用户名: 密码: 验证码:
空间齿轮传动系统接触动力学及相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间技术的发展,空间飞行器必须具有更长的使用寿命和更高的可靠性。空间机构作为飞行器中必不可少的重要组成部分,研究其接触失效的主要影响因素与抑制措施,对于提高空间飞行器的可靠性与寿命具有重要意义。由于齿轮传动系统的接触分析具有典型的代表性,本文将以其作为研究对象。在空间高真空环境下,金属接触时的粘附力及表面形貌对齿轮接触失效产生重要影响,其接触变形的过程非常复杂,涉及弹性、弹塑性及全塑性不同阶段。空间飞行器齿轮传动系统在真空环境下失效与在地面环境下失效明显不同,其热力学、接触力学及摩擦学行为具有明显的特殊性,有必要对其进行深入的研究。本文以空间某飞行器上工作的齿轮传动系统为研究对象,深入研究系统主要参数、接触表面属性和温场分布对系统接触动力学特性的影响。
     首先,基于Hertz接触理论建立了空间齿轮接触应力沿啮合线变化的数学模型。分析齿轮模数及齿数比对啮合接触应力的影响,得出空间齿轮接触应力分布规律。确定了影响齿轮啮合接触应力分布的主要因素,为齿轮的优化设计提供理论依据。分析了摩擦系数对空间齿轮接触应力分布的影响,得出法向力与切向力的共同作用下主剪应力的变化规律,在一定切向力作用下,应力变化幅度约为100%。采用理论分析与有限元相结合的方法,建立空间齿轮有限元接触分析模型,为热力耦合分析奠定基础。
     其次,基于单一粗糙峰与刚性平面接触理论,考虑真空环境中金属表面粘附力的影响,建立了粗糙表面形貌接触分析简化模型,模型有效区分了粗糙峰的弹性、弹塑性及全塑性变形。将本文的弹塑性模型与Lo等人提出的全弹性模型对比,结果表明:在较小的塑性指数时两者基本一致,随着塑性指数变大,Lo等人的全弹性模型的计算误差增大,当塑性指数超过1时,本文模型计算结果更加准确。基于本文的模型,分析了实际接触面积与名义接触面积比、切向承载能力随接触正载荷的变化关系,分析了表面硬度、表面粗糙度及无量纲塑性指数对其接触特性的影响。针对空间高真空的特点,分析了表面能对接触失效的影响,为研究空间齿轮接触失效机理奠定了基础。
     再次,建立了空间齿轮传动系统热网络模型。进行了真空环境下与地面大气环境下的齿轮系统温升对比实验,确定了热网络模型的边界条件。在此基础上,分析了真空环境下系统载荷、转速等运行参数对系统关键节点温度的影响,得出真空无对流散热时齿轮系统的温场分布规律。分析了齿轮转速、齿面滑动摩擦系数等参数对接触区瞬时温升的影响,得出以上参数与接触区瞬时温升变化规律。采用有限元法完成齿轮接触热力耦合分析,得出齿面瞬时温升与接触应力的变化关系。
     然后,针对空间齿轮寿命实验中振动测点定位困难的问题,提出了一种确定振动测点最佳位置的方法,并采用峭度指标法对理论分析得到的最佳测点进行了实验验证。研究了单一时域分析和频域分析在空间齿轮传动系统健康诊断中的局限性,指出只有在小波理论分析齿轮传动系统振动信号的基础上结合时频分析才能更准确得到空间齿轮传动系统健康状态的诊断结果。建立了空间齿轮系统健康诊断实验平台,综合运用小波变换与解调分析方法对空间齿轮传动系统运行不同阶段的振动信号进行分析,表明小波分析与解调分析相结合的方法能够有效诊断空间齿轮传动系统的健康状态,验证了该方法的有效性。
     最后,基于相电流细分技术,研制了适用于真空环境中工作的恒定制动转矩负载制动器。搭建了空间齿轮系统实验平台,进行了常压环境和真空环境的对比实验研究。采用扫描电镜(SEM)及原子力显微镜(AFM)观测了齿轮在真空环境下运行后啮合表面微观形貌,分析了空间齿轮齿面不同点的失效情况,分析了接触失效与应力的相互关系。进行了真空条件下和空气中常压条件下齿轮对比实验研究,分析了不同环境下齿轮主要失效形式。结果表明:真空条件下齿轮副比空气中常压条件下更易发生粘着磨损,空气中常压条件下磨损形式主要表现为疲劳磨损和磨粒磨损。研究了空间齿轮齿形及离子渗氮层厚度对齿顶失效的影响,为齿轮优化设计提供了理论依据。
With the development of space technology, the spacecraft requires longer servicelife and higher reliability. The space mechanism is an essential and major component ofspace vehicle. It is significant to study the key factors and suppression measures ofcontact failure for improving the reliability and service life of spacecrafts. Consideringthe contact analysis of gear transmission system being a typical representative, the gearswere treated as the research object in this paper. In the space high vacuum environment,adhesion and surface morphology of metal contact will bring important impact on thegears contact failure. The contact deformation is very complex and involves elastic,elasto-plastic and plastic deformation. Failure of the space vehicle gear in the vacuumenvironment is obviously different with that in a terrestrial environment. Thethermodynamics, contact mechanics and tribology behavior has a distinct specificity.Therefore, it is necessary to conduct further research. In this paper, as an example, thegear parameters, the surface properties, the temperature distribution and contactcharacteristics of a gear transmission system in spacecraft were explored.
