用户名: 密码: 验证码:
航天器姿态系统的自适应鲁棒控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着空间技术的发展,航天器的姿态控制一直是航天器技术研究领域的热点和难点问题之一。目前,许多的空间任务(例如对地观测、编队飞行等)要求航天器具有良好的姿态控制性能。航天器迅速、精确的完成空间任务可以增加其使用的范围,获得更多有价值的信息。但航天器的姿态跟踪或姿态机动是一个典型的非线性控制问题,控制器综合难度大。而且现代航天器上挠性结构的增多也导致振动问题严重。另外,航天器在轨运行期间,不可避免的会受到各种环境力矩的干扰;同时,航天器执行部件安装误差等因素造成输出力矩的偏差也会影响姿态控制精度。传统的航天器姿态控制方式已逐渐不能适应许多新型空间任务对控制性能的需求。随着近年来控制理论的发展,许多非线性控制方法被用于设计航天器姿态控制器,在这种背景下,从理论研究和工程实践的角度出发,本文对航天器的姿态控制,挠性结构的主动振动抑制和太阳帆板驱动时的姿态补偿控制等问题进行了深入的探讨。本学位论文主要研究内容包含以下四个方面:
     (1)建立了航天器的运动学和动力学模型,然后着重给出太阳帆板驱动机构与航天器姿态的耦合模型,作为后续控制系统的分析与设计的基础。随后,以挠性航天器的平面姿态机动的建模与控制为例,提出一种符号计算在航天器仿真中的应用方案,为文中仿真平台设计与开发提供必要的技术支撑。
     (2)针对带有转动惯量矩阵不确定性、受外干扰作用以及飞轮作为执行器存在安装误差的航天器姿态控制问题,提出一种基于自适应鲁棒方法思想的控制律,并给出了严格的稳定性证明,该方法以反馈线性化方法为基础并采用径向基神经网络(Radial Basis Function Neural Network,RBFNN)设计补偿策略。随后,考虑执行器在实际工作中存在饱和的现象,针对一类带有不确定性的非线性Hamilton系统的跟踪控制问题,提出了一种具有抗饱和能力的自适应鲁棒控制律,该策略同样以反馈线性化方法为基础,通过构建扩张状态观测器(Extended State Observer,ESO)得到外干扰的量测值并将其引入控制律中补偿干扰带来的性能损失,同时在控制律中引入一个辅助系统,并对其动力学进行设计,可减小控制饱和对系统性能影响,并基于Lyapunov理论分析了闭环系统的稳定性。上述控制方案被用于航天器的姿态跟踪控制中,通过数值仿真验证了该方法的有效性。
     (3)针对带有不确定性的挠性航天器的姿态控制问题,提出了一种分散自适应鲁棒姿态控制算法,保证航天器受外界干扰作用和存在参数不确定性情况下,姿态能精确的跟踪指令信号的变化。设计中,先将挠性航天器模型变换成三个子回路分别进行控制器综合,利用扩张状态观测器获取子回路间的耦合特性及外干扰的量测值进行补偿后实现子回路间的解耦,然后设计自适应律对模型中不确定参数进行辨识,最后设计鲁棒控制项保证整个系统的稳定性。考虑到上述方法的不足,为兼顾挠性航天器的姿态控制精度和对挠性振动的抑制效果,提出了一种姿态控制与振动抑制相结合的复合控制方法。采用LQR方法设计了挠性附件的主动振动控制器,保证挠性振动的快速衰减,给出并分析了一种Q,R矩阵的选择方法;在姿态控制器设计时,反馈线性化理论仍是整个方法的基础,不确定性参数的补偿策略采用动态模糊神经网络(Dynamic FuzzyNeural Network,D-FNN),D-FNN可根据系统的性能动态调整网络的结构和规则的条数,有效避免传统神经网络结构和参数选择的盲目性,然后分析挠性附件的振动及外干扰对姿态影响的界函数并将其作为鲁棒控制项设计的基础加入到姿态控制律中以保证整个系统的性能。
     (4)考虑挠性航天器对地定向任务中太阳帆板驱动对姿态控制性能产生影响的问题,提出一种姿态与驱动机构的复合控制方法。为避免由太阳帆板驱动机构开环控制带来的转速波动问题,以坐标变化和反馈线性化方法为基础,提出了一种角速率闭环的鲁棒控制律,利用扩张状态观测器设计补偿律抵消波动力矩的影响达到提高驱动速率平稳性的目的。在此基础上,考虑对地定向任务中的姿态稳定控制,设计了前馈补偿算法降低帆板驱动机构对姿态控制性能的影响,保证了高精度的姿态控制。随后,数值仿真对算法的有效性进行了验证。考虑到本文研究中仿真程序开发的复杂性,为降低设计难度并提高开发效率,对基于模块化、易扩展和面向航天器控制仿真平台的开发方案进行了研究。从任务背景出发提炼平台的功能需求并对基于分层设计的仿真任务软件的体系结构进行了阐述。从控制系统设计的角度,综合利用Matlab/Visual C++等软件,对航天器导航、制导与控制系统的部件进行模型构建。为保证仿真平台能够根据不同的仿真任务灵活的配置部件模型及相应的参数,设计了基于用户接口界面的模型管理系统,完成整个仿真平台的设计与开发。
With the fast development of aerospace technology, spacecraft attitude controlproblem has always been a hot and difficult issue in this field. Now, many aerospacemissions, such as earth observation, formation flying and so on, often requireachievement of the desired states with good control performance. Spacecraft withthe ability of completion of aerospace mission rapidly with high precision canincrease its usage ream to get more valuable information. Spacecraft attitudetracking or maneuver is a typical nonlinear control problem and the controllersynthesis is difficult. The increase of the flexible structure in modern spacecraft alsoled to serious vibration problems. In addition, the spacecraft in orbit is affected byvarious environmental disturbance torques; at the same time, the deviations of thecontrol torques caused by the implementation of parts of the spacecraft installationerror also affect the accuracy of attitude control. The traditional spacecraft attitudecontrol method has not been gradually adapted to the many new aerospace missions.With the development of control theory, many nonlinear control schemes are used tosolve the problems of spacecraft attitude control. Under this background, thisdissertation focuses on spacecraft attitude control, flexible vibration suppression andattitude control considering a solar array. The main researches are given as follows:
     (1) As the foundation of the controller analysis and synthesis in latter chapters,the kinematic equation and dynamic equation are formulated, and the mutualcoupling between the spacecraft dynamic and the solar array drive assembly areespecially given. Then, the model and control of the flexible spacecraft maneuverused as an example, a frame of spacecraft simulation with symbol calculation isproposed in this chapter which is the basis of the simulation platform design anddevelopment latter.
