用户名: 密码: 验证码:
铝基介孔吸附材料的合成与As(Ⅴ)吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸附法具有操作简单、去除效率高、不产生或很少产生二次污染且吸附剂可循环使用等优点,因而受到人们关注。氧化铝被联合国环境规划署(UNEPA)认定为高效去除砷污染的吸附剂之一。但传统氧化铝对砷的吸附存在容小、吸附速率慢且pH范围窄等不足。
     本论文系统研究了介孔氧化铝、稀土和过渡金属改性的介孔氧化铝对As(Ⅴ)的吸附行为、特征和机理。本研究所取得的结论(成果)归纳如下:
     1.用非离子表面活性剂为模板在室温下合成了介孔氧化铝。与传统方法相比较,该合成方法具有如下特点:①非离子表面活性剂成本低、毒性小且易生物降解;②以水为合成介质,避免了传统方法中有机溶剂的大量使用;③室温合成,避免了高温晶化(≥100℃),有利于降低能耗;④以异丙醇铝替代传统方法中的仲丁醇铝,大大降低了合成成本。
     2.研究了制备条件(铝源和焙烧温度)对介孔氧化铝吸附As(Ⅴ)性能的影响,得出最佳的铝源为异丙醇铝,最佳焙烧温度是400℃;最优吸附剂MA-R-400吸附As(V)的最优pH范围(3.0-6.5)大于商业氧化铝(5.5-6.0),其在近中性(pH=6.6±0.1)条件下,饱和吸附容量为36.6mg/g(大于已有报道的传统氧化铝—15.5mg/g);
     3.利用响应曲面优化法对影响介孔氧化铝MA-R-400吸附As(V)性能的因素进行优化研究,得出溶液pH和初始浓度是影响吸附性能的关键因素,吸附温度和时间对其吸附性能的影响较小,该吸附剂吸附As(V)的最优吸附条件为吸附时间720min,温度60℃,pH3.90,初始As(V)浓度130mg/L,此时吸附容量是39.06mg/g。此外,对不同pH条件下的吸附机理进行详细的研究,得出pH=2.0(酸性)时,介孔纯氧化铝通过氢键和静电作用两种方式分别吸附溶液中的H3As04和H2AsO4-; pH=6.6(近中性)时H2As04和HAsO42可与纯氧化铝的质子化羟基官能团通过静电作用而吸附;pH=10.0(碱性)时,H2As04和HAsO42与吸附在纯氧化铝酸性位点上的OH-通过离子交换反应来进行吸附。
     4.首次系统地研究了稀土金属(Ce、Y、Eu、Pr和Sm)改性介孔氧化铝对As(V)吸附性能的影响,得出稀土金属Y、Sm、Eu和Pr改性的介孔氧化铝对As(V)的吸附容量显著增加,分别为改性前的1.70倍、1.48倍、1.44倍和1.37倍,但Ce改性的介孔氧化铝对As(Ⅴ)的吸附容量略有下降(0.85倍);Y的最佳负载量为10wt.%;吸附剂10%Y-MA吸附As(Ⅴ)的最优pH范围(2.5-7.5)大于介孔氧化铝(3.0-6.5)。此外,对不同pH条件下的吸附机理进行详细的研究,得出pH=2.0(酸性)时,H2AsO4-借助溶液中大量的抗衡离子H+吸附在10%Y-MA的碱性中心;pH=6.6(近中性)时,H2AsO4-和HAsO42-通过静电作用吸附在含有抗衡离子H+的10%Y-MA碱性中心和载体氧化铝的酸性中心;pH=9.0(碱性)时,H2AsO4-和HAsO42--在10%Y-MA上的吸附主要是通过(a)与吸附在载体一氧化铝酸性中心的OH-进行离子交换反应来吸附,(b)与氧化钇碱性中心通过抗衡离子H+来吸附。
     5.首次系统地研究了过渡金属(Fe、Cu、Co、Zn和Ni)改性的介孔氧化铝对As(Ⅴ)吸附性能的影响,得出改性后介孔氧化铝对As(Ⅴ)的吸附性能显著增加,过渡金属Fe、Cu、Co、Zn和Ni改性介孔氧化铝对As(Ⅴ)的吸附容量是改性前的2.63倍、2.04倍、1.77倍、1.58倍和1.30倍;硫酸铁改性介孔氧化铝吸附As(Ⅴ)的性能明显优于氯化铁和硝酸铁改性的;Fe的最佳负载量为10wt.%;10%FeS-MA吸附去除As(Ⅴ)的pH范围(2-11)明显大于介孔氧化铝和稀土改性介孔氧化铝。此外,对不同pH条件下的吸附机理进行详细的研究,得出pH=2.0(酸性)时,H2As04-通过静电作用吸附在10%FeS-MA上;pH=6.6(近中性)和pH=9.0(碱性)时,带正电荷的10%FeS-MA通过静电作用吸附溶液中的H2AsO4-和HAsO42-。
     6.介孔纯氧化铝、10%Y-MA和10%FeS-MA对As(Ⅴ)的吸附都属于吸热反应,升高温度有利于吸附反应的发生;它们对As(Ⅴ)的吸附动力学都符合准二级动力学方程,即“表面反应”是其吸附速率的控制步骤;共存阴离子NO3-和对SO42-它们的吸附性能几乎没有影响,但PO43-和F-的存在会使它们对As(Ⅴ)的吸附性能急剧下降。
     7.介孔铝基材料中吸附剂比表面积不是影响它们吸附As(Ⅴ)性能的主要因素,但介孔氧化铝的吸附性能受材料介孔数量和羟基数量的影响,改性材料吸附性能受负载活性成分的种类和量的影响。
Adsorption has attracted considerable attention due to the following advantages such as easy operation, high removal efficiency, not produing harmful byproducts and recycling use. According to the classification made by United Nations Environmental Program agency (UNEPA), activated alumina is one of the most available adsorbents for removing arsenic from contaminated water. Nevertheless, traditional commercial activated alumina (TCAA) generally suffers from the drawbacks of low adsorption capacity, slow adsorption rate and narrow working pH region. So, it is necessary to further study alumina for arsenic(V) removal.
