and space mission design[C]. AIAA/AAS Astrodynamics Conference,Quebec City, Canada,2001
    [57] Farquhar R, Muhonen D. Church L C. Trajectories and orbital maneuvers forthe ISEE-3/ICE comet mission[C]. AIAA/AAS Astrodynamics Conference,Seattle, WA,1984.
    [58] Stone E C, Frandsen A M, Mewaldt R A, et al. The advanced compositionexplorer[J]. Space Science Review,1998,86(1):1-22.
    [59] Domingo V, Fleck B, Poland A I. SOHO: the solar and heliosphericobservatory[J]. Space Science Reviews,1995,72(1):81-84.
    [60] NASA.gov. Wilkinson microwave anisotropy probe [EB/OL].http://map.gsfc.nasa.gov/,2012.
    [61] Franz H, Sharer P, Ogilvie K, et al. WIND nominal mission performance andextended mission design[J]. Journal of the Astronautical Sciences,2001,49(1):185-196.
    [62] Burnett D S, Barraclough B L, Bennett R, et al. The genesis discovery mission:return of solar matter to earth[J]. Space Science Reviews,2003,105(3):509-534.
    [63] Felici F, Hechler M, Vandenbussche F. The ESA astronomy mission at L2:FIRST and Planck [J]. Journal of the Astronautical Sciences,2001,49(1):185-196.
    [64] Dunham D W, Farquhar R W. Libration point missions[C]. Libration PointOrbits and Applications Conference, Parador d’Aiguablava, Girona, Spain,2002.
    [65] Beckman M. Orbit determination issues for libration point orbits[C]. LibrationPoint Orbits and Applications Conference, Parador d’Aiguablaa, Girona, Spain,2002.
    [66]张燕,荆武兴.基于日地月方位信息的月球卫星自主导航[J].宇航学报,2005,26(4):495-523.
    [67] Folta D, Gramling C, Leung D, Belur S, Long A. Autonomous NavigationUsing Celestial Objects[C].AAS/AIAA Astrodynamics Specialist Conference,Girdwood, Alaska,1999.
    [68]王鹏.基于星载敏感器的卫星自主导航及姿态确定方法研究[D].哈尔滨:航天学院,哈尔滨工业大学,2008.
    [69] Psiaki M. L. Autonomous orbit determination for two spacecraft from relativeposition measurements[J]. Journal of Guidance, Control and Dynamics,1999,22(2):305–312.
    [70] Sheikh S I, Pines D J, Ray P S, et al. Spacecraft navigation using X-raypulsars[J]. Journal of Guidance, Control, and Dynamics,2006,29(1):49–63.
    [71] Long A C, Leung D, Folta D, et al. Autonomous navigation of high-earthsatellites using celestial objects and doppler measurements[C]. AIAA/AASAstrodynamics Specialist Conference,2000, Denver, CO.
    [72] Psiaki M L. Autonomous low-earth-orbit determination from magnetometerand sun sensor data[J]. Journal of Guidance, Control, and Dynamics,1999,22(2):296–302.
    [73] Markley F L. Autonomous navigation using landmark and intersatellite data[C].AIAA/AAS Astrodynamics Conference, Seattle, WA,1984.
    [74] Colomobo G. The stabilization of an artificial satellite at the inferiorconjuction point of the earth-moon system[R]. Smithsonian AstrophysicalObservary Special Report,1961.
    [75] Hoffman D. Stationkeeping at the colinear equilibrium points of the earth-moon system[R]. NASA JSC-26189,1993.
    [76] Breakwell J V, Kamel A A, Ratner M J. Station-keeping for a translunarcommunication station[J]. Celestial Mechanics,1974,10(3):357-373
    [77] Cielaszyk D, Wie B. New approach to halo orbit determination and control[J].Journal of Guidance, Control, and Dynamics,1996,19(2):266-273
    [78] Ming X, Dancer M W, Balakrishman S N, et al. Stationkeeping of a librationpoint satellite with theta-D technique[C]. American Control Conference,Boston, Massachusett,2004.