     (2) Considering the attitude tracking control problem of the rigid spacecraftactuated by fly-wheels, a control scheme based on adaptive robust method ispresented and the stability is proved strictly. Feedback linearization method is thefoundation of the proposed control method and radial basis function neural networkis introduced to design compensation law. In the following part, considering theactuator outputs are limited in actual applications, for the tracking problem of aclass of nonlinear Hamilton system with control saturation, a anti-windup robustadaptive control law is studied based on feedback linearization theory, whereextended state observer is constructed to estimate and reduce the influence ofexternal disturbances and san auxiliary signal is introduced into the control law to compensate for the effect caused by control saturation, then the stability of theclosed loop system is analyzed based on Lyapunov theory. Based on the methodabove, a spacecraft attitude controller considering saturation is designed. Thefollowing numerical simulation is given to illustrate the efectiveness of thedesigned controller.
     (3) A robust adaptive decentralized control algorithm for a flexible spacecraft isproposed in the presence of external disturbances and parametric uncertainties,which can guarantee the attitude track the command signal accurately. In the designprocedure, the model of the flexible spacecraft is divided into three sub-loops forcontroller synthesis separately and the extended state observer is introduced to getand compensate the nonlinear coupling among the sub-loops and externaldisturbances, then an adaptive law is designed to estimate the uncertain parameters,at last the robust control part is used to achieve the stability of the closed loopsystem. Considering the drawback of the above method, for high attitude controlaccuracy and good flexible appendage vibration suppression effect, the LQR methodis used to design the active vibration controller to ensure the fast decay of theflexible vibration. In order to reduce the blindness of parameter selection, a Q, Rmatrix selection method is given; in the attitude controller design procedure, theproposed method is still based on feedback linearization theory and the dynamicfuzzy neural network (D-FNN) is used to design the compensation scheme for theuncertain parameters. The structures and rules of the D-FNN can be dynamicallyadjusted according to the performance, which can effectively avoid the irrationalityof the selection of the traditional neural network structure and parameters, after that,the robust control part based on the bounded function, which is obtained from theflexible appendage vibration and external disturbances analysis, is added to theattitude control law to ensure the performance of the entire system.
     (4) For improving the performance of flexible spacecraft attitude control with thespeed fluctuation of the solar array drive assembly (SADA), composite control ofthe spacecraft attitude and SADA is presented for the earth-orienting mission.Taking into account most of the SADA using open-loop control lead to speedfluctuation, an angular rate closed-loop robust control law is developed based oncoordinate transformation and feedback linearization method and the extended stateobserver is added to the control law to reduce the disturbance torque for improvingthe drive rate stability. On this basis, for the attitude regulation problem in theearth-orienting mission, a forward compensation algorithm is given to reduce theimpact of the SADA, and to ensure a high-precision attitude control. Theeffectiveness of the algorithm above has been verified via numerical simulation.Considering the complexity of the simulation program developed, a modular, easily expandable and spacecraft control simulation platform is proposed to reduce thedifficulty of design and improve development efficiency. The platform functionalrequirements are refined from the mission background and the simulation tasksoftware architecture is described based on the hierarchical design. From the view ofcontrol system design, the models of the components of spacecraft navigation,guidance and control are built on MATLAB/Visual C++software. In order toensure that the models of the components and the simulation parameters can beflexible configuration according to the different simulation missions modelmanagement system based on the user interface is designed, the entire simulationplatform is completed.
引文
[1]朱毅麟.中国空间技术研究院的标准化卫星平台[J].航天器工程,2007,16(1):10-17.
    [2]林来兴.最近十年航天器制导、导航与控制(GNC)系统故障分析研究[J].控制工程,2004,1:1-8.
    [3]张振华,杨雷,庞世伟.高精度航天器微振动力学环境分析[J].航天器环境工程,2009,26(6):528-534.
    [4] J. R, Wertz. Spacecraft Attitude Determination and Control [M]. Dordrecht:Kluwer Academic Publishers,1978.
    [5] M. J. Sidi. Spacecraft Dynamic and Control: A Practical EngineeringApproach[M].Cambridge University Press,1997.
    [6]屠善澄.卫星姿态动力学与控制(1)[M].北京:宇航出版社,2001.
    [7]章仁为.卫星轨道姿态动力学与控制[M].北京:北京航空航天大学出版社,2006.
    [8] T. Lahdhiri, A.T. Alouani. LQG/LTR Pitch Attitude Control of anEarth-Orbiting Spacecraft[C]. Proceedings of the32nd Conference onDecision and Control, San Antonio, Texas,1993:445-446.