     In this dissertation, the behaviors, characteristics together with adsorption mechanism of mesoporous alumina (MA), rare-earth and transition metal modified MA for removing arsenic(V) were investigated in detail, and the corresponding results are summarized and listed as follows:
     1. Mesoporous alumina (MA) has been synthesized by using nonionic triblock copolymer EO20PO70EO20(Pluronic P123) under room temperature (RT). Compared with conventional method, the advantages of our synthesis route are listed as follows:(i) nonionic surfactants with respect to cation and anion templates have attracted much attention owing to low-cost, nontoxic as well as biodegradable,(ii) MA was synthesized within water media, which avoid the extensive use of organic solvents of the conventional synthesis methods,(iii) mesostructures of MA were formed under AT, which will be favor of energy-saving due to the avoiding high-temperature crystallization (≥100℃),(iv) the cost of MA synthesis was significantly reduced by replacing the expensive aluminum sec-butoxide with aluminum tri-isopropoxide.
     2. The effects of synthesis conditions including aluminium source and calcinated temperature on the performances of mesoporous alumina for As(V) removal were measured. It was found that MA-R-400synthesized by aluminium isopropoxide and calcinated at400℃exhibits the best behaviors for As(V) adsorption, and the correspondingly worked pH region for MA-R-400(3.0-6.5) was wider than commercial active alumina (5.5-6.0). It was also noted that the saturated adsorption capacity at pH=6.6±0.1was36.6mg/g, which was far higher than that of traditional commercial activated alumina.
     3. Response surface methodology was employed to optimize important adsorption parameters and to investigate the interactive effects of these variables on arsenic adsorption capacity of MA-R-400. It was noticeable that pH and initial concentration play a key role in determining the adsorption capacity of MA-R-400while the influence of adsorption time and temperature could be ignored. The optimal parameters of adsorption process was listed as below:time720min, adsorption temperature60℃, initial pH3.90, initial As(V) concentration130mg/L, and the maximum adsorption capacity was about39.06mg/g. In addition, the As(V) adsorption mechanisms over MA-R-400under various pH were investigated in detail, which could be proposed as follows:1) at pH=2.0, H3ASO4and H2ASO4-were adsorbed via hydrogen bond and electrostatic interaction, respectively;2) at pH=6.6, arsenic species (H2ASO4-and HASO42-) were removed via electrostatic interaction together with ion exchange;3) at pH=10.0, HASO42-was adsorbed by MA via ion exchange together with adsorption.
