用户名: 密码: 验证码:
KDP晶体超精密飞切微纳形貌对激光损伤阈值的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
KH_2PO_4(KDP)晶体较低的激光损伤阈值是限制惯性约束核聚变(InertialConfinement Fusion,ICF)高功率激光器输出能力提升的瓶颈环节。光学元件超精密加工表面中高频形貌信息及各类瑕疵对其光学性能具有重要影响。但是,目前在KDP晶体超精密飞切微纳形貌对其损伤阈值影响机制方面的研究工作尚未见相关报道。本课题首先研究了KDP飞切微纳表面主要形貌要素的表征方法,并提取能够反映晶体光学质量的主要表征参数;然后建立了表面主要微纳形貌特征与晶体损伤阈值之间的映射关系;最后以对晶体损伤阈值影响较大的形貌参数为优化目标,建立了飞切主轴振动模型,并结合实验来指导飞切参数的选择,为KDP晶体超精密加工提供了重要的参考意见。
     为了对晶体飞切表面波纹度及粗糙度进行分析,本文利用Motif方法、功率谱密度、小波及分形来对表面形貌进行表征。分析发现:Motif方法所获得的波纹度平均幅值能避免对单一成分求权重而直接对表面波纹进行幅值评价;一维、二维PSD曲线以及角谱和半径谱能够对飞切表面进行全波段以及纹理方向性评价;小波变换可以通过多尺度分解与重构实现KDP晶体三维形貌的提取与分析;分形维数可以克服测量仪器的误差而对表面粗糙度进行最真实的评价。上述方法的结合使用对KDP晶体飞切表面微纳形貌的全面表征具有重要意义。
     为了研究中频波纹对晶体损伤阈值的影响,本文综合利用PSD与傅里叶模方法来分析波纹参数对入射波的调制特性,发现KDP飞切表面频率构成具有多样性特征。对晶体损伤阈值影响较大的危险波纹周期基本集中在80μm-180μm范围内,而该范围内波纹幅值是较周期更敏感的致伤参量。因此,提出使用波纹度Motif平均深度作为衡量飞切表面损伤阈值大小的一个近似度量参数。同时,基于谐波产生的耦合波方程,提出降低飞切波纹幅值是提高晶体倍频效率并改善输出波形的有效措施。
     为了研究表面粗糙度与亚表层裂纹对光伤阈值的影响,本文利用傅里叶模法来对上述特征的调制属性进行分析,并引入分形理论来表征表面的抗热损伤能力。分析发现:粗糙度增强了晶体表面对激光的热吸收,而圆周轮廓分形维数分布能够很好地表征飞切表面抗激光热破坏的能力;亚表层裂纹的调制增强是损伤晶体的又一重要机制,亚表层裂纹深度与损伤阈值呈相反的映射关系,而与波纹幅值具有同样的变化规律;即抑制波纹的同时,亚表层裂纹将同时得到改善。综合分析发现:波纹幅值是飞切表面必须抑制的制造误差。
     为了对引致飞切波纹特征的机床主轴振动特性进行分析,本文提出利用二自由度陀螺的技术方程来建立飞切机床空气主轴的振动模型,定性分析加工过程中切削参数对波纹频率与幅值的影响规律。研究发现,频率成分间存在明显的倍频与差频关系。因此,提出通过对主轴转速及转动惯量比的合理设定,实现频率预测。波纹幅值基本随进给量与切深的增加而增大,进给量的影响较切深稍大。极低转速下虽然有利于小幅降低幅值但却以增加表面破损从而增加热损伤为代价。理论及实验结果显示:转速400r/min左右,进给量10μm/r左右,切深10μm左右,刀具前角-45能够得到较好的飞切表面。
The lower laser induced damage threshold (LIDT) of KH_2PO_4(KDP) crystals isa bottleneck link which extremely limits the power output of inertial confinementFusion (ICF) laser. The middle and high frequency topography information and themicro-defects on KDP surface processed by ultra-precision fly-cutting, haveimportant effects on the LIDT of KDP element. However, until now, there are fewworks which are focused on the influence mechanism of KDP fly-cutting surfacequality on its optical performance. For this reason, this project is established. In thispaper, the characterization of fly-cutting surface micro-topography is carried outfirstly, then the influence regulation of surface topography elements and theircharacterizing parameters on the LIDT of KDP element are analyzed. Base on thework above, a typical parameter which has the most important effect on the LIDT ofKDP crystal is found and considered as the optimal aim in order to guide themachining of KDP fly-cutting. In the end, a theoretical model is established tosimulate the fly-cutting spindle, and the reasonability of this model is proved by lotsof experiments. The work of this paper provides fundamental suggestions forguiding the ultraprecision processing of KDP crystal..