    [9] E. G. Collins Jr, S. Richterf. Linear-Quadratic-Gaussian-Based ControllerDesign for Bubble Space Telescope[J]. Journal of Guidance, Control andDynamics,1995,18(2):208-213.
    [10] K. W. Byun, B. Wie, D. Geller, et al. Robust H(Infinite) Control Design forthe Space Station with Structured Parameter Uncertainty[J]. Journal ofGuidance, Control and Dynamics,1991,14(6):1115-1122.
    [11] T. Kida, I. Yamaguchi, Y. Chida, et al. On-Orbit Robust Control Experimentof Flexible Spacecraft ETS-VI[J]. Journal of Guidance, Control andDynamics,1997,20(5):865-872.
    [12] C. V. Charbonnel, G. Duc, S. L. Ballois. Low-order Robust Attitude Controlof an Earth Observation Satellite[J]. Control Engineering Practice,1999,7(4):493-506.
    [13] B. Wu, X. Cao, Z. Li. Multi-objective Output-feedback Control forMicrosatellite Attitude Control: An LMI Approach [J]. Acta Astronautica,2009,64(11-12),1021–1031.
    [14] T. Nagashio, T. Kida, T. Ohtani, et al. Design and Implementation of RobustSymmetric Attitude Controller for ETS-VIII Spacecraft[J].ControlEngineering Practice,2010,18(12):1440-1451.
    [15] R. Wisniewski. Linear Time-Varying Approach to Satellite Attitude ControlUsing Only Electromagnetic Actuation[J]. Journal of Guidance, Control andDynamics,2000,23(4):640-647.
    [16] M. Lovera, A. Astolfi. Spacecraft Attitude Control Using MagneticActuators[J]. Automatica,2004,40(8):1405-1414.
    [17] M. Lovera, A. Astolfi. Global Magnetic Attitude Control of Spacecraft in thePresence of Gravity Gradient[J]. IEEE Transactions on Aerospace andElectronic System,2006,42(3):796-804.
    [18] A. M. Zanchettin, M. Lovera. H∞attitude control of magnetically actuatedsatellites[C]. Proceedings of the18th IFAC World Congress Milano (Italy)Aug.28–Sep.2,2011:8479-8484.
    [19] J. R. Hervas1, M. Reyhanoglu, S. V. Drakunov.Three-Axis Magnetic AttitudeControl Algorithms for Small Satellites in the Presence of Noise[C]. The12thInternational Conference on Control, Automation and Systems, Jeju Island,Korea, Oct.17-21,2012:1342-1347.
    [20] K.D. Kumar,M.J.Tahk, H.C.Bang. Satellite Attitude Stabilization Using SolarRadiation Pressure and Magnetotorquer[J]. Control Engineering Practice,2009,17(2):267-279.
    [21] J. Trégou t, D. Arzelier, D. Peaucelle, et al. Periodic H2Synthesis forSpacecraft Attitude Control with Magnetorquers and Reaction Wheels[C].The50th IEEE Conference on Decision and Control and European ControlConference (CDC-ECC) Orlando, FL, USA, December12-15,2011:6876-6881.
    [22] N. Takeichi. Parametric Excitation Induced by Solar Pressure Torque on theRoll-yaw Attitude Motion of a Gravity-gradient Stabilized Spacecraft[J].Celest Mech Dyn Astr,2010,108:405–416.
    [23] S. Ding, S. Li. Stabilization of the Attitude of a Rigid Spacecraft withExternal Disturbances Using Finite-time Control Techniques[J]. AerospaceScience and Technology,2009,13(4-5):256–265.
    [24] Z. Zhu, Y. Xia, M. Fu. Attitude Stabilization of Rigid Spacecraft withFinite-time Convergence[J]. International Journal of Robust and NonlinearControl,2011,21:686–702.
    [25] Y. Liang, S. Xu, C, Tsai. Study of VSC Reliable Designs with Application toSpacecraft Attitude Stabilization[J]. IEEE Transactions on Control SystemsTechnology,2007,15(2):332-338.
    [26] J. Jina,, S. Kob, C. Ryooc. Fault Tolerant Control for Satellites with FourReaction Wheels[J]. Control Engineering Practice,2008,16(10):1250–1258.
    [27] Q. Hu, B. Xiao. Fault-Tolerant Attitude Control for Spacecraft Under Loss ofActuator Effectiveness[J]. Journal of Guidance, Control and Dynamics,2011,34(3):927-932.
    [28] Q. Hu, B. Xiao. Fault-tolerant Sliding Mode Attitude Control for FlexibleSpacecraft Under Loss of Actuator Effectiveness[J]. Nonlinear Dynamics,2011,64:13–23.
    [29] Q. Hu, B. Xiao, M.I. Friswel. Robust Fault-tolerant Control for SpacecraftAttitude Stabilization Subject to Input Saturation[J]. IET Control TheoryApplication,2011,5(2):271–282.
    [30] S.N. Ssingh. Nonlinear Adaptive Attitude Control of Spacecraft[J]. IEEETransactions on Aerospace and Electronic System,1987,23(3):371-379.
    [31] J.Ahmed, V. T. Coppola, D. S. Bernstein. Adaptive Asymptotic Tracking ofSpacecraft AttitudeMotion with Inertia Matrix Identification[J]. Journal ofGuidance, Control and Dynamics,1998,21(5):684-691.
    [32] S. Tanygin. Generalization of Adaptive Attitude Tracking [C]. AIAA/AASAstrodynamics Specialist Conference and Exhibit, Monterey, California,2002:1-11.