     4. The As(V) adsorption performance of alumina modified with rare earth metals were investigated. It was found that the As(V) adsorption capacity of alumina modified with Y, Eu, Pr and Sm were improved significantly, the corresponding value was1.70times,1.44times,1.37times and1.48times to pure alumina, respectively. However, the adsorption capacity of alumina modify with Ce was reduced to0.85times. The optimum loading of Y was10wt.%, and then10%Y-MA was the optimum adsorbent. The worked pH region for10%Y-MA was2.5-7.5, which was higher than mesoporous alumina. Besides, As(V) adsorption mechanisms over10%Y-MA under various pH were investigated in detail, which could be proposed as follows:1) at pH=2.0, H2ASO4-was adsorbed on alkaline center of adsorbent by electrostatic interaction between counter ion H+,2) at pH=6.6, H2ASO4-and HASO42-were adsorbed to alkaline center by counter ion H+,3) at pH=9.0, H2ASO4-and HASO42-were adsorbed on weakly acidic centers and alkaline center of adsorbent by electrostatic interaction.
     5. The As(V) adsorption performance of alumina modified with transition metals were investigated. It was shown that the adsorption capacity of alumina modified with Fe, Cu, Co, Zn and Ni were improved significantly, the corresponding value was2.63times,2.04times,1.77times,1.58times and1.30times to pure alumina, respectively. The adsorption performance of alumina modified with ferric sulfate was higher than alumina modify with ferric chloride and ferric nitrate, and the optimum loading of Fe was10wt.%. The As(V) removal by10%FeS-MA was higher than mesoporous alumina and modified with rare earth metals when the pH in the region of2-11. Additionally, As(V) adsorption mechanisms over10%FeS-MA under various pH were investigated in detail, which could be proposed as follows:1) at pH=2.0, H2AsO4-was adsorbed on10%FeS-MA by electrostatic interaction,2) at pH=6.6and9.0, H2AsO4-和HAsO42-were adsorbed on positively charged of10%FeS-MA by electrostatic interaction.
     6. Some common features of As(V) adsorption on pure mesoporous alumina, alumina modified with rare earth and conventional transition metals were obtained, just as follows:1) the thermodynamic parameters illustrated that As(V) adsorption was a spontaneous and endothermic process,2) the kinetics data were well fitted to pseudo-second-order, which implies that "surface reaction" might be the rate limiting step,3) the influence of coexisting anions on As(V) removal demonstrated that the removal was slightly affected by the presence of NO3-and SO42-, while the presence of PO43-and F-caused a sharp fall in removal effectiveness.
     7. Specific surface area of mesoporous aluminum base materials dose not greatly influence the As(V) adsorption capacity. However, the amount of mesoporous and hydroxyl groups play an important role in As(V) adsorption capacity of mesoporous pure alumina, and the type and amount of active ingredient play a key role in As(V) adsorption capacity of composite material.
引文
[1]戴树桂,环境化学进展[M],北京:化学工业社,2005.
    [2]Battacharya P, Welch AH, Stollenwerk KG, et al. Arsenic in the environment:biology and chemistry[J]. Science of the Total Environment,2007,379(2/3):109-120.
    [3]李生志,钱金平,王春旭等,砷在环境中的存在形态[J],河北师范大学学报,1990,4:127-132.
    [4]Matschullat J, Arsenic in the geosphere-a review[J]. The Science of the Total Environment,2000,249(1/2/3):297-312.
    [5]Mohan D, Pittman Jr CU, Arsenic removal from water/wastewater using adsorbents-A critical review[J]. Journal of Hazardous Materials,2007,142(1/2):1-53.
    [6]Nriagu JO, Pacyna JM, Quantitative assessment of worldwide contamination of air, water and soils by trace metals[J]. Nature,1988,333(6169):134-139.
    [7]冯德福,砷污染与防治[J],沈阳教育学院学报,2000,2(2):110-112.