     Firstly, a mathematical model of contact stress variation of gear along meshing linewas built, based on the Hertz contact theory. By analyzing the impacts of gear moduleand gear ratio to meshing contact stress; distribution regularities of space gear contactstress were obtained. The influence of frictional coefficient on contact stress of gearmeshing was analyzed. The main shear variation under the common function of normalforce and tangential force was obtained. The results showed that the stress changed byabout100%when the tangential force increased to a certain value. By the means of thetheoretical analysis and finite element method, the model of space gear meshing finiteelement was built, and lay the foundation for thermo-mechanical coupled analysis
     Secondly, based on the single rough peak and rigid plane contact theory, acylindrical rough surface contact model was established by considering the metalsurface adhesion in the vacuum environment. This model can effectively distinguish theelastic, elasto-plastic and full plastic deformation. By comparing the elasto-plasticitymodel with Lo’s full plastic model, the results showed that the difference is very smallat a small plastic index. With the increasing of plasticity index, Lo’s full plastic modelcalculation error increase, and the calculation results of the present model is moreaccurate when the plasticity index is larger than1. Based on this elasto-plasticity model, the ratio between the actual contact area and the nominal contact area and the tangentialcarrying capacity changes with the contact positive load were analyzed. The cylindricalsurface hardness, surface roughness and the impacts of dimensionless plastic index onits contact character also were studied. Aiming at the characteristics of space highvacuum, the influence of surface energy on the contact failure of gear meshing wasanalyzed. The above studies provide a foundation for the further research on the spacesmall gear contact failure mechanism.
     Thirdly, a thermal network of space gear driven system model was set up.Experiments of the ordinary pressure and the vacuum environment were performed, theboundary condition of the thermal network model was determined. The impacts ofoperating parameters such as the load and the rotate speed on temperatures of key nodesin the vacuum environment were analyzed. The temperature distribution regulars ofthe gear system when vacuum no convection heat dissipation were obtained. Theimpacts of load torque, rotate speed and sliding friction index on the transienttemperature rise in the gear mesh contact area were analyzed. The flash temperaturedistribution laws of the gear system were obtained. Using a built finite element contactanalysis model, thermo-mechanical coupled analysis was carried out. The relationshipbetween the instantaneous temperature and the contact stress on the tooth meshing wasobtained.