    [33] N.A. Chaturvedi, A. K. Sanyal, M. Chellappa, et al. Adaptive Tracking ofAngular Velocity for a Planar Rigid Body with Unknown Models for Inertiaand Input Nonlinearity[J]. IEEE Transactions on Control Systems Technology,2006,14(4):613-627.
    [34] Z. Chen and J. Huang. Attitude Tracking and Disturbance Rejection of RigidSpacecraft by Adaptive Control[J]. IEEE Transactions on Automatic Control,2009,15(3):600-605.
    [35] W. MacKunis, K. Dupree, S. Bhasin,et al. Adaptive Neural Network SatelliteAttitude Control in the Presence of Inertia and CMG ActuatorUncertainties[C]. Proceeding of the American Control Conference, Seattle,Washington, USA,2008:2975-2980.
    [36] A.. H. J. de Ruiter. Adaptive Spacecraft Attitude Tracking Control withActuator Saturation[J]. Journal of Guidance, Control and Dynamics,2010,33(5):1692-1695.
    [37]李传江.基于Lyapunov方法的航天器非线性姿态控制问题研究[D].哈尔滨工业大学博士论文,2006:1-20.
    [38] M. R. Akella. Rigid Body Attitude Tracking without Angular VelocityFeedback[J]. Systems&Control Letters,2001,42(4):321–326.
    [39] H. Wong, M.S. de Queiroz, V. Kapila. Adaptive Tracking Control UsingSynthesized Velocity from Attitude Measurements[J]. Automatica,2001,37(6),947-953.
    [40] B. T. Costic, D. M. Dawson, M. S. de Queiroz, et al. Quaternion-BasedAdaptive Attitude Tracking Controller Without Velocity Measurements[J].Journal of Guidance, Control and Dynamics,2001,24(6):1214-1222.
    [41] A.Zou,K. D. Kumar. Adaptive Attitude Control of Spacecraft without VelocityMeasurements Using Chebyshev Neural Network[J]. Acta Astronautica,2010,66(5-6),769–779.
    [42] S. Di Gennaro. Output Attitude Tracking for Flexible Spacecraft[J].Automatica,2002,38(10)1719–1726.
    [43] B. Xiao, Q. Hu, G. Ma. Adaptive Quaternion-based Output Feedback Controlfor Flexible Spacecraft Attitude Tracking with Input Constraints[J].Proceedings of the Institution of Mechanical Engineers, Part I: Journal ofSystems and Control Engineering,2011,225(2):226-240.
    [44] Y. Jiang, Q.Hu, G. Ma. Adaptive Backstepping Fault-tolerant Control forFlexible Spacecraft with Unknown Bounded Disturbances and ActuatorFailures[J]. ISA Transactions,2010,49(1):57-69.
    [45] A. Zou,K. D. Kumar. Adaptive Fuzzy Fault-tolerant Attitude Control ofSpacecraft[J] Control Engineering Practice,2011,19(1):10-21.
    [46] B. Xiao, Q. Hu, Y. Zhang. Adaptive Sliding Mode Fault Tolerant AttitudeTracking Control for Flexible Spacecraft Under Actuator Saturation[J]. IEEETransactions on Control Systems Technology,2012,20(6):1605-1612.
    [47] L. Show,J. Juang, C. Lin, et al. Spacecraft Robust Attitude Tracking Design:PID Control Approach[C]. Proceedings of the American Control ConferenceAnchorage, AK,2002:1360-1365.
    [48]冯纯伯,张侃建.非线性系统的鲁棒控制[M].北京:科学出版社,2004:71-115.
    [49] M. Krstic, P. Tsiotras. Inverse Optimal Stabilization of a Rigid Spacecraft[J].IEEE Transactions on Automatic Control.1999,44(5):1042-1049.
    [50] W. C. Luo, Y. C. Chu, K. V. Ling. H∞Inverse Optimal Attitude TrackingControl of Rigid Spacecraft[J]. Journal of Guidance, Control and Dynamics.2005,28(3):481-493.
    [51] W. Luo, Y.-C. Chu, K.-V. Ling. Inverse Optimal Adaptive Control for AttitudeTracking of Spacecraft[J]. IEEE Transactions on Automatic Control.2005,50(11):1639-1654.
    [52] K. Dupree, M. Johnson, P. M. Patre, et al. Inverse Optimal Control of aNonlinear Euler-Lagrange System, Part II: Output Feedback[C]. Joint48thIEEE Conference on Decision and Control and28th Chinese ControlConference Shanghai, P.R. China,2009:327-332.
    [53] S. L. Scrivener, R. C. Thompson. Survey of Time-Optimal AttitudeManeuvers[J]. Journal of Guidance, Control and Dynamics,1994,17(2):225-232.
    [54] J.L.Junkins,J.D.Turner.Optimal Continuous Torque Attitude Maneuvers[J].Journal of Guidance, Control and Dynamics,1980,3(3):210-217.
    [55] S. R. Skaar, L. G. Kraiget. Arbitrary Large-Angle Spacecraft AttitudeManeuvers Using an Optimal Reaction Wheel Power Criterion[C].AIAA/AAS Adrodynamics Conference San Diego, California,1982:1-7.
    [56] C.Yanga, L. Laib, C. Wu. Minimal Energy Maneuvering Control of a RigidSpacecraft with Momentum Transfer[J]. Journal of the Franklin Institute,2007,334(7):991–1005.
    [57] S.R.Vadali. Variable-Structure Control of Spacecraft large-Angle Maneuvers[J]. Journal of Guidance, Control and Dynamics,1986,9(2):235-239.