    [8]邱立萍,砷污染危害及其治理技术[J],新疆环境保护,1999,21(3):15-19.
    [9]Liao C, Shen H, Lin T, et al. Arsenic cancer risk posed to human health from tilapia consumption in Taiwan[J]. Ecotoxicology and Environmental Safety,2008,70(1): 27-37.
    [10]顾兴平,顾永柞,环境砷污染[J],四川环境,1999,18(3):11-14.
    [11]Basu A, Mahata J, Gupta S, et al. Genetic toxicology of a paradoxical human carcinogen, arsenic:a review[J]. Mutation Research,2001,488(2):171-194.
    [12]梁慧峰,刘占牛,除砷技术研究现状[J],邢台学院学报,2005,20(2):96-98.
    [13]Ratna KP, Chaudhari S, Khilar KC, et al. Removal of arsenic from water by electrocoagulation[J]. Chemosphere,2004,55(9):1245-1252.
    [14]李菁,李俊,路春娥,膜分离技术在治理含砷废水中的应用研究[J],科技进展,1999,13(4):17-19.
    [15]Sato Y, Kang M, Kamei T, et al. Performance of nanofiltration for arsenic removal[J]. Water Research,2002,36(13):3371-3377.
    [16]夏圣骥,高乃云,张巧丽等,纳滤膜去除水中砷的研究[J],中国矿业大学学报,2007,36(4):565-568.
    [17]曲丹,王军,侯德印等,膜蒸馏去除水中砷的研究[J],环境工程学报,2009,3(1):6-10.
    [18]胡天觉,曾光明,陈维平等,选择性高分子离子交换树脂处理含砷废水[J],湖南大学学报,1998,25(6):75-80.
    [19]穆庆斌,聂挺,使用活性氧化铝和离子交换法去除饮用水中的砷[J],建筑与预算,2007,2:85-86.
    [20]苏廷芝,顾国维,活性污泥法处理含砷废水初探[J],四川环境,2006,25(4):68-71.
    [21]周群英,高廷耀,环境工程微生物学[M].第2版,北京:高等教育出版社.2000:137.
    [22]廖敏,谢正苗,菌藻共生体去除废水中砷初探[J],环境污染与防治,1997,19(2):11-12.
    [23]林国梁,陈思,白俊智,从含砷工业废水中萃取富集砷的研究[J],沈阳建筑大学学报,2006,22(6):972-976.
    [24]余青原,王琳,张宝伟,浅析水中砷的去除[J],山西建筑,2007,33(1):182-184.
    [25]韩彩芸,张六一,邹照华等,吸附法处理含砷废水的研究进展[J],环境化学,2011,30(2):517-523.
    [26]Chutia P, Kato S, Kojima T, et al. Arsenic adsorption from aqueous solution on synthetic zeolites[J]. Journal of Hazardous Materials,2009,162(1):440-447.
    [27]李曼尼,刘晓飞,江雅新等,改性斜发沸石在水处理中的应用[J],环境化学,2007,26(1):21-26.
    [28]Pu HP, Huang JB, Jiang Z, Removal of arsenic(V) from aqueous solutions by lanthanum loaded zeolite[J]. Acta Geologica Sinica(EnglishEdition),2008,82(5): 1015-1019.
    [29]Haron MJ, Ab Rahim F, Abdullah AH, et al. Sorption removal of arsenic by cerium-exchanged zeolite P[J]. Materials Science & Engineering,2008,149(2): 204-208.
    [30]Stanic T, Dakovic A, Zivanovic ATM, et al. Adsorption of arsenic(V) by iron (III)-modified natural zeolitic tuff[J]. Environmental Chemistry Letters,2009,7(2): 161-166.
    [31]Manning BA, Goldberg S, Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite[J]. Clays and Clay Minerals,1996,44(5):609-623.
    [32]Chuang CL, Fan M, Xu M, et al. Adsorption of arsenic(V) by activated carbon prepared from oat hulls[J]. Chemosphere,2005,61(4):478-483.
    [33]Wu YH, Li B, Feng SX, et al. Adsorption of Cr(VI) and As(Ⅲ) on coaly activated carbon in single and binary systems[J]. Desalination,2009,249(3):1067-1073.