     Then, aiming at the difficulties of vibration spot locating in the space gear servicelife experiment, a method of locating optimize vibration spot was set up and theoptimized vibration spot obtained by this method was verified by the kurtosis indexmethod. The limitation of single time domain analysis and frequency domain analysiswere carried out in the space gear driven system fault diagnosis. The results show thatthe frequency analysis can obtain more precise diagnosis results of the health statuswhen the single time domain analysis combined with the frequency domain analysis andthe wavelet theory analyze the gear driven system vibration signal. The health diagnosisexperiment platform of the space gear system was built. In this system, the vibrationsignal in various phases of the space gear driven system was analyzed, using acombination of wavelet transform and demodulation analysis method. The result showsthat the combination of wavelet analysis and demodulation analysis can effectivelydiagnose the health status of space active components.
     Finally, based on the current subdivision technology and using magnetic resistancetype stepping motor, a constant braking torque load brake used in the vacuum environment was developed. An experimental platform for the space gear system wasbuilt. The experiment comparing the ordinary pressure with the vacuum environmentwas performed. Using SEM and AFM, microstructure figures of gear meshing surfaceunder the vacuum environment were observed. The contact failure of different locationin the gear tooth surface and the mutual relations of contact failure and stress wereanalyzed. In order to study the friction wear mechanism of the gear in a space craft,comparing experiments of gear in the vacuum and the ordinary pressure environmentwere carried out. The main failure mode in different environments was also studied. Theresults show that the attached wear is more likely to occur under the vacuum conditionthan under the ordinary pressure condition, and the main wear under the ordinarycondition are the fatigue wear and the abrasive wear. In order to analyze the addendumfailure of the space gear, the ion nitriding layer thickness was studied. It provides atheoretical basis for the gear optimize design.
引文
[1]杨保华.中国空间技术成就与展望[J].航天器工程,2008,(02):1-5.
    [2]袁杰.空间有效载荷用长寿命中高速滚动轴承的润滑[J].润滑与密封,2006,(3):5.
    [3]马兴瑞,于登云,孙京,等.空间飞行器展开与驱动机构研究进展[J].宇航学报,2006,27(6):1123-1131.
    [4]梁斌,徐文福,李成等.地球静止轨道在轨服务技术研究现状与发展趋势[J].宇航学报,2010,(01):1-13.
    [5]于德洋,薛群基.空间摩擦学研究的前沿领域[J].摩擦学学报,1997,17(4):5.
    [6]何世禹.航天器在轨寿命预测与可靠性评价[J].航天器环境工程,2008,25(3):4.
    [7] Tafazoli M. A Study of On-Orbit Spacecraft Failures[J]. Acta Astronautica,2008,64(2-3):195-205.
    [8] Jones W R, Jr., Jansen M J. Lubrication for Space Applications[R].2005.
    [9] Wyn-Roberts D. New frontiers for space tribology[J]. Tribology International,1990,23(2):149-155.
    [10] Aslantas K, Tasgetiren S. A Study of Spur Gear Pitting Formation and LifePrediction[J]. WEAR,2004,257(11):1167-1175.
    [11] Johnson K L. Contact Mechanics[M]. Cambridge: Cambridge University Press,1985.
    [12] Johnson K L.(徐秉业译).接触力学[M].北京:高等教育出版社,1992.
    [13] Kalker J. Three-Dimensional Elastic Bodies in Rolling Contact[M]. Kluwer:Dordrecht,1990.
    [14] Goryacheva I G. Contact Mechanics in Tribology[M].1998.
    [15] Greenwood J A, Williamson J B P. Contact of Nominally Flat Surface[J]. ProcRoy Soc Lond A,1966,(295):300-319.
    [16] Chang W R, Etsion I, Bogy D B. Static Friction Coefficient Model for MetallicRough Surfaces[J]. Journal of Tribology,1988,110(1):57-63.
    [17] Kogut L, Etsion I. A Static Friction Model for Elastic-Plastic Contacting RoughSurfaces[J]. Journal of Tribology2004,126(4):7.