    [58] T.A.W. Dwyer III, H.S.Ramirez. Variable-structure Control of SpacecraftAttitude Maneuvers[J]. Journal of Guidance, Control and Dynamics,1988,11(3):262-270.
    [59] G.Creamer, P. Delahunt, S. Gates, et al. Attitude Determination and Control ofClementine During Lunar Mapping[J]. Journal of Guidance, Control andDynamics,1996,19(3):505-511.
    [60] B.Wie,J.Lu. Feedback Control Logic for Spacecraft Eigenaxis Rotationsunder Slew Rate and Control Constraints[J]. Journal of Guidance, Control andDynamics,1995,18(6):1372-1379.
    [61] B. Wie, D. Bailey,C. Heiberg. Rapid Multitarget Acquisition and PointingControl of Agile Spacecraft[J]. Journal of Guidance, Control andDynamics,2002,25(1):96-104.
    [62] K. Kim,Y. Kim. Robust Backstepping Control for Slew Maneuver UsingNonlinear Tracking Function[J]. IEEE Transactions on Control SystemsTechnology,2003,11(6):822-829.
    [63] I. Ali, G. Radice, J. Kim. Backstepping Control Design with Actuator TorqueBound for Spacecraft Attitude Maneuver[J]. Journal of Guidance, Control andDynamics,2010,33(1):254-259.
    [64] A. H.Bajodah. Inertia-independent Generalized Dynamic Inversion FeedbackControl of Spacecraft Attitude Maneuvers[J]. Acta Astronautica,2011,68(11-12):1742–1751.
    [65] O.J.M.Smith. Feedback Control Systems[M]. New York: McGraw-Hill BookCompany, Inc.1958:331~345.
    [66] N.Singer,W.Seering. Preshaping Command Input to Reduce SystemVibration[J]. Transactions of the ASME Journal of Dynamic Systems,Measurement and Control,1990,112(1):76~82.
    [67] W.Singhose,L.Porter,N.Singer. Vibration Reduction Using Multi-HumpExtra-Insensitive Input Shaper[C].Proceeding of th American ControlConference.Seattle,WA,1995:3830~3834.
    [68] W.E.Singhose,S.Derezinski,N.Singer. Extra-Insensitive Input Shapers forControlling Flexible Spacecraft[J]. Journal of Guidance, Control andDynamics,1996,19(2):385~391.
    [69] J.Vaughan,A.Yano,W.Singhose. Performance Comparison of Robust InputShapers[C].2007IEEE International Conference on Control and Automation,Guangzhou,2007:2111~2116.
    [70] T.D.Tuttle,W.P.Seering. Vibration Reduction in0-g Using Input Shaping onthe MIT Middeck Active Control Experiment[C]. American ControlConf.Seattle,WA,1995:919~923.
    [71] Z. Li, P. M. Bainum. Momentum Exchange: Feedback Control of FlexibleSpacecraft Maneuvers and Vibration[J]. Journal of Guidance, Control, andDynamics.1992,15:1354–1360.
    [72] Z. Li, P. M. Bainum. Vibration Control of Flexible Spacecraft IntegratingaMomentum Exchange Controller and a Disturbuted Piezoelectric Actuator[J].Journal of Sound and Vibration.1994,177(4):539–553.
    [73] J. D. Turner, H. M. Chun. Optimal Distributed Control of a FlexibleSpacecraft during a Large-Angle Maneuver[J]. Journal of Guidance, Control,and Dynamics.1984,7(3):257–264.
    [74] G. Singh, P. T. Kabamba, McClamroch N H. Planar, Time-Optimal,Rest-to-Rest Slewing Maneuvers of Flexible Spacecraft[J]. Journal ofGuidance, Control, and Dynamics.1989,12(1):71–81.
    [75] Q. Liu, B. Wie. Robust Time-Optimal Control of Uncertain FlexibleSpacecraft[J]. Journal of Guidance, Control, and Dynamics.1992,15(2):597–604.
    [76] J. Ben-Asher, J. A. Burns, E. M. Cliff. Time-Optimal Slewing of FlexibleSpacecraft[J]. Journal of Guidance, Control, and Dynamics.1992,15(2):360–367.
    [77] M. A. Lau, L. Y. Pao. Characteristics of Time-Optimal Commands forFlexible Structures with Limited Fuel Usage[J]. Journal of Guidance, Control,and Dynamics.2002,25(2):222–231.
    [78] B. A. Albassam. Optimal Near-Minimum-Time Control Design for FlexibleStructures[J]. Journal of Guidance, Control, and Dynamics.2002,25(4):618–625.
    [79] S. N. Singh, R. Zhang. Adaptive Output Feedback Control of Spacecraft withFlexible Appendages by Modeling Error Compensation[J]. Acta Astronautica.2004,54(4):229–243.
    [80] C. Kabganian, M. Shahravi. Adaptive Sliding Mode Attitude and VibrationControl of an Elastic Spacecraft[C]. International Conference on Control andAutomation, Budapest, Hungary, June2005, Vol.1:305–310.
    [81] Q.L.Hu,P.Shi,H.J.Gao.Adaptive Variable Structure and Commanding ShapedVibration Control of Flexible Spacecraft[J]. Journal of Guidance, Control andDynamics.2007,30(3):804~815.
    [82]胡庆雷,马广富.基于滑模输出反馈与输入成形相结合的挠性航天器主动振动抑制方法[J].振动与冲击.2007,26(6):133–138,189.