    [79] Scheeres D, Han D, Hou Y, The influence of unstable manifolds on orbituncertainty[J]. Journal of Guidance, Control, and Dynamics,2001,24(3):573-585.
    [80] Kulkarni J E. Stabilization of spacecraft flight in halo orbits: an H∞approach[J]. IEEE transactions on control systems technology,2006,14:572-578.
    [81] Xu M, Xu SJ. Study on Stationkeeping for halo orbits at EL1: dynamicsmodeling and controller designing[J].Transactions of the Japan Society forAeronautical ans Space Science,2012,55(5):274-285
    [82] Dunham D W, Roberts C E. Stationkeeping techniques for libration-pointsatellites[J]. Journal of the Astronautical Sciences,2001,49:127-144.
    [83] Farquhar R W, Muhonen D P, Newman C R, et al. Trajectories and orbitalmaneuvers for the first libration-point satellite[J]. Journal of Guidance andControl,1980,3(6):549-554
    [84] Howell K C, Keeter T. Stationkeeping strategies for libration pointorbits:target point and floquet mode approaches[C]. AAS/AIAA SpaceflightMechanics Meeting, Albuquerque, New Mexico,1995.
    [85] Gómez G, Howell K C, Masdemont J, et al. Stationkeeping strategies fortranslunar libration point orbits[C]. AAS/AIAA Spaceflight MechanicsMeeting, Monterey, California,1998.
    [86] Simo C,Gómez G.. On the optimal stationkeeping control of halo orbits[J].Acta Astonautica,1987,15(6):391-397
    [87] Simó C, Gómez G, Libre J, Martínez R, Station keeping of a quasiperiodic haloorbit using invariant manifolds[C]. The2nd International Symposium onSpaceflight Dynamics, Darmstadt, Germany,1986.
    [88] Howell K C, Pernicka H J. Stationkeeping method for libration pointtrajectories[J]. Journal of Guidance, Control and Dynamics,1993,16(1):151-159
    [89] Marchand B, Weeks M, Smith C, et al. Onboard Autonomous Targeting for theTrans-Earth Phase of Orion[J]. Journal of Guidance, Control, and Dynamics,2010,33(3):943-956.
    [90] Scarritt S, Marchand B, Weeks M. An autonomous onboard targeting algorithmusing finite thrust maneuvers[C]. AIAA Guidance, Navigation, and ControlConference, Chicago, Illinois,2009.
    [91] Marchand B, Scarritt S, Pavlak T, et al. Investigation of alternative returnstrategies for orion trans-earth injection design options[C]. AAS/AIAA SpaceFlight Mechanics Meeting, San Diego, California,2010.
    [92] Folta D, Woodard M, Pavlak T, Haapala A, Howell K. Earth-moon librationstationkeeping theory, modeling, and operation[R].IAA-AAS-DyCoSS1-05-10,2010.
    [93] Folta D, Woodard M, Cosgrove D. Stationkeeping of the first earth-moonlibration orbiters: the ARTEMIS mission[C]. AAS/AIAA AstrodynamicsSpecialist Conference, Girdwood,2011.
    [94]蔡志勤,赵军. Halo轨道的ASRE非线性留位控制方法[J].计算力学学报,2011,S1:159-164.
    [95]侯锡云,刘林.关于探测器定点在共线平动点附近的控制问题[J].飞行器测控学报,2005,4(6):29-33
    [96]李明涛,郑建华.平动点卫星的脉冲轨道保持策略[J].吉林大学学报,2009,39(5):1407-1408
    [97] Brown E W, Shook C A. Planetary theory [M]. New York:Dover Publications,1964
    [98] Jing W, Gao C. Relative dynamics model of a lunar probe and itsapplication[J]. Scientia Sinica Phys, Mech&Astron,2010,40(4):462-470
    [99] Nayfeh A, Perturbation methods, pure and applied mathematics[M], New York:Wiley,1973.