    [18] Cohen D, Kligerman Y, Etsion I. A Model for Contact and Static Friction ofNominally Flat Rough Surfaces Under Full Stick Contact Condition[J]. Journalof Tribology,2008,130(7):9.
    [19] Jeng Y-R, Peng S-R. Static Friction Model of Elastic-Plastic Contact Behavior ofSurface with Elliptical Asperities[J]. Journal of Tribology,2009,131(2):021403(021401-021410).
    [20] Wang F S, Block J M, Chen W W,et al. A Multilevel Model for Elastic-PlasticContact between a Sphere and a Flat Rough Surface[J]. Journal of Tribology,2009,131(2):021409(021401-021406).
    [21]孟凡明,胡元中,王惠.滤波截止频率对粗糙表面接触机理的影响[J].机械工程学报,2008,44(10):4.
    [22] Lo C C. Elastic Contact of Rough Cylinders[J]. Int J mech Sci,1969,11:11.
    [23] Yip F C, Venart J E S. An Elastic Analysis of the Deformation of Rough Spheres,Rough Cylinders and Rough Annuli in Contact[J]. J Phys D: Appl Phys,1971,4:17.
    [24] Kagami J, Yamada K, Hatazawa T. Contact Width and Compliance betweenCylinders and Rough Plates[J]. WEAR,1986,113:18.
    [25] Tsay C B. Tooth Contact Analysis for Helical Gears with Pinion Circular ArcTeeth and Gear Involute Shaped Teeth[J]. Transactions of the ASME,1989,111:278~283.
    [26]刘更,纪名刚.斜齿圆柱齿轮的三维接触应力分析[J].齿轮,1987,(04):8-13.
    [27]曹元彪.直齿与斜齿圆柱齿轮的载荷分配和应力分布[J].齿轮,1989,(03):12-18.
    [28]杨生华.有限元法在计算根应力和轮齿变形中的应用[J].煤矿机电,1998,13(6):8-10.
    [29]谢最伟,吴新跃,陈艳锋.人字齿轮齿面应力的接触元分析[J].机械设计,2007,24(10):25-27.
    [30]李敬财,王太勇,何改云.齿面接触分析初始值自动求解算法实现[J].天津大学学报,2008,41(12):1401-1404.
    [31]魏延刚,管荣嵘.渐开线直齿圆柱齿轮啮合过程接触应力有限元分析[J].大连交通大学学报,2009,30(2):22-25.
    [32]吴承伟.粗糙表面接触研究进展[J].力学进展,1991,21(1):13.
    [33] Kalker J J,(李自力译).三维弹性体的滚动接触[M].西安:西南交通大学出版社,1993.
    [34]赵华,孔祥安,孙训方.滚动接触问题的一种数值算法[J].铁道学报,1995,(01):29-33.
    [35] Guyot N, Kosior F, Maurice G. Coupling of Finite Elements and BoundaryElements Methods for Study of the Frictional Contact Problem[J]. ComputerMethods in Applied Mechanics and Engineering,2000,181(1-3):147-159.
    [36] Méchain-renaud, Cimetière A. Influence of a Curvature Discontinuity on thePressure Distribution in Two-Dimensional Frictionless Contact Problems[J].International Journal of Engineering Science,2000,38:197-205.
    [37] Phan V, Napier J A L, Gray L J, et al. Stress Intensity Factor Analysis of FrictionSliding at Discontinuity Interfaces and Junctions[J]. Compputational Mechanics,2003,32:392-400.
    [38] Li J, Berger E J. A Semi-Analytical Approach to Three-Dimensional NormalContact Problems with Friction[J]. Computational mechanics,2003,30(4):310-322.
    [39]王长武,顾吉丰,陈焕滨.大型四点接触球轴承的有限元模型研究[J].现代雷达,2004,(02):68-70.