    [83]胡庆雷,马广富,姜野.控制受限的挠性航天器姿态机动自适应变结构输出反馈控制[J].宇航学报.2007,28(4):875–879.
    [84] Di Gennaro. Acitve Vibration Suppression in Flexible Spacecraft AttitudeTracking[J]. Journal of Guidance, Control and Dynamics.1998,21(3):400-408.
    [85] Di Gennaro. Output Attitude Tracking for Flexible Spacecraft[J].Automatica,2002,38(10):1719-1726.
    [86] Di Gennaro. Output Stabilization of Flexible Spacecraft with Active VibrationSuppression[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(3):747-759.
    [87] Di Gennaro. Passive Attitude Control of Flexible Spacecraft from QuaternionMeasurements[J].Journal of Optimization Theory and Application,2003,116(1):41-60.
    [88]靳永强,刘向东,王伟等.基于模态观测器的挠性航天器姿态控制[J].宇航学报,2008,29(3):844-848.
    [89]靳永强,刘向东,侯朝祯.含有参数不确定性的挠性航天器姿态跟踪滑模控制[J].控制理论与应用,2009,26(3):299-304.
    [90]李争学,王本利,马兴瑞.带挠性附件航天器的鲁棒姿态跟踪控制[J].宇航学报,2009,30(5):974-981.
    [91]李东旭.大型挠性结构分散化振动控制理论与方法[M].长沙:国防科技大学出版社,2002.
    [92]仝西岳.挠性多体航天器动力学建模与姿态控制技术研究[D].长沙:国防科技大学博士论文,2006:96-113.
    [93] P. K. Maharana, P. S. Goel. Simulation of Solar Array Slewing of IndianRemote Sensing Satellite [J]. Acta Astronautica,1991,25(3):157-164.
    [94] F.L. Markley, F.H. Bauer, J.J. Deily,et al. Attitude control System ConceptualDesign for the Geostationary Operational Environmental Satellite SpacecraftSeries[J]. Journal of Guidance, Control and Dynamics,1995,18(2):247-255.
    [95]王凤鸣,刘暾,张鹏顺.步进电机驱动挠性负载时堵转机理研究[J].中国机械工程,2002,13(9):771-773.
    [96] T.Iwata, H Hoshino,T. Yoshizawa.Precison Attitude Determination for theAdvanced Land Observing Satellite(ALOS):Design,Verification,and On-OrbitCalibration[C].AIAA Guidance, Navigation and Control Conference andExhibit,Hilton Head,South Carolina,20-23Aug2007:1-18.
    [97] T.Iwata.Attitude Dynamics and Disturbances of the Advanced LandObserving Satellite(ALOS):Modeling,Identification, and Mitigation[C].AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Honolulu, Hawaii,18-21Aug2008:1-20.
    [98]斯祝华,刘一武,黎康.太阳帆板驱动装置建模及其驱动控制研究[J].空间控制技术与应用,2010,36(2):13-19.
    [99]斯祝华,刘一武.帆板驱动时的卫星姿态前馈补偿控制[J].空间控制技术与应用,2010,36(6):11-15.
    [100]斯祝华,刘一武.帆板驱动影响下的卫星姿态高精度高稳定度控制[J].宇航学报,2010,31(12):2697-2703.
    [101] L. Xu, B. Yao. Output feedback adaptive robust precision motion control oflinear motors [J]. Automatica,2001,37(7):1029-1039.
    [102] M.D.Shuster. A Survey of Attitude Representations [J].The Journal of theAstronautical Sciences,1993,41(4):21-22.
    [103] P.W. Likins, G.E.Fleischer. Results of Flexible Spacecraft Attitude ControlStudies Utilizing Hybrid Coordinates[J]. Journal of Spacecraft and Rockets,1971,8(3),264-273.
    [104] P.W.Likins.Dynamics and Control of Flexible Space Vehicles[R].N70-19303.
    [105] L.Meirovitch,H.D.Nelson. High-Spin Motion of a Satellite Containing ElasticParts[J]. Journal of Spacecraft and Rockets,1966,3(11):1597-1602.
    [106] P.C.Hughes.Recent Advances in the Attitude Dynamics of Spacecraft[J].Canadian Aeronautics and Space Journal,1973,19(4):165-171.
    [107] Meirovitch L,Quinn R D.Equations of Motion for Maneuvering FlexibleSpacecraft [J].Journal of Guidance,Control, and Dynamics,1987,10(5):453.
    [108] T.R.Kane,D.A.Levinson.Formulation of Equations of Motion for ComplexSpacecraft[J]. Journal of Guidance,Control, and Dynamics,1980,3(2):99-112.
    [109]黄文虎,邵成勋.多柔体系统动力学[M].北京:科学出版社,1996.
    [110]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社,1996.
    [111]曲广吉.航天与力学:著名航天动力学专家曲广吉教授文集[M].北京:中国科学技术出版社,2005:100-304.
    [112]李东旭.大型挠性空间桁架结构动力学分析与模糊振动控制[M].北京:科学出版社,2008.
    [113]李东旭.挠性航天器结构动力学[M].北京:科学出版社,2010.
    [114]屠善澄.卫星姿态动力学与控制(4)[M].北京:宇航出版社,2006:419-450.
    [115]李长江.基于虚拟样机技术的卫星天线双轴定位机构建模、仿真与设计评估[D].长沙:国防科技大学硕士论文,2004:44-60.
    [116]刘良栋.卫星控制系统仿真技术[M].北京:宇航出版社,2003:17-239.