     For analyzing the surface roughness and waviness induced by fly-cutting, theMotif method, PSD, wavelet transform, and fractal theory are introduced to separateand characterize the special elements. Research results indicate that, the meanamplitude of waviness obtained by Motif method can characterize the surfaceamplitude directly without calculating the weightingfactor. The1-d and2-d PSDcurves, angular frequency spectrum, and radius frequency spectrum can characterizein detail the surface frequency components and texture structures, which covers theshortage of Motif parameters. The multi-scale decomposition function of waveletcan separate the3-D topography information and reconstruct the surface of certainfrequency, this ability of handling the3D surface covers the shortage of PSD andMotif methods. The fractal dimension is a good measurement of roughness whichcan characterize the frequency and amplitude at the same time, and it also can avoidthe error of detecting equipments. It has important meaning to use jointly themethods above in characterizing the KDP fly-cutting topography.
     For study the influence of mid-frequency waviness on the optical performanceof KDP crystal, the PSD method and Fourier model theory are used to analyze themodulation properties of waviness period and amplitude on the incident laser.Research results show that, the fly-cutting surface is consisted of different wavinesswith various spatial periods and amplitudes, and the dangerous waviness periods mostly distribute between80μm and180μm. In this range, the amplitude is moredangerous than period. The mean depth of waviness Motifs can be considered as aneffective parameter to reflect the LIDT of KDP fly-cutting surface. In addition,based on the coupled wave equations of harmonic generation, we pointed out that itis most important to decrease the waviness amplitude for increasing the harmonicefficiency and improving the outgoing wave shape.
     For study the influence of surface roughness and subsurface cracks on theLIDT of KDP element, the fractal theory and Fourier model method are used toanalyze the modulation properties of roughness profile and subsurface crack,Research results indicate that, compared with the waviness, the modulation effect ofroughness is weaker, and the roughness decreases the LDIT of KDP crystal manilyby enhancing the heat absorption of fly-cutting surface. The cuicumstantial profilefractal dimension distribution can reflect this absortion capacity well. Themodulation effect of subsurface crack is another mechanism which damages KDPelement, andthe changing trend of the subsurface crack depth is inverse with that offly-cutting surface LIDT, but it is consistent with that of the waviness meanamplitude, this conclusion is extremely benefit for the fly-cutting machining of KDPcrystal. It indicates that the subsurface crack depth will be improved when thewaviness amplitude is decreased.
     For analyzing the vibration factors of fly-cutting machine which introduces thewaviness, this paper use the two freedom degrees gyro technology equation toestablish the dynamic model of the fly-cutting machine air spindle, study theinfluence of fly-cutting parameters on the frequency and amplitude of waviness.Research results indicate that, the multiple and difference relationships commonlyexist between the time frequencies.The waviness frequency can be forecasted bysetting reasonably the spindle speed and the ratio of rotational inertia, and whichprovides the probability for eliminating the dangerous frequency. The increasingfeed and cutting depth will all lead to the rise of waviness amplitude, and theinfluence of feed is more obvious than that of cutting depth. When the spindle speedis low, the material is removed mainly based on the brittle mechanism, the wavinessamplitude are smaller than the high speed situation. But lots of defects exist on suchsurfaces and which will enhance the heat absorption and decrease the LIDT of KDPat last. When the rotation speed is400r/min, feed is around10μm/r, cutting depth isabout10μm, and the tool rake angle is-45, it can obtain better fly cutting surfaces.
引文
[1]毛剑珊.核聚变-未来的新能源[J].现代物理知识,2007,19(1):20-23.
    [2] P. M. Lonardo, H. Trumpold, L. D. Chiffre. Progress in3D SurfaceMicro-topography Characterization [J]. Annals of the CIRP,1996,45(2):589-598.
    [3] J. A. Painsner, J. D. Boyes, S. A. Kuopen et al. National Ignition Facility[J].Laser Focus World,1994,30(5):75.
    [4]王圣来,丁建旭. KDP晶体的研究进展[J].人工晶体学报,2012,41(3):179-188.
    [5] V. M. Epikhin, I. A. Rokos. A Double Acousto-Optic Monochromator for theUV Region with Improved Optical Characteristics Based on a KDP SingleCrystal [J]. Optics and Spectroscopy,2004,96(3):465-469.
    [6]冯诗齐.汇聚192束激光的NIF-美国利弗莫尔实验室国家点火装置今夏“点火”[J].世界科学,2009,(5):24-26.
    [7]牟晓明,王圣来,王波等. Ca2+对KDP晶体的光损伤阈值的影响[J].人工晶体学报,2008,37(5):1097-1116.
    [8] F. laeri, R. Jungen, G. Angelow, et al. Photorefraction in the Ultraviolet:Materials and Effects[J]. Appl. Phys. B,1995,61(4):351-360.
    [9] C. W. Carr, M. D. Feit, M. A. Johnson, et al. Complex Morphology ofLaser-induced Bulk Damage in K2H2-xDxPO4Crystals[J]. Appl. Phys. Lett.,2006,89(13):131901.