    [40] Liu S, Wang Q. Elastic Fields due to Eigenstrains in a Half-Space[J]. Journal ofApplied Mechanics,2005,72(6):871-878.
    [41] Wang J, Kaneta M, Yang P. Numerical Analysis of TEHL Line Contact Problemunder Reciprocating Motion[J]. Tribology International,2005,38:165-178.
    [42] Bowden F P, Tabor D. The Area of Contact between Stationary and betweenMoving Surfaces[J]. Proceedings of the Royal Society of London Series AMathematical and Physical Sciences,1939,169(938):391-413.
    [43] Greenwood J A, J. H T. The Contact of Two Nominally Flat Rough Surfaces[J].lnstn Mech Engrs,1970,185:16.
    [44] Mandelbrot B B. Intermittent Turbulence in Self-Similar Cascades: Divergenceof High Moments and Dimension of the Carrier[J]. Journal of Fluid Mechanics,1974,62(02):331-358.
    [45] Sayles R S, Thomas T R. Surface Topography as a Nonstationary RandomProcess[J]. Nature,1978,271(5644):431-434.
    [46] Majumdar A, Bhushan B. Role of Fractal Geometry in RoughnessCharacterization and Contact Mechanics of Surfaces[J]. Journal of Tribology,1990,112(2):205-216.
    [47] Majumdar A, Bhushan B. Fractal Model of Elastic-Plastic Contact BetweenRough Surfaces[J]. J Tribol1991,113(1):1-11.
    [48] Wang S, Komvopoulos K. A Fractal Theory of the Interfacial TemperatureDistribution in the Slow Sliding Regime: Part I---Elastic Contact and HeatTransfer Analysis[J]. Journal of Tribology,1994,116(4):812-822.
    [49] Wang S, Komvopoulos K. A Fractal Theory of the Interfacial TemperatureDistribution in the Slow Sliding Regime: Part II---Multiple Domains,Elastoplastic Contacts and Applications[J]. Journal of Tribology,1994,116(4):824-832.
    [50]费斌,蒋庄德.工程粗糙表面粘着磨损的分形学研究[J].摩擦学学报,1999,(01).
    [51]陈辉,胡元中,王慧,等.粗糙表面分形特征的模拟及其表征[J].机械工程学报,2006,(09):219-223.
    [52]冼亮,郑林庆.真实粗糙圆柱弹性接触的数值解[C].第五届全国摩擦学学术会议武汉,1992, p.5.
    [53] Sabelkin V, Mall S. Elastic–Plastic Multi-Asperity Contact Analysis ofCylinder-On-Flat Configuration[J]. Journal of Tribology,2007,129(2):13.
    [54] Mao K. A New Approach for Polymer Composite Gear Design[J]. WEAR,2007,262:10.
    [55] Mao K. The Performance of Dry Running Non-metallic Gears[D]. TheUniversity of Birmingham,1993.
    [56] Blok H. Theoretical Study of Temperature Rise at Surfaces of Actual Contactunder Oiliness Lubricating Conditions[C]. General Discussion Lubrication andLubricants, Vol.2London: Inst. Mech. Engrs.,1937, p.222.
    [57] Blok H. The Flash Temperature Concept[J]. WEAR,1963,6(6):483-494.
    [58] Archard J F. The Temperature of Rubbing Surfaces[J]. WEAR,1959,2(6):438-455.
    [59] Taylor T C, Seireg A. An Optimum Design Algorithm for Gear SystemsIncorporating Surface Temperature[J]. Transactions of the ASME, J Mech,Transm Autom In Design,1985,107:549-555.
    [60] Deng G, Kato M, Mamyama N. Initial Temperature Evaluation for FlashTemperature Index of Gear Tooth[J]. Transactions of the ASME.Journal ofTribology,1995,117(3):476-482.
    [61] Changenet C, Oviedo-Marlot X, Velex P. Power Loss Predictions in GearedTransmissions Using Thermal Networks-Applications to a Six-Speed ManualGearbox[J]. Journal of Mechanical Design,2006,128(3):618-625.