    [117] J. Eickhoff. Simulating Spacecraft Systems[M]. Heidelberg: Springer,2009:167-263
    [118]杨涤,耿云海,杨旭等.飞行器系统仿真与CAD[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [119]曹裕华,冯书兴,管清波等.航天器军事应用建模与仿真[M].北京:国防工业出版社,2010:20-47.
    [120] Brown Owen, Eremenko Paul. Fractionated Space Architectures: A Vision forResponsive Space[C]. AIAA4th Responsive Space Conference, Los Angeles,CA, USA,2006.
    [121] David M. LoBosco, Glen E. Cameron, Richard A. Golding. PleiadesFractionated Space System Architecture and the Future of National SecuritySpace[C].AIAA SPACE2008Conference&Exposition, San Diego,California, September2008:1-10.
    [122]刘豪,梁巍.美国国防高级研究计划局F6项目发展研究[J].航天器工程,2010,(2):92-98.
    [123]周黎妮,唐国金,罗亚中.基Matlab/Simulink的航天器姿态动力学与控制仿真框架[J].系统仿真学报,2005,17(10):2517-2520.
    [124]刘向东,方应龙,陈振.基于ADAMS与MATLAB的挠性卫星的建模与姿态控制[J].系统仿真学报,2009,21(2):590-598.
    [125]白圣建.挠性航天器的刚柔耦合动力学建模与姿态控制[D].长沙:国防科技大学博士论文,2011:17-44.
    [126] H.K.Khalil著,朱义胜,董辉,李作洲等译.非线性系统(第三版)[M].北京:电子工业出版社,2005.
    [127] J.J.Slotine,W.P.Li著,程代展等译.应用非线性控制[M].北京:机械工业出版社,2009.
    [128]闵颖颖,刘允刚.Barbalat引理及其在系统稳定性分析中的应用[J].山东大学学报(工学版),2007,37(2):51-55,114.
    [129] B Yao, M Tomizuka. Adaptive Robust Control of Nonlinear Systems in aSemi-Strict Feedback Form[J]. Automatica,1997,33(5):893–900.
    [130] B Yao, M Tomizuka.Adaptive Robust Control of MIMO Nonlinear Systems inSemi-Strict Feedback Form[J]. Automatica,2001,37(9):1305–1321.
    [131] Q.L. Hu,B. Li,X. Huo,et al.Spacecraft Attitude Trakcing Control underActuator Magnitude Deviation and Misalganment[J]. Reprint of AerospaceScience and Technology,2012.
    [132]吕跃勇,胡庆磊,马广富,等.考虑执行机构误差的编队卫星姿态分布式时延滑模自适应协同控制[J].航空学报,2011,32(9):1686-1695.
    [133] F. Zhang, G.R. Duan. Integrated Translational and Rotational Finite-TimeManeuver of a Rigid Spacecraft with Actuator Misalignment[J]. IET ControlTheory and Applications,2012,6(9):1192-1204.
    [134] J.J.E. Slotine,M.D.D.Benedetto. Hamiltonian Adaptive Control of Spacecraft[J]. IEEE Transactions on Automatic Control,1990,35(7):848-852.
    [135] S.Nicosla,P. Tomei.Nonlinear Observer and Output Feedback Attitude Controlof Spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems,1992,28(4):970-977.
    [136] B. Chen,C.Wu,Y. Jan.Adaptive Fuzzy MixedH2/H∞Attitude Control ofSpacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems,2000,36(4):1343-1357.
    [137] H. Yoon,P. Tsiotras. Spacecraft Adaptive Attitude and Power Tracking withVariable Speed Control Moment Gyroscopes[J]. Journal of Guidance, Controland Dynamics,2002,25(6):1081-1090.
    [138] H.Yoon,B.H. Agrawal. Adaptive control of uncertain Hamiltonian Multi-InputMulti-Output systems: with application to spacecraft control [J].IEEETransactions on control systems technology,2009,17(4):900-906.
    [139] T.I. Fossen. Guidance and Control of Ocean Vehicles[M].New York:JohnWiley&Sons Ltd,1994.
    [140]韩京清.从PID技术到“自抗扰控制”技术[J].控制工程,2002,9(3):13-18.
    [141]黄一,张文革.自抗扰控制器的发展[J].控制理论与应用,2002,19(4):485-492.
    [142]韩京清.自抗扰控制技术-估计补偿不确定因素的控制技术[M].北京:国防工业出版社,2008.
    [143]韩京清.非线性系统的状态观测器[J].控制与决策,1990,5(3):57-60.
    [144]韩京清.一类不确定对象的“扩张状态观测器”[J].控制与决策,1995,10(1):85-88.
    [145]韩京清.非线性PID控制器[J].自动化学报,1994,20(4):487-490.
    [146]黄一,韩京清.非线性二阶连续扩张状态观测器的分析与设计[J].科学通报,2000,45(13):1373-1379.
    [147] Han Jingqing. From PID to Active Disturbance Rejection Control [J].IEEETransactions on Industrical Electroncis,2009,56(3):900-906.
    [148] Z. Gao. Scaling and Bandwith-parameterization based Controller Tuning[C].Proceeding of the2003American Control Conference,Denver,Colorado, June4-6,2003:4989-4996.
    [149] Q. Zheng, L. Gong,D.H. Lee,Z. Gao. Active Disturbance Rejection Controlfor MEMS Gyroscopes[C]. IEEE Transactions on Control SystemsTechnology,2009,17(6):1432-1438.
    [150]雷仲谋,吕振铎.非线性自抗扰控制器在航天器姿态控制系统中的应用[J].航天控制,2000,18(4):34-39.