    [10] B. Bertussi, P. Cormont, T. Stephanie, et. al. Initiation of Laser-inducedDamage Sites in Fused Silica Optical Components[J]. Optics Express,2009,17:11569-11479.
    [11] M. J. Runkel, R. T. Jennings, J. D. Yoreo, et al. An Overview of Recent KDPDamage Experiments and Implications for NIF Tripler Performance [J]. SPIE,1999,84(2):247-250.
    [12] L. J. Atherton, F. Rainer, J. D. Yereo, et al. Thermal and Laser Conditioning ofProduction and Rapid-growth KDP and DKDP Crystal[J]. SPIE,1993,36(2):63-66.
    [13] M. Runkel, J. D. Yoreo, W. Sell, et al. Laser Conditioning Study on the OpticalScience Laser Using Large Area Beams[J]. SPIE,1998,3244:51-63.
    [14]陈明君,庞启龙,刘新艳. KDP晶体微纳加工表层杂质对其激光损伤阈值影响的有限元分析[J].强激光与粒子束,2008,20(7):1182-1186.
    [15]关佳亮,汪文昌,朱生根等. KDP晶体单点金刚石超精密切削加工的发展[J].现代制造工程,2012,8:129-132.
    [16]袁哲俊,王先奎.精密和超精密加工技术[M].北京:机械工业出版社,2006:86-100.
    [17]李旦,韩荣第,巩亚东等.机械制造技术基础[M].哈尔滨:哈尔滨工业大学出版社,2009:67-71.
    [18] M. Visscaher, K. G. Struik. Optical Profilometry and Its Application toMechanically Inaccessible Surface[J]. Precision Engineering,1994,16(3):192-204.
    [19]毛起广.表面粗糙度的评定和测量[M].北京:机械工业出版社,1991:40-48.
    [20] W. R. Devries A Three-dimension Model of Surface Asperities DevelopedUsing Moment Theory[J]. J. Eng. Ind., Trans. ASME.,1982,104:243-248.
    [21] E. C. Teague, F. E. Scire. Three-dimension Stylus Profilometry[J]. Wear,1982,83(1):1-12.
    [22] W. P. Dong, P. J. Sullivan, K. J. Stout. Comprehensive Study of Parameters forCharacterising Three-dimension Surface Topography-III[J]. Wear,1994,178(1):29-43.
    [23]李成贵,董申.三维表面微观形貌的表征参数和方法[J].宇航计测技术,1999,19(6):32-42.
    [24]余桂英,李小兵,刘莹等.表面微观形貌参数表征系统的研制[J].南昌大学学报,2008,30(1):53-56.
    [25]朱健军,钟渊,刘泊.表面三维形貌测量及其评定的研究[J].哈尔滨理工大学学报,2009,14(1):43-46.
    [26]王中宇,付继华,孟浩.二维表面粗糙度最小二乘评定基准线的改进[J].计量学报,2008,29(3):203-206.
    [27]李伯奎.三维粗糙度参数算术平均偏差与均方根偏差的规律研究[J].工具技术,2008,42:107-110.
    [28] ISO4287-1997. Geometrical Product Specifications(GPS)-Surface Texture:Profile Method-Terms, Definitions and Surface Texture Parameters[S].1997.
    [29] ISO/DTS16610-32. Geometrical Product Specification (GPS)-Filtration-Part32: Robust Profile Filters: Spline Filters[S].2002.
    [30]许景波,袁怡宝,刘泊. B样条滤波器建立表面轮廓中线的方法[J].光学精密工程,2008,16(8):1412-1415.
    [31]崔长彩,蒋向前,李小改等. ISO5436的表面形貌评定基准[J].光学精密工程,2009,17(5):1063-1071.
    [32] ISO12085. Geomitrical Product Specifications (GPS)-Surface Texture ProfileMethod-Motif Parameters [S].1996.
    [33] M.Dietzsch, K. Papenfuβ, T. Hartmann. The MOTIF-method (ISO12805)-ASuitable Description for Functional, Manufactural and MetrologyRequirements [J]. Int. J. Mach. Tools Manufact.,1998,38(5):625-632.
    [34]李成贵,董申,韩红玉. MOTIF-表面结构的有一表征方法[J].计量技术,1999,12:18-20.
    [35]李成贵.表面结构的MOTIF参数表征[J].宇航计测技术,2001,21(4):16-21.
    [36]李见,王伟,刘小君等.缸套表面2D-motif参数对其摩擦学特性的影响[J].合肥工业大学学报(自然科学版),2011,34(12):1777-1781.
    [37] H. Zahouani. Spectral and3D Motifs Identification of AnisotropicTopographical Components: Analysis and Filtering of Anisotropic Patterns byMorphological Rose Approach [J]. Int. J. Mach. Tools Manufact,1998,38(5):615-623.