    [62] Taburdagitan M, Akkok M. Determination of Surface Temperature Rise withThermo-Elastic Analysis of Spur Gears[J]. WEAR,2006,261(5-6):656-665.
    [63]邱良恒,辛一行,王统,等.齿轮本体温度场和热变形修形计算[J].上海交通大学学报,1995,29(2):79-86.
    [64]吴昌林,余联庆,方晓初.基于热网络的汽车变速箱热分布的有限元分析[J].华中理工大学学报,1998,26(6):84-86.
    [65]张永红,苏华,刘志全,等.行星齿轮传动系统的稳态热分析[J].航空学报,2000,21(5):431-433.
    [66]李桂华,费业泰.温度变化对圆柱齿轮齿形的影响[J].合肥工业大学学报,2004,7(10):22-23.
    [67]肖望强,李威,韩建友.非对称齿廓渐开线齿轮传动的热分析[J].农业机械学报,2006,37(12):164-167.
    [68]赵琴,崔新维.基于齿面闪温最低的行星斜齿轮优化设计[J].新疆农业大学学报,2009,32(3):75-77.
    [69]康芹,李世武,郭建利.热网络法概论[J].工业加热,2006,(05):15-18.
    [70] Townsend D P, Akin L S. Analytical and Experimental Spur Gear ToothTemperature as Affected by Operating Variables [J]. Transactions of the ASME,Journal of Mechanical Design,1981,103(1):25-30.
    [71] Handschuh R F, Kicher T P. A Method for Thermal Analysis of Spiral BevelGears[J]. Transactions of the ASME,1996,10(118):580-585.
    [72] Taburdagitan M, Akkok M. Determination of Surface Temperature Rise withThermo-elastic Analysis of Spur Gears[J]. Wear,2006,261:656-665.
    [73]李润方,汤庆平.运转过程中轮齿耦合热弹性接触有限元分析[J].齿轮,1989,(01):23-28+57.
    [74]黄华梁,李柯.渐开线圆柱直齿轮本体温度的边界元法分析[J].机械设计,1993,(01):5-8+60-61.
    [75]龙慧.高速齿轮传动轮齿的温度模拟及过程参数的敏感性分析[D].重庆大学,2001.
    [76]龙慧,张光辉,罗文军.旋转齿轮瞬时接触应力和温度的分析模拟[J].机械工程学报,2004,(08):24-29.
    [77] Blok H. Thermo-Tribology-Fifty Years on[C]. Proc Tribology-FrictionLubrication and Wear Fifty Years on I Mesh E London,1987, pp.1-8.
    [78] Harris T A. Rolling Bearing Analysis[M]. Inc.(United States), John Wiley andSons,1991.
    [79]张征,吴昌林,熊蔡华,等.多级齿轮装置热网络模型的拓扑建立[J].华中科技大学学报,1997,(07):59-62.
    [80]吴昌林,余联庆,方晓初.汽车变速箱的热网络分析[J].华中理工大学学报,1998,(04):64-67.
    [81]何晓亮,熊万里,黄红武.高速精密主轴轴承热特性的计算及分析[J].机械,2003,(06):14-16.
    [82] Vagin N S, Deulin E A, Usov A B. Design Calculation of a Hermetically SealedHarmonic Gear Transmission and Prediction of its Reliability when Working inVacuum[J]. Soviet engineering research,1989,9(11):7-9.
    [83] Tsukamoto, Naohisa, Maruyama, et al. Study on Plastic Gears in a Vacuum[J].Transactions of the Japan Society of Mechanical Engineers,1991,57(543):3618-3625.
    [84] Endo T, Iijima T, Kaneko Y, et al. Tribological Characteristics of Bonded MO&Films Evaluated in Rolling-Sliding Contact in a Vacuum[J]. WEAR,1995,190(2):219-225.