    [151] Guo Baozhu, Zhao Zhiliang.On the Convergence of an Extended StateObserver for Nonlinear Systems with Uncertainty[J].System&ControlLetters,2011,60(6),420-430.
    [152] Guo Baozhu, Zhao Zhiliang. On Convergence of Tracking Differentiator[J].Internationnal Journal of Control,2011,84(4):693-701.
    [153]赵志良.非线性自抗扰控制的收敛性[D].合肥:中国科学技术大学博士论文,2012.
    [154] D. Zhou,T.L.Shen,K. Tamura.Nonlinear and Adaptive Controllers for AttitudeStabilization and Tracking of a Spcacraft[J].Transactions of the JapanSoctiety for Aeronautical and Space Sciences,2005,48(159):7-12.
    [155]裴润,宋申民.自动控制原理(下册)[M].哈尔滨:哈尔滨工业大学出版社,2006:614-673.
    [156]李殿璞.非线性控制系统理论基础[M].哈尔滨:哈尔滨工程大学出版社,2006:267-316.
    [157]申铁龙.机器人鲁棒控制基础[M].清华大学出版社,2000.
    [158]李士勇.模糊控制神经控制和智能控制论(第2版).[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [159] J. T. Spooner, M. Maggiore, R. Ordonez, et al. Stable Adaptive Control andEstimation for Nonlinear Systems: Neural and Fuzzy ApproximatorTechniques[M]. New York:John Wiley&Sons, Inc.,2002:1-130.
    [160] S.S.Ge,C.C.Hang,T.H.Lee,et al.Stable Adaptive Neural Network Control [M].Norwel:Kluwer Academic Publishers,2001:1-137.
    [161] F.L.Lewis, K. Liu,A. Yesildirek. Neural Net Robot Controller withGuaranteed Tracking Performance[J].IEEE Transactions on Neural Networks,1995,6(3):703-715.
    [162]孙元章,曹明,申铁龙等.基于广义哈密顿系统理论的汽轮调速器分散无源控制[J].电力系统自动化,2002,26(3):6-9.
    [163] R. Yuan, J. Yi, W. Yu, et. al. Adaptive Controller Design for UncertainNonlinear Systems with Input Magnitude and Rate Limitations
    [C].Proceedings of the American Control Conference, San Francisco, CA,USA, June29-July1,2011:3536-3541.
    [164]周荻,暮春棣,徐文立.空间拦截器姿态的组合控制[J].清华大学学报,1999,39(1):106-109.
    [165]肖冰,胡庆磊,马广富.挠性卫星姿态跟踪自适应L2增益控制[J].控制理论与应用,2011,28(1):101-107.
    [166] J.E. Meng, Y. Gao. Robust Adaptive Control of Robot Manipulators UsingGeneralized Fuzzy Neural Networks[J]. IEEE Transactons on IndustricalElectronics,2003,50(3):620-628.
    [167] S.Q. Wu, J.E. Meng. Dynamic Fuzzy Neural Networks—A Novel Approachto Function Approximation[J]. IEEE Transactons on Systems,Man,andCybernetics-Part B: Cybernetics,2000,30(2):358-364.
    [168]伍世虔,徐军.动态模糊神经网络-设计与应用[M].北京:清华大学出版社,2008.
    [169]背户一登著,马立新,李玫译.结构振动控制[M].北京:机械工业出版社,2011.
    [170]欧进萍.结构振动控制主动、半主动和智能控制[M].北京:科学出版社,2003.
    [171] M.Zribi, J.Chiasson. Position Control of a PM Stepper Motor by ExactLinearization[J].IEEE Transactions on Automatic Control,1991,36(5):620-625.
    [172] R.Marino,S.Peresanas,P.Tomei. Nonlinear Adaptive Control of PermanentMagnet Step Motors[J].Automatica,1995,31(11):1595-1604.
    [173] P. Tomei,C.M. Verrelli. A Nonlinear Adaptive Speed Tracking Control forSensorless Permanent Magnet Step Motors with Unknown Load Torque.International Journal of Adaptive Control and Signal Processing,2008,22(3),266-288.
    [174] M. Hinkkanen, T. Tuovinen, L. Harnefors, et al. A Combined Position andStator-resistance Observer for Salient PMSM Drives: Design and StabilityAnalysis. IEEE Transactions on Power Electronics,2012,27(2),601-609.
    [175] S. Bifaretti, V. Iacovone, A. Rocchi. Nonlinear Speed Tracking Control forSensorless PMSMs with Unknown Load Torque: From Theory to Practice[J].Control Engineering Practice2012,20(7):714–724.
    [176] T.Iwata. Attitude Dynamics and Disturbances of the Advanced LandObserving Satellite(ALOS):Modeling, Identification, and Mitigation [C].AIAA/AAS Astrodynamics Specialist Conference and Exhibit,18-21August2008, Honolulu,Hawaii.
    [177] F.L.Markley,F.H.Bauer,M.D.Femiano.Attitude Control System ConceptualDesign for Geostationary Operational Environmental Satellite SpacecraftSeries[J]. Journal of Guidance, Control, and Dynamics,1995,18(2):247–255.
    [178] F.H.Bauer,M.D.Femiano, G.E. Mosier.Attitude Control System ConceptualDesign for the X-ran Timeing Explorer[C].AIAA-92-4334-CP,1992:236-241.
    [179]王广雄,何朕.控制系统设计[M].北京:清华大学出版社,2008.
    [180] C.J. Kempf,S.Kobayashi. Disturbance Observer and Feedforward Design fora High-Speed Direct-Drive Positioning Table[J].IEEE Control SystemsTechnology,1999,7(5):513-526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700