    [38] J. Kumar, M. S. Shunmugam. Three-dimensional Characterization ofEngineering Surfaces Using Triangular Motifs[J]. Proc. IMechE (Part C: J.Mechanical Engineering Science),2005,219:965-977.
    [39]万筱怡,刘小君,刘焜等.基于分水岭算法的3D-motif构造及其对表面形貌的表征[J].润滑与密封,2010,35(8):31-35.
    [40]杨松,张维强,徐秀英.基于领域分析的3D-motif表面评定算法研究[J].机械设计与研究,2008,24(4):84-86.
    [41]黄长辉,邹文栋,肖新元等.表面形貌的3D-Motif方法及其算法实现[J].机械设计与研究,2010,26(4):84-87.
    [42] C. R. Wolfe, J. K. Lawson. The Measurement and Analysis of WavefrontStructure from Large Aperture ICF Optics [J]. Proc SPIE,1995,2633:361-385.
    [43] D. Aikens. Derivation of Preliminary Specifications for Transmitted Wavefrontand Surface Roughness for Large Optics Used in Inertial Confinement Fusion[J]. Proc SPIE,1995,2633:350-360.
    [44]徐建程,许乔,柴立群.大口径光学元件功率谱密度的统计法测量[J].强激光与粒子束,2010,22(8):1905-1908.
    [45] D. M. Aikens, C. R. Wolfe, J. K. Lawson. The Use of Power Spectral Density(PSD) Functions in Specifying Optics for the National Ignition Facility. Proc.SPIE,1995,2576:281-292.
    [46] D. R. Toebben, P. M. Helmut. Use of Power Spectral Density (PSD) to SpecifyOptical Surfaces[J]. Proceedings of SPIE-The International Society for OpticalEngineering,1996,2775:240-250.
    [47] C. F. Cheung, W. B. Lee. Characterisation of Nanosurface Generation inSingle-point Diamond Turning [J]. International Journal of Machine Tools&Manufacture,2001,41:851-875.
    [48] C. John, T. Stover. Roughness Surface Characterization and Comparison ofScatter Measurements and Models[J]. Proc. SPIE,2005,58780U.
    [49]徐芳,魏全忠,伍凡.用功率谱密度函数评价光学面形中频误差特性[J].光电工程,1999,26:139-143.
    [50]许乔顾元元,柴林等.大口径光学元件波前功率谱密度检测[J].光学学报,2001,21(3):344-347.
    [51]李成贵.三维表面微观形貌的二维功率谱表征[J].计量学报,2004,5(1):11-15.
    [52]周丽丹,粟敬钦,李平等.高功率固体激光装置光学元件“缺陷”分布的功率谱密度方法及等效求法[J].物理学报,2009,58(9):6279-6284.
    [53]于光,李鹏,赵清亮等.超精密加工表面特性的功率谱密度表征与分析[J].哈尔滨工业大学学报,2010,42(1):29-32.
    [54]陈伟.光学元件表面频谱分布影响因素的分析方法[J].应用光学,2011,32(5):967-970.
    [55] D. J. Whitehouse. Improved Type of Wavefilter for Use in Surface FinishMeasurement[C]. Proceeding of the Institution of Mechanical Engineers,Conference Proceedings,1967,182:306-318.
    [56] S. Brinkmann, H. Bodschwinna, H. W. Lemke. Accessing roughness inthree-dimention using Gaussian regression filtering[J], International Journal ofMachine Tools and Manufacture,2001,41(13):2153-2161.
    [57] Daubechies. The Wavelet Transform Time Frequency Localization and SignalAnalysis[J]. IEEE Transactions on Information Theory,1988,36(5):961-1005.
    [58] X. Q. Jiang, L. Blunt, K. J. Stout. Three-dimensional Surface Characterizationfor Orthopaedic Joint Prostheses [J]. Proceedings of the Institution ofMechanical Engineers, Part H: Journal of Engineering in Medicine,1999,213:49-68.
    [59] X. Q. Jiang, L. Blunt, K. J. Stout. Wavelet Framework Representation forSurface Analysis. Proceedings of The Fourth International Symposium ofMeasurement Technology and Intelligent Instruments2-4th Sept.,1998:165-172.
    [60] X. Chen, J. Raja, S. Simanapali. Multi-scale Analysis of EngineeringSurface[J], Int. J. Mach. Tools Manufact.,1995,35(2):231-238.
    [61] S. H. Lee, H. Z. Houani, R. Caterini, et al. Morphological Characterisation ofEngineered Surfaces by Wavelet Transform[J]. Int. J. Mach. Tools Manufact,1998,38(5-6):581-589.
    [62] F. B. Shengyu. M. J. Raja. Engineering Surface Analysis with DifferentWavelet Bases [J]. Journal of Manufacturing Science and Engineering,2003,125:844-852.
    [63]周宇峰,程景全.小波变换及其应用[J].物理,2008,37(1):23-32.