    [100] Richardson D L. Analytic construction of periodic orbits about the collinearpoints[J]. Celestial Mechanics,1980,22:241–253.
    [101]严镇军.数学物理方程[M].合肥:中国科学技术大学出版社,2002.
    [102]刘林,王歆.月球探测器轨道力学[M].北京:国防工业出版社,2006
    [103]郗晓宁,王威.近地航天器轨道基础[M].长沙:国防科技大学出版社,2003.
    [104] Zanzottera A, Mingotti G. Intersecting invariant manifolds in spatial restrictedthree-body problems: Design and optimization of earth-to-halo transfers in thesun-earth-moon scenario[J].Communications in Nonlinear Science andNumercial Simulation,2012,17(2):832-843
    [105] Lo M W. Genesis mission design[J]. The Journal of AstronauticalSciences.2001,49(1):169-184.
    [106] Gómez G, Masdemont J, Simó C. Quasihalo orbits associated with librationpoints [J/OL].http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.7875,1998.
    [107] Pavlak T, Howell K. Evolution of the out-of-plane amplitude for quasi-periodic trajectories in the earth-moon system[C]. IAF62nd InternationalAstronautical Congress, Cape Town, South Africa,2011.
    [108] Keller H B. Numerical solution of two point boundary value problems[C].Society for Industrial and Applied Mathematics,1976, Philadelphia.
    [109] Lian Y, Gomez G, Masdemont J, et al. A note on the dynamics around theLagrange collinear points of the Earth-Moon system in a complete SolarSystem model[J].Celestial Mechanics&Dynamical Astronomy,2013,115(2):185-211
    [110]李明涛,郑建华,于锡峥,高东.约束条件下的Halo轨道转移轨道设计[J].宇航学报2009,30(2):438-441
    [111] Pavlak T. Mission design application in the earth-moon system: transfertrajectories and stationkeeping [D]. West Lafayette,IN: School of Aernauticsand Astronautics, Purdue University.2010
    [112] Folta D, Pavlak T, Haapala A, et al. preliminary considerations for access andoperations in earth-moon L1/L2Orbits[C].23rd AAS/AIAA Space FlightMechanics Meeting, Kauai, Hawaii,2013.
    [113] Markellos V. Asymmetric periodic orbits in three dimensions [J]. RoyalAstronaomical Society,1978,184:273-281.
    [114] Dichmann D, Doedel E, Paffenroth R. The computation of periodic solutionsof the3-body problem using the numerical continuation software AUTO[C].International Conference on Libration Point Orbits andApplications,Aiguablava, Spain,2002.
    [115] Doedel E, Paffenroth R, Keller H, Dichmann D,et al. Computation of periodicsolutions of conservative systems with application to the3-body problem[J].International Journal of Bifurcation and Chaos,2003,13(6):1353–1381.
    [116]刘磊,刘勇,曹建峰,唐歌实. Halo轨道族延拓方法及特性研究[J].中国空间科学技术.2013,1:30-36
    [117] Ghayesh M, Amabili M.Three-dimensional nonlinear planar dynamics of anaxially moving Timoshenko beam[J].Rchive of appliedmechanics,2013,83(4):591-604
    [118]董增福.矩阵分析教程[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [119]刘林,胡松杰,王欲.航天动力学引论[M].南京:南京大学出版社,2005.
    [120]侯锡云.平动点的动力学特征及其应用[D].南京:南京大学,2008.
    [121] Pavlak T, Howell K. Evolution of the out-of-plane amplitude for quasi-periodic trajectories in the Earth-Moon system[J]. Acta Astronautica,2012,81(2):456-465
    [122] Héritier A, Howell K. Dynamical evolution of natural formations in librationpoint orbits in a multi-body regime[C].IAF7th International Workshop ofSatellite Constellations and Formation Flying, Lisbon, Portugal,2013.
    [123] Olikara Z P, Howell K C. Computation of quasi-periodic invariant tori in therestricted three-body problem[C].20th AAS/AIAA Space Flight MechanicsMeeting, San Diego, California,2010.