    [34]Lee S, Application of activated carbon fiber (ACF) for arsenic removal in aqueous solution[J]. Korean Journal of Chemical Engineering,2010,27(1):110-115.
    [35]Borah D, Satokawa S, Kato S, et al. Sorption of As(V) from aqueous solution using acid modified carbon Black[J]. Journal of Hazardous Materials,2009,162(2/3): 1269-1277.
    [36]Chang QG, Lin W,Ying WC, Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water[J]. Journal of Hazardous Materials, 2010,184(1-3):515-522.
    [37]Ghanizadeh G, Ehrampoush MH, Ghaneian MT, Application of iron impregnated activated carbon for removal of arsenic from water[J]. Iranian Journal of Environmental Health Science & Engineering,2010,7(2):145-156.
    [38]Gupta AK, Deva D, Sharma A, et al. Fe-Grown Carbon Nanofibers for Removal of Arsenic(V) in Wastewater[J]. Industrial and Engineering Chemistry Research,2010, 49(15):7074-7084.
    [39]Manju GN, Raji C, Anirudhan TS, Evaluation of coconut husk carbon for the removal of arsenic from water[J]. Water Research,1998,32(10):3062-3070.
    [40]Peraniemi S, Hannonen S, Mustalahti H, et al. Zirconium-loaded activated charcoal as an adsorbent for arsenic, selenium and mercury[J]. Fresenius journal of analytical chemistry,1994,349(7):510-515.
    [41]Daus B, Wennrich R, Weiss H, Sorption materials for arsenic removal from water:a comparative study[J]. Water Research,2006,38(12):2948-2954.
    [42]Sun FL, Osseo-Asare KA, Chen YS, et al. Reduction of As(Ⅴ) to As(Ⅲ) by commercial ZVI or As(0) with acid-treated ZVI[J]. Journal of Hazardous Materials, 2011,196:311-317.
    [43]Beker U, Cumbal L, Duranoglu D, et al. Preparation of Fe oxide nanoparticles for environmental applications:arsenic removal[J]. Environ Geochem Health,2010,32(4): 291-296.
    [44]Banerjee K, Am GL, Prevostc M, et al, Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH)[J]. Water Research,2008, 42(13):3371-3378.
    [45]Tang WT, Li Q, Li CF, et al. Ultrafine α-Fe2O3 nanoparticles grown in confinement of in situ self-formed "cage" and their superior adsorption performance on arsenic(Ⅲ) [J]. Journal of Nanoparticle Research,2011,13(6):2641-2651.
    [46]Guo HM, Li Y, Zhao K, et al. Removal of arsenite from water by synthetic siderite: Behaviors and mechanisms[J]. Journal of Hazardous Materials,2011,186(2/3): 1847-1854.
    [47]Mamindy-Pajany Y, Hurel C, Marmier N, et al. Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron:Effects of pH, concentration and reversibility [J]. Desalination,2011,281:93-99.
    [48]Jeong Y, Fan M, Singh S, et al. Evaluation of iron oxide and aluminum oxide as potential arsenic(V) adsorbents[J]. Chemical Engineering and Processing,2007, 46(10):1030-1039.
    [49]Ogata F, Kawasaki N, Kabayama M, et al. Adsorption Properties of As(Ⅲ) and Cr(Ⅵ) in Water Environment by Calcined Gibbsite[J]. Chemical & Pharmaceutical Bulletin, 2009,57(2):129-133.
    [50]Tripathy SS, Raichur AM, Enhanced adsorption capacity of activated alumina by impregnation with alum for removal of As(Ⅴ) from water[J]. Chemical Engineering Journal,2008,138(1/2/3):179-186.
    [51]Yu MJ, Li X, Ahn WS, Adsorptive removal of arsenate and orthophosphate anions by mesoporous alumina[J]. Microporous and Mesoporous Materials,2008,113(1-3): 197-203.
    [52]Manning BA, Fendorf SE, Bostick B, et al. Arsenic (Ⅲ) Oxidation and Arsenic(V) Adsorption Reactions on Synthetic Birnessite[J]. Environmental Science and Technology,2002,36(5):976-981.
    [53]梁慧峰,马子川,张杰等,新生态二氧化锰对水中三价砷去除作用的研究[J],环境污染与防治,2005,27(3):168-171.