    [64]史军,张乃通,刘晓萍.一种新型分数阶小波变换及其应用[J].中国科学:信息科学,2012,42(2):125-135.
    [65] H. Zahouani, S. Mezghani, R. Vargiolu, et al. Identification of ManufacturingSignature by2-D Wavelet Decomposition[J]. Wear,2008,264:480-485.
    [66]王安良.评价机械加工表面形貌的小波变换方法[J].机械工程学报,2001,37(8):65-74.
    [67]曾文涵.双树复小波表面分析模型及加工过程形貌辨识方法研究[D].武汉:华中科技大学,2005:47-80.
    [68]李海燕,刘国栋,刘炳国.双密度小波中线的表面粗糙度分离技术[J].哈尔滨工程大学学报,2009,30(4):401-405.
    [69]杨红平,傅卫平,王雯等.小波系数表征机械加工表面分形特征的计算方法[J].仪器仪表学报,2010,31(7):1454-1459.
    [70] B. B. Mandelbrot. The Fractal Geometry of Nature[M]. American: SanFransisco Press,1982.
    [71] R. S. Sayles, T. R. Thomas. Surface Topography as a Nonstationary RandomProcess[J]. Nature,1978,271(2):431-434.
    [72] A. Majumdar, C. L. Tien. Fractal Characterization and Simulation of RoughSurface[J]. Wear,1990,136:313-327.
    [73] A. Majumdar, B. Bhushan. Role of Fractal Geometry in RoughnessCharacterization and Contact Mechanics of Surface[J]. Journal of Tribology,1990,112:205-216.
    [74] F. F. Ling. Fractals, Engineering Surfaces and Tribology[J]. Wear,1990,136:41-156.
    [75] R. C. James. Statistical Selt-affinity, Fractal Dimension, and GeologicInterpretation[J]. Engineering Geology,1997,48:269-282.
    [76] A. Provata, P. Falaras, A. Xagas. Fractal Features of Titanium OxideSurfaces[J]. Chemical Physics Letters,1998,297:484-490.
    [77] J. J. Wu. Analyses and Simulation of Anisotropic Fractal Surfaces[J]. Chaos,Solitons and Fractals,2002,13:1791-1806.
    [78] J. Martan, G. Przybylski, R. Tabaka, et al. Fractal Analysis of RoughnessProfile Inducd by Ionbombardment of Metal Surface[J]. Vacuum,2005,78:217-221.
    [79]孙秦.微裂纹扩展中的分形现象及其计算机仿真[J].应用力学学报,1994,11(4):39-42.
    [80]甘春泉.基于三维重建的金属断口图像分形算法研究[D].成都:电子科技大学,2005.
    [81]冯丽,谢沛霖.基于分形几何的表面微观形貌模拟及粘着弹性接触计算研究[J].润滑与密封,2007,32(6):74-77.
    [82]刘枫,巩亚东,单玉桥等.砂轮约束磨粒喷射加工表面的分形及摩擦特性研究[J].摩擦学学报,2009,29(4):379-384.
    [83]周鹏,赵福令,吕齐超等.基于多重分形谱的碳纤维复合材料表面评定发方法[J].大连理工大学学报,2011,51(4):535-539.
    [84]刘红.惯性约束核聚变[J].现代物理知识,2002,14(1):3-15.
    [85] B. Woods, M. Runkel, M. Yan, et al. Optical Scatter as a Diagnostic Tool forStudying Bulk Defects Which Cause Damage in Conventional and RapidGrowth KDP and DKDP[J]. SPIE,1995,2541:123-130.
    [86] K Fujioka, S. Matsuo, H. Fujita, et al. Optical Properties of Rapidly GrownKDP Crystal Improved by Thermal Conditioning [J]. Journal of CrystalGrowth,1997,181:265-271.
    [87] H. Yoshida, T. Jitsuno, H. Fujita, et al. Investigation of Bulk Laser Damage inKDP Crystal as a Function of Laser Irradiation Direction, Polarization, andWavelength[J]. Appl. Phys. B.,2000,70:195-201.
    [88] H. Shouji, M. Hideo, F. Keisuke, et al. Coloring and Habit Modification ofDyed KDP Crystals as Functions of Supersaturation and Dye Concentration[J].Journal of Crystal Growth,2001,235:541-546.
    [89] N. Tiffany, T. D.Thomas, A. L. Terry, et al. Molecular Properties of AdsorbatesThat Affect the Growth Kinetics of Archerite (KDP)[J]. Journal of Colloid andInterface Science,2004,280:18-26.
    [90] T. A. Ereminaa, V. A. Kuznetsova, N.N. Ereminb, et al. On the Mechanism ofImpurity Influence on Growth Kinetics and Surface Morphology of KDPCrystal-II Experimental Study of Influence of Bivalent and Trivalent ImpurityIons on Growth Kinetics and Surface Morphology of KDP Crystals [J]. Journalof Crystal Growth,2005,31(2):586-593.