    [124]荆武兴.基于日地月方位信息的近地轨道卫星自主导航[J].宇航学报.2003,24(4):418-428
    [125]李茂登,荆武兴,黄翔宇.考虑地球扁率修正的基于日地月方位信息的地球卫星自主导航[J].宇航学报,2010,33(5):578-583.
    [126] Li M, Jing W, Huang X. Dual cone-scanning horizon sensor orbit and attitudecorrections for earth's oblateness[J].Journal of Guidance, Control, andDynamics,2012,35,(1):344-349.
    [127] Owens B, Marchese J, Cosgrove D,et al. Optimizing ARTEMIS libration pointorbit stationkeeping cost therough maneuever performance calibration[C].Minneapolis, Minnesota,2012
    [128] Hermann R, Arthur J K. Nonlinear controllability and observability [J]. IEEETransactions on Automatic Control,1977,22(5):728-740.
    [129] Williams K, Wilson R, Lo M, et al. Genesis halo orbit station keeping design[C]. International Symposium: Spaceflight Dynamics Biarritz, France,2000.
    [130] Yim J R, Crassidis J L, Junkins J L. Autonomous orbit navigation ofinterplanetary spacecraft[C]. AIAA/AAS Astrodynamics Specialist Conference,Denver, CO,2000.
    [131] Tapley B D, Schutz B E, Born G H. Statistical orbit determination [M].Burlington, MA: Elsevier Academic Press,2004.
    [132] Rohrbaugh D, Schiff C. Stationkeeping approach for the microwaveanisotropy probe (MAP)[C]. AIAA/AAS Astrodynamics Specialist Conference,Monterey, California,2002.
    [133] Folta D, Vaughn F. A survey of earth-moon libration orbits: stationkeepingstrategies and intra-orbit transfers[C]. AIAA/AAS Astrodynamics Conference,Providence, Rhode Island,2004.
    [134] Janes L. Beckman M. Optimizing stationkeeping maneuvers for James Webbspace telescope[C]. Goddard Flight Mechanics Symposium,2005.
    [135]孟云鹤,张跃东,戴金海.基于Floquet模态的平动点航天器编队构形设计与控制一体化方法[J].中国科学:技术科学,2011,41(5):638-647
    [136] Heuberger H S. Halo orbit stationkeeping for the international sun-earthexplorer [C]. AAS/AIAA Astrodynamics Conference, Jackson Hole, WY,1977.
    [137] Keeter T M. Stationkeeping strategyies for libration point orbits: target pointand floquet mode approaches [D]. West Lafayette, IN: School of Aernauticsand Astronautics, Purdue University,1994.
    [138]李鹏.拉格朗日点附近编队飞行动力学与控制方法研究[D].哈尔滨:航天学院,哈尔滨工业大学,2009.
    [139] Gómez G, Masdemont J, Simó C. Study of the transfer between halo orbits[J].Acta Astronautica,1998,43:493–520
    [140]董唯光,李言俊,张科.基于月球摄动下的晕轨道的稳定性保持[J].测控技术.2008,27(3):82-84
    [141]车征,李俊峰,宝音贺西.考虑太阳引力摄动的Halo轨道保持控制[J].清华大学学报,2009,49(2):285-288
    [142] Howell K C, Gordon S C, Orbit determination error analysis and a station-keeping strategy for sun-earth L1libration point orbits[J]. Journal of theAstronautical Sciences,1994,42(2):207-228.
    [143] Jenkin A, Campell E. Generic halo orbit insertion and dispersion erroranalysis[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Monterey,2002.
    [144]高玉东.月球探测器地月空间转移轨道研究[D].长沙:航天与材料工程学院,国防科学技术大学,2008.
    [145] Xu M, Xu S. Trajectory and correction maneuver during the transfer fromearth to halo orbit[J].Chinese Journal of Aeronautics,2008,21:200-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700