    [54]Pena ME, Korfiatis GP, Patel M, et al. Adsorption of As(Ⅴ) and As(Ⅲ) by nanocrystalline titanium dioxide[J]. Water Research,2005,39(11):2327-2327.
    [55]Bang S, Patel M, Lippincott L, et al. Removal of arsenic from groundwater by granular titanium dioxide adsorbent [J]. Chemosphere,2005,60(3):389-397.
    [56]Martinson CA, Reddy K.J, Adsorption of arsenic(Ⅲ) and arsenic(Ⅴ) by cupric oxide nanoparticles[J]. Journal of Colloid and Interface Science,2009,336(2):406-411.
    [57]Manna B, Ghosh UC, Adsorption of arsenic from aqueous solution on synthetic hydrous stannic oxide[J]. Journal of Hazardous Materials,2007,144 (1-2):522-531.
    [58]Hristovski KD, Paul K, et al. Arsenate Removal by Nanostructured ZrO2 Spheres[J]. Environmental Science & Technology,2008,42(10):3786-3790.
    [59]Bortun A, Bortun M, Pardini J, et al. Synthesis and characterization of a mesoporous hydrous zirconium oxide used for arsenic removal from drinking water[J]. Materials Research Bulletin,2010,45(2):142-148.
    [60]Iwamoto M, Kitagawa H, Watanabe Y, Highly Effective Removal of Arsenate and Arsenite Ion through Anion Exchange on Zirconium Sulfate-Surfactant Micelle Mesostructure[J]. Chemistry Letters,2002,31(8):814-815.
    [61]Li ZJ, Deng SB, Yu G, As(V) and As(Ⅲ) removal from water by a Ce-Ti oxide adsorbent:Behavior and mechanism[J].Chemical Engineering Journal,2010,161(1/2): 106-113.
    [62]Zhang Y, Yang M, Dou X, et al. Arsenate Adsorption on an Fe-Ce Bimetal Oxide Adsorbent:Role of Surface Properties[J]. Environmental Science & Technology,2005, 39(18):7246-7250.
    [63]Maliyekkal SM, Philip L, Pradeep T, As(Ⅲ) removal from drinking water using manganese oxide-coated-alumina:Performance evaluation and mechanistic details of surface binding[J]. Chemical Engineering Journal,2009,153(1/2/3):101-107.
    [64]Gupta K, Ghosh UC, Arsenic removal using hydrous nanostructure iron(Ⅲ)-titanium(Ⅳ) binary mixed oxide from aqueous solution[J]. Journal of Hazardous Materials,2009,161(2/3):884-892.
    [65]Chang FF, Qu JH, Liu HJ, et al. Fe-Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal:Preparation and evaluation[J]. Journal of Colloid and Interface Science,2009,338(2):353-358.
    [66]Chang FF, Qu JH, Liu RP, et al. Practical performance and its efficiency of arsenic removal from ground-water using Fe-Mn binary oxide[J]. Journal of Environmental Sciences,2010,22(1):1-6.
    [67]Ren ZM, Zhang GS, Chen JP, Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent[J]. Journal of Colloid and Interface Science, 2011,358(1):230-237.
    [68]Sun XF, Hu C, Qu JH, Adsorption and removal of arsenite on ordered mesoporous Fe-modified ZrO2[J]. Desalination and water treatment,2009,8:139-145.
    [69]Wang SL, Liu CH, Wang MK, et al. Arsenate adsorption by Mg/Al-NO3 layered double hydroxides with varying the Mg/Al ratio[J]. Applied Clay Science,2009,43(1): 79-85.
    [70]Dadwhal M, Sahimi M, Tsotsis TT, Adsorption Isotherms of Arsenic on Conditioned Layered Double Hydroxides in the Presence of Various Competing Ions[J]. Industrial and Engineering Chemistry Research,2011,50(4):2220-2226.
    [71]Lenoble V, Chabroullet C, Al Shukry R, et al. Dynamic arsenic removal on a MnO2-loaded resin[J]. Journal of Colloid and Interface Science,2004,280(1):62-67.
    [72]Balaji T, Yokoyama T, Matsunaga H, Adsorption and removal of As(V) and As(III) using Zr-loaded lysine diacetic acid chelating resin[J]. Chemosphere,2005,59(8): 1169-1174.