    [91]张建芹,王圣来,房昌水等.阴离子参杂对KDP晶体光散射特性的影响[J].无机材料学报,2007,22(2):268-272.
    [92] I. Pritula, V. Gayvoronsky, Y. Gromov, et al. Linear and Nonlinear OpticalProperties of Dye-doped KDP Crystals: Effect of Thermal Threatment[J].Optical Communications,2009,282:1141-1147.
    [93]汪剑成,苏根博,郑国宗等.溶液连续过滤快速生长KDP晶体及其品质分析[J].人工晶体学报,2010,39(1):1-4.
    [94] L. Li, S. A. Collins, J, Allen, et al. Optical Effects of Surface Finish byUltraprecision Single Point Diamond Machining[J]. Journal of ManufacturingScience and Engineering,2010,132:021002.
    [95] M. J. Chen, M. Q. Li, W. Jiang, et al. Influence of Period and Amplitude ofMicro-waviness on KH2PO4Crystal’s Laser Damage Threshold[J], J. Appl.Phys.,2010,108:043109.
    [96] M. J. Chen, W. Jiang, M. Q. Li, et al. Study of The Near-field ModulationProperty of Micro-waviness on a KH(2)PO(4) Crystal Surface[J]. Chinesephysics B,2010,19(6):064203.
    [97]王碧玲,高航,腾晓辑等.抛光加工参数对KDP晶体材料去除和表面质量的影响[J].人工晶体学报,2010,39(1):29-33.
    [98] F. laeri, R.Jungen. Photorefraction in the Ultraviolet: Materials and Effects.Applied Physics B: Lasers and Optics,1995,61(4):351-360.
    [99] S. R. Arrasimith, I. A. Kozhinova, L. L. Gregg, et al. Details of the PolishingSpot in Magnetorheological (MRF) Proceedings[J]. SPIE-the InternationalSociety for Optical Engineering,2001,3782:92-100.
    [100] C. Juergens, R. H. Shepard, J. P. Schaefer, et al. Simulation of Single PointDiamond Turning Fabrication Process Errors[J]. Proc. of SPIE,2003,5174:93-104.
    [101] B. A. Fuchs, P. H. Paul H. Baker, et al. Fine Diamond Turning of KDPCrystals[J]. Applied Optics,1986,25(11):1733-1735.
    [102] N. Yoshiharu, K. Masanori, N. Masahiro. Single Point Diamond Turning ofKDP Inorganic Optical Crystals for Laser Fusion[J]. Journal of he JapanSociety Precision Engineering.1998,64(10):1487-1491.
    [103]陈明君,王立松,梁迎春等.脆性材料塑形域的超精密加工方法[J].航空精密制造技术,2001,37(2):10-12.
    [104]王景贺,陈明君,董申等. KDP晶体单点金刚石切削脆塑转变机理的研究[J].光电工程,2005,32(7):67-88.
    [105]庞启龙,陈明君,王景贺等. KDP晶体单点金刚石车削表面形貌分形分析[J].强激光与粒子束,2007,19(9):1487-1491.
    [106] C. F. Fahl. Motif combination-a new approach of surface profile analysis[J].Wear,1982,83:65-179.
    [107]李成贵.表面形貌的MOTIF参数计算[J].航空精密制造技术,2001,37(1):42-46.
    [108]杨练根,谢铁邦,蒋向前等.表面形貌的motif评定方法及其发展[J].中国机械工程,2002,13(21):1862-1864.
    [109] M. Dietzsch, T. Hartmann, K. Papenfu. First Trail of the Application of theMOTIF-method in the Nanotechnology[C]. Proceedings of the9thInternational Precision Engineering Seminar, Braunschweig, Germany,26-30May,1997.
    [110] J. M. Elson, J. M. Bennett. Calculation of the Power Spectral Density fromSurface Profile Data [J], Applied Optics,1995,34(1):201-208.
    [111] D. J. Janeczko. Power Spectrum Standard for Surface Roughness: Part I. SPIE,1989,1165:175-180.
    [112]孙大鹏.基于PSD方法的KDP晶体超光滑表面表征技术研究[D].哈尔滨:哈尔滨工业大学,2008:20-40.
    [113]张元晶,周明,王阳俊.高速铣削SiCp/Al复合材料表面形貌功率谱密度研究[J].工具技术,2010,44(9):17-20.
    [114] R. A. Jones. Computer Simulation of Smoothing during Computer-controlledOptical Polishing [J]. Appl Opt,1995,34:1162-1169.
    [115]柯宏发,杨俊,张耀辉等.用二维功率谱密度分析工程表面特征[J].工具技术,1997,31(8):38-41.
    [116] T. R. Thomas. Rough Surface [M]. New York: Longman Press,1982.
    [117]李成贵.三维表面微观形貌的二维功率谱表征[J].计量学报,2004,25(1):11-15.
    [118]王慧琴.小波分析及应用[M].北京:北京邮电大学出版社,2011:24-100.