    [85] Nishimura M, Sasaki A, Kawashima N. Tribological Characteristics of SpurGears Operated in a Vacuum and Nitrogen Lubricated with Bonded Films[J].Journal of Japanese Society of Tribologists,2000,45(7):544-553.
    [86] Fujii M, Yoshida A. Friction and Wear of Electroless Ni Alloy Plated Gear underNon-Lubrication Condition in High Vacuum[J]. Transactions of the JapanSociety of Mechanical Engineers,2003,69(681):1417-1424.
    [87Fujii M, Yoshida A. Friction and Wear of Plasma CVD Diamond-Like CarbonCoating Deposited on Gear and Roller[J]. Nihon Kikai Gakkai Nenji TaikaiKoen Ronbunshu,2006,(4):189~190.
    [88] Ueura K, Kiyosawaa Y, Kurogi J, et al. Tribological Aspects of a Strain WaveGearing System with Specific Reference to its Space Application[J].Proceedings of the Institution of Mechanical Engineers, Part J: Journal ofEngineering Tribology,2008,222(8):1051-1061.
    [89]薛华.真空条件下可凝挥发物蒸发和凝结速率的分析[J].真空科学与技术学报,2009,29(增刊):5.
    [90]刘命辉,王玲,于铭飞,等.气象卫星天线消旋系统的热真空试验[J].真空与低温,1992,11(2):4.
    [91]李丹明,王鹢,全小平.一种低饱和蒸气压润滑脂的真空蒸发特性测试[J].真空与低温,2006,12(2):4.
    [92]高原,邢安,殷军港,等.高分子基材料表面改性研究进展[J].高分子材料科学与工程,2012,(06):172-175.
    [93]赵栋才,任妮,马占吉,等.掺硅类金刚石膜的制备与力学性能研究[J].物理学报,2008,(03):1935-1940.
    [94]霍丽霞,周晖,桑瑞鹏.全氟聚醚润滑脂挥发及摩擦学性能研究[J].润滑与密封,2010,(10):90-92.
    [95] Yang J, Liu Y, Ye Z, et al. Microstructure and Tribological Characteristics ofNitrided Layer on2Cr13Steel In Air And Vacuum[J]. Surface and CoatingsTechnology,2009,204(5):705-712.
    [96]董尚利,刘海,吕钢,等.光学器件的空间粉尘高速撞击效应研究[J].航天器环境工程,2011,(02):115-120.
    [97]刘超铭,李兴冀,耿洪滨,等. Effect of Bias Condition on Heavy Ion Radiationin Bipolar Junction Transistors[J]. Chinese Physics B,2012,(08):138-142.
    [98]杨剑群,刘勇,叶铸玉.2Cr13钢离子渗氮层在真空中脂润滑条件下摩擦学行为[C].2011中国材料研讨会中国北京,2011, pp.308-309.
    [99]刘勇,罗崇泰,叶铸玉,等. MoS_2/石墨溅射涂层在真空中不同载荷下的摩擦磨损行为研究[J].润滑与密封,2007,(11):131-132+169.
    [100]张勇,陈会平.空间机构摩擦副表面冷焊特性数值分析[J].华南理工大学学报(自然科学版),2007,(03):53-55+60.
    [101]周晖,孙京,温庆平,等.谐波减速器空间润滑及性能研究[J].宇航学报,2009,(01):378-381+394.
    [102]西村允.真空中滚动轴承的各种问题[J].真空,1986,(4):9.
    [103] M. Comparison of Three Teeth and Whole Body Models in Spur GearAnalysis[J]. Mechanism and Machine Theory,1999,34(8):1227-1235.
    [104]黄健萌,高诚辉,李友遐,等.工程粗糙表面接触摩擦热力学研究进展[J].中国工程机械学报,2007,(04):490-496.
    [105] O'Callaghan M, Cameron M A. Static Contact under Load between NominallyFlat Surfaces in which Deformation is Purely Elastic[J]. WEAR,1976,36(1):79-97.