    [73]Shao W, Li X, Cao Q, et al. Adsorption of arsenate and arsenite anions from aqueous medium by using metal(Ⅲ)-loaded amberlite resins[J]. Hydrometallurgy,2008, 91(1/2/3/4):138-143.
    [74]Kamsonlian S, Balomajumder C, Chand S, et al. Biosorption of Cd (II) and As (III) ions from aqueous solution by tea waste biomass[J]. African Journal of Environmental Science and Technology,2011,5(1):1-7.
    [75]Urik M, Littera P, Sevc J, et al. Removal of arsenic (V) from aqueous solutions using chemically modified sawdust of spruce (Picea abies):Kinetics and isotherm studies [J]. International Journal of Environmental Science And Technology,2009,6 (3):451-456.
    [76]Kamala CT, Chu KH, Chary NS, et al. Removal of arsenic(Ⅲ) from aqueous solutions using fresh and immobilized plant biomass[J]. Water Research,2005,39(13): 2815-2826.
    [77]Baig JA, Kazil TG, Shah AQ, et al. Biosorption studies on powder of stem of Acacia nilotica:Removal of arsenic from surface water[J]. Journal of Hazardous Materials, 2010,178(1-3):941-948.
    [78]Huang X, Jiao L, Liao X, et al. Adsorptive Removal of As(Ⅲ) from Aqueous Solution by Zr(IV)-Loaded Collagen Fiber[J]. Industrial & Engineering Chemistry Research, 2008,47 (15):5623-5628.
    [79]Deng SB, Yu G, Xie SH, et al. Enhanced Adsorption of Arsenate on the Aminated Fibers:Sorption Behavior and Uptake Mechanism[J]. Langmuir,2008,24(19): 10961-10967.
    [80]Anjana KV, Tolerance and removal of arsenic by a facultative marine fungus Aspergillus candidus[J]. Bioresource Technology,2010,101(7):2565-2567.
    [81]Maheswari S, Murugesan AG, Biosorption of arsenic(Ⅲ) ion from aqueous solution using Aspergillus fumigatus isolated from arsenic contaminated site[J]. Desalination and Water Treatment,2009,11(1-3):294-301.
    [82]Chowdhury MRI, Mulligan CN, Biosorption of arsenic from contaminated water by anaerobic biomass[J]. Journal of Hazardous Materials,2011,190(1/2/3):486-492.
    [83]Altundogan HS, Altundogan S, Tumen F, et al. Arsenic removal from aqueous solutions by adsorption on red mud[J]. Waste Management,2000,20(8):761-767.
    [84]王湖坤,龚文琪,彭建军等,粉煤灰处理含砷工业废水的研究[J],工业水处理,2007,27(4):38-40.
    [85]Jeon CS, Batjargal T, Seo C, et al. Removal of As(V) from aqueous system using steel-making by-product[J]. Desalination and water treatment,2009,7(1/2/3): 152-159.
    [86]Gibbons MK, Gagnon GA, Adsorption of arsenic from a Nova Scotia groundwater onto water treatment residual solids[J]. Water Research,2010,44(19):5740-5749.
    [87]Altundogan HS, Altundogan S, Tumen F, et al. Arsenic adsorption from aqueous solutions by activated red mud[J]. Waste Management,2002,22(3)357-363.
    [88]Li Y, Zhang FS, Xiu FR, Arsenic (V) removal from aqueous system using adsorbent developed from a high iron-containing fly ash[J]. Science of the Total Environment, 2009,407(21):5780-5786.
    [89]Ranjana D, Talat MB, Hasan SH, Biosorption of arsenic from aqueous solution using agricultural residue'rice polish'[J]. Journal of Hazardous Materials,2009,166(2/3): 1050-1059.
    [90]Oke IA, Olarinoye NO, Adewusi SRA, Adsorption kinetics for arsenic removal from aqueous solutions by untreated powdered eggshell [J]. Adsorption,2008,14(1):73-83.
    [91]Lin MC, Liao CM, Chen YC, Shrimp shell as a potential sorbent for removal of arsenic from aqueous solution[J]. Fisheries Science,2009,75(2):425-434.