    [119] X. Jiang, P. Scott, D. Whitehouse. Wavelets and Their Applications for SurfaceMetrology[J]. CIRP Annals–Manufacturing Technology,2008,57(1):555-558.
    [120] The YAW Toolbox Team. Yawtb-0.1.1[OL].2003,http://rhea.tele.ucl.ac.bc/yawtb/pmwiki.p-hp/main/YAWTb.
    [121] S. I. Anisimov, B. L. Kapeliovich, T. L. Perelman. Electron Emission fromMetal Surfaces Exposed10Ultra-short Laser Pulses [J]. Soviet PhysicsJournal of Experimental and Theoretical Physics Letters,1974,39(2):375-377.
    [122] R. S. Sayles, T. R. Thomas. Measurements of the Statistical Microgeometry ofEngineering Surfaces[J]. Journal of Lubrication Technology,1979,101:409-417.
    [123]肯尼斯法尔科内.分形几何-数学基础及其应用[M].曾文曲译.沈阳:东北大学出版社,1991:191-206.
    [124] T. Majumdar, B. Bhushan. Role of Fractal Geometry in RoughnessCharacterization and Contact Mechanics of Surface [J]. ASME Journal ofTribology,1990,172:205-216.
    [125] J. Chadwick. Calculation of the Fractal Dimension of Grain Boundaries inNanocrystalline [J]. Pd. J. Phys: Condens Matter,1999,11:129-133.
    [126] J. R. Carr. Statistical Self-affine, Fractal Dimension, and GeologicInterpretation [J]. Engineering Geology,1997,48:269-282.
    [127] L. Li. Multilayer Modal Method for Diffraction Gratings of Arbitrary Profile,Depth, and Permittivity[J]. J. Opt. Soc. Am. A.1993,10(12):2581-2591.
    [128]曹艳波,艾华.亚波长闪耀光栅矢量衍射效率计算[J].中国光学与应用光学,2010,3(6):679-683.
    [129] F. H. Gao, C. H. Wang, X. G. Tang, et al. Near Field Analysis for PeriodicDiffractive Gratings Using Fourier Modal Method[J]. MicroelectronicEngineering,2006,(83):1062-1066.
    [130]傅克祥,王植恒,张大跃等.大深度任意刨面形状光栅的模式理论和RTCM递推算法[J].中国科学(A辑),1999,29(4):356-365.
    [131]姚欣,高福华,李剑峰等.光束取样光栅强激光近场调制及诱导损伤研究[J].物理学报,2008,57(8):4891-4897.
    [132]李建龙,唐世红,朱世富等.各向异性介质浮雕光栅体内光波场的传输[J].物理学报,2010,59(8):5467-5473.
    [133] S. L. Chuang, J. A. Kong. Wave Scattering from a Period of Dielectric Surfacefor a General Angle of Incidence [J]. Radio Science,1982,17(3):545-557.
    [134] A. Wirgin. On Rayleigh Theory of Partially Reflecting Gratings[J]. OPTICAACTA,1981,28(10):1377-1404.
    [135] L. Li. Use of Fourier Series in the Analysis of Discontinuous PeriodicStructures [J]. J. Opt. Soc. Am. A.,1996,13(9):1870-1876.
    [136]石顺祥,陈国夫,赵卫等.非线性光学[M].西安:西安电子科技大学出版社,2005:139-161.
    [137] J. A. Giordmaine. Mixing of Light Beams in Crystals[J]. Phys. Rev. Lett.,1962,8:19-21.
    [138] R. W. Terhune, P. D. Marker, C. M. Savage, et al. Phys. Rev. Lett.,1962,8:404-406.
    [139] R. S. Craxton. High Efficiency Frequency Tripling Schemes for High-PowerNd: Glass Lasers[J]. IEEE Journal of Quantum Electronics,1981,17(9):1771-1782.
    [140]严祥安,尹宝银,宋建平等.频率转换效率的研究[J],西北大学学报(自然科学版),2007,37(5):734-738.
    [141]王芳,粟敬钦,李恪宇等. KDP晶体折射率不均匀性对三倍频转换效率的影响[J].强激光与粒子束,2007,19(5):746-749.
    [142]陈英.高功率钕玻璃激光系统的宽带三倍频技术方案研究[D].上海:复旦大学,2010:64-75.
    [143]张秋慧,冯国英,韩敬华等.以一定重复频率工作的KTP倍频效率的演化规律[J].物理学报,2010,59(8):5533-5540.
    [144]杨毅松.频率转换对高功率激光光束质量和聚焦特性的影响[D].四川:四川大学,2005:17-22.
    [145]韩耀峰.超短脉冲激光倍频技术研究[D].四川:四川大学,2006:13-19.
    [146] P. A. Govind.非线性光纤光学原理及应用[M].贾东方等译.北京:电子工业出版社,2010:34-36.