    [106]黄传清,陈英杰.表面粗糙层对两圆柱体接触的影响[J].力学与实践,1997,19(4):3.
    [107] Kogut L, Etsion I. Adhesion in Elastic-Plastic Spherical Microcontact[J]. Journalof Colloid and Interface Science,2003,261(2):372-378.
    [108] Johnson K L, Kendall K, Roberts A D. Surface Energy and the Contact ofElastic Solids[J]. Proceedings of the Royal Society of London A Mathematicaland Physical Sciences,1971,324(1558):301-313.
    [109] Chowdhury S K R, Ghosh P. Adhesion and Adhesional Friction at the Contactbetween Solids[J]. WEAR,1994,174(1–2):9-19.
    [110] Brizmer V, Zait Y, Kligerman Y, et al. The Effect of Contact Conditions andMaterial Properties on Elastic-Plastic Spherical Contact[J]. J Mech Mater Struct,2006,1:16.
    [111] Brizmer V, Kligerman Y, Etsion I. The Effect of Contact Conditions andMaterial Properties on the Elasticity Terminus of a Spherical Contact[J].International Journal of Solids and Structures,2006,43(18-19):5736-5749.
    [112] Cohen D, Kligerman Y, Etsion I. The Effect of Surface Roughness on StaticFriction and Junction Growth of an Elastic-Plastic Spherical Contact[J].Transactions of the ASME,2009,131(2):10.
    [113] Roy Chowdhury S K, Pollock H M. Adhesion between Metal Surfaces: theEffect of Surface Roughness[J]. WEAR,1981,66(3):307-321.
    [114] Jackson R L, Green I. A Finite Element Study of Elasto-Plastic HemisphericalContact Against a Rigid Flat[J]. Journal of Tribology,2005,127(2):12.
    [115] Brizmer V, Kligerman Y, Etsion I. Elastic–Plastic Spherical Contact underCombined Normal and Tangential Loading in Full Stick[J]. Tribology Letters,2007,25(1):61-70.
    [116] Sahoo P, AMitra, Saha K. Adhesive Contact of Curved Surfaces[J]. Proceedingsof the Institution of Mechanical Engineers, Part J: Journal of EngineeringTribology,2010,224(5):12.
    [117] Bhushan B,葛世荣(译).摩擦学导论[M].北京:机械工业出版社,2006.
    [118] O'Donoghue J P, Manton S M, Cameron A. The Heat Transfer Coefficient andLubricated Contact Temperature[J]. ASLE Transactions,1967,10(2):175-182.
    [119] T.E T. The Theory of Partial Elastohydrodynamic Contacts[J]. WEAR,1972,21(1):49-101.
    [120] Yang J, Liu Y, Ye Z, et al. Grease-Lubricated Tribological Behaviour pf NitridedLayer On2Cr13Steel in Vacuum[J]. Applied Surface Science,2010,256(13):4072-4080.
    [121] Palmgren. Ball and Roller Bearing[M]. Philadelphia: Burbank,1959.
    [122]田怀璋,李新中,吴业正.球轴承在真空低温条件下的热导计算[J].轴承,1997,(05):7-10+45-11.
    [123]丁康,李巍华,朱小勇.齿轮及齿轮箱故障诊断实用技术[M].北京:机械工业出版社,2005.
    [124]贺银芝,沈松,应怀樵,等.小波包分解及其能量谱在发动机连杆轴承故障诊断中的应用[J].振动工程学报,2001,(01).
    [125]孙洁娣,靳世久.基于小波包能量及高阶谱的特征提取方法[J].天津大学学报,2010,(06):562-566.
    [126]丁幼亮,李爱群,缪长青.基于小波包能量谱的结构损伤预警方法研究[J].工程力学,2006,(08):42-48.
    [127] Yang J, Liu Y, Ye Z, et al. Microstructural and Tribological Characterization ofPlasma-and Gas-Nitrided2Cr13Steel In Vacuum[J]. Materials&Design,2011,32(2):808-814.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700