    [147]潘永强,施洋. TiO2薄膜表面粗糙度对光学特性的影响[J].西安工业大学学报,2010,30(1):1-4.
    [148]陈颖,王志良, H. Ogura.一维小粗糙度表面上方物体的波散射[J].微波学报,2008,24:53-59.
    [149] M. D. Feit. A. M. Rubenchik. Laser Intensity Modulation Non-linearAbsorbing Defects[J]. Proc. SPIE3047, Solid State Lasers for Application toInertial Confinement Fusion: Second Annual International Conference,1997,971-977.
    [150] A. K. Burnham, L. Hackel, P. Wegner. Improving351-nm DamagePerformance of Large-aperture Fused Silica and DKDP Optics [J]. Proc ofSPIE,2002,4679:173-185.
    [151] D. W. Camp, M. R. Kozlowski, I. M. Sheehan, et al. Subsurface Damage andPolishing Compound Affect the355-nm Laser Damage Threshold of FusedSilica Surface[J]. Proc of SPIE,1998,3244:356-364.
    [152]章春来,王治国,向霞等.熔石英后表面坑点型划痕对光场调制的近场模拟[J].物理学报,2012,61(11):114210.
    [153]李莉,雷雨,肖邵球等.光学材料亚表面缺陷处强激光电磁场分布的3维模拟[J].强激光与粒子束,2009,21(6):936-938.
    [154] P. E. Miller, T. L. Suratwala, J. D. Bude, et al. Laser Damage Precursors inFused Silica [J]. Proc. of SPIE,2009,7504:75040X.
    [155] W. B. Lee, B. F. Cheung. A Dynamic Surface Topography Model for thePrecision Nano-surface Generation in Ultra-precision Machining[J].International Journal of Mechanical Sciences,2001,43:961-991.
    [156] F. Y. Ge'nin, A. Salleo, T. V. Pistor, et al. Role of Light Intensification byCracks in Optical Breakdown on Durfaces [J]. Opt. Soc. Am. A.,2001,18(10):2607-2616.
    [157] C. W. Carr, M. D. Feit, A. M. Rubenchik, et al. A Summary of RecentDamage-Initiation Experiments on KDP Crystals[J]. Proc. of SPIE,2005,5991:59911Q.
    [158] P. DeMange, R. A. Negres, A. M. Rubenchik, et al. Understanding andPredicting the Damage Performance of KDXH2-XPO4Crystals underSimultaneous Exposure to532and355-nm Pulses[J]. Applied Physics Letters,2006,89:181922.
    [159] J. J. Adams, J. A. Jarboe, C. W. Carr, et al. Results of Sub-nanosecondLaser-conditioning of KD2PO4Crystals[J]. Proc. of SPIE,2007,6403:64031M.
    [160] A. Salleo, F. Y. Genin, M. D. Feit, et al. Energy Deposition at Front and RearSurfaces during Picosecond Laser Interaction with Fused Silica[J]. AppliedPhysics Letters,2001,78(19):2840-2842.
    [161] W. Zhang, J. Q. Zhu. Subsurface Damage of Nd-doped Phosphate Glasses inOptical Fabrication[J]. Optik,2008,119:738-741.
    [162] J. Shen, S. H. Liu, K. Yi, et al. Subsurface Damage in Optical Substrates [J].Optic,2005,116:288-294.
    [163] C. F. Kranenberg, K. C. Jungling. Subsurface Damage Identification inOptically Transparent Materials Using a Nondestructive Method [J]. AppliedOptics,1994,33(19):4213-4248.
    [164] K. R. Fine, R. Garbe, T. Gip, et al. Non-destructive, Real Time DirectMeasurements of Subsurface Damage[J]. Proc. of SPIE,2005,5799:105-110.
    [165] C. F. Cheung, W. B. Lee. Characterization of Nanosurface Generation inSingle Point Diamond Turning[J]. International Journal of Machine Tools&Manufacture,2001,41:851-875.
    [166] W. B. Lee, C. F. Cheung. A Dynamic Surface Topography Model for thePrediction of Nanosurface Generation in Ultra-precision Machining[J].International Journal of Machine Tools&Manufacture,2001,43:961-991.
    [167] W. B. Lee, C. F. Cheung, Materials Induced Vibration in Ultra-precisionMachining [J]. Journal of Materials Processing Technology,1999,89:318-325.
    [168]倪浆铭.磁盘综合测试仪中空气静压主轴的动态稳定性[J].华中科技大学学报,1985,13(3):69-74.
    [169]安晨辉,王键,张飞虎等.超精密飞刀切削加工表面中频微波纹产生机理[J].纳米技术与精密工程,2010,8(5):440-446.
    [170]刘延柱.陀螺力学[M].北京:科学出版社,2009:35-36.
    [171]许江宁,卞鸿巍,刘强等.陀螺原理及应用[M].北京:国防工业出版社,2009:37-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700