    [92]Chio CP, Lin MC, Liao CM, Low-cost farmed shrimp shells could remove arsenic from solutions kinetically[J]. Journal of Hazardous Materials,2009,171(1/2/3): 859-864.
    [93]Ghimire KN, Inoue K,Yamaguchi H, et al. Adsorptive separation of arsenate an d arsenite anions from aqueous medium by using orange waste[J]. Water Rearch,2003, 37(20):4945-4953.
    [94]Han YF, Zhong ZY, Ramesh K, et al. Effects of different types of y-Al2O3 on the activity of gold nanoparticles for CO oxidation at Low-Temperatures[J]. The Journal of Chemical Physics C,2007,111(7):3163-3170.
    [95]Sierka M, Dobler J, Sauer J, et al. Unexpected Structures of Aluminum Oxide Clusters in the Gas Phase[J].Angewandte Chemie, International Edition,2007,46(18): 3372-3375.
    [96]Gora-Marek K, Derewinski M, Sarv P, et al. IR and NMR studies of mesoporous alumina and related aluminosilicates[J]. Catalysis Today,2005,101(2):131-138.
    [97]Khaleel A, Catalytic activity of mesoporous alumina for the hydrolysis and dechlorination of carbon tetrachloride[J]. Microporous and Mesoporous Materials, 2006,91(1/2/3):53-58.
    [98]Vaudry F, Khodabandeh S, Davis ME, Synthesis of Pure Alumina Mesoporous Materials[J]. Chemistry of Materials,1996,8(7):1451-1464.
    [99]Lesaint C, Kleppa G, Aria D, et al. Synthesis and characterization of mesoporous alumina materials with large pore size prepared by a double hydrolysis route[J]. Microporous and Mesoporous Materials,2009,119(1/2/3):245-251.
    [100]Aguado J, Escola JM, Castro MC, Influence of the thermal treatment upon the textural properties of sol-gel mesoporous y-alumina synthesized with cationic surfactants[J]. Microporous and Mesoporous Materials,2010,128(1/2/3):48-55.
    [101]Aguado J, Escola JM, Castro MC, Sol-gel synthesis of mesostructured y-alumina templated by cationic surfactants [J]. Microporous and Mesoporous Materials,2005, 83(1/2/3):181-192.
    [102]Xiu F, Li W, Morphologically controlled synthesis of mesoporous alumina using sodium lauroyl glutamate surfactant[J]. Materials Letters,2010,64(16):1858-1860.
    [103]Kim Y, Lee B., Y J, Synthesis of mesoporous y-alumina through Pre- and Post-hydrolysis methods [J]. Korean Journal of Chemical Engineering,2002,19(5): 908-910.
    [104]Yada M, Hiyoshi H, Ohe K, et al. Synthesis of aluminum-based surfactant mesophases morphologically controlled through a layer to hexagonal transition[J]. Inorganic Chemistry,1997,36(24):5565-5569.
    [105]Kim C, Kim Y, Kim P, et al. Synthesis of Mesoporous Alumina by using a cost-effective Template[J]. Korean Journal of Chemical Engineering,2003,20(6): 1142-1144.
    [106]Sicard L, Llewellyn PL, Patarin J, et al. Investigation of the mechanism of the surfactant removal from a mesoporous alumina prepared in the presence of sodium dodecylsulfate[J]. Microporous and Mesoporous Materials,2001,44-45:195-201.
    [107]Caragheorgheopol A, Caldararu H, Vasilescu M, Structural Characterization of Micellar Aggregates in Sodium Dodecyl Sulfate/Aluminum Nitrate/Urea/Water System in the Synthesis of Mesoporous Alumina[J]. The Journal of Chemical Physics B,2004,108(23):7735-7743.
    [108]Lu AH, Schuth F, Nanocasting pathways to create ordered mesoporous solids[J], Comptes Rendus Chimie,2005,8(3/4):609-620.
    [109]Liu Q, Wang A, Wang X, et al. Nanocasting synthesis of ordered mesoporous alumina with crystalline walls:influence of aluminium precursors and filling times[J]. Studies in Surface Science and Catalysis,2007,170B:1819-1826.
    [110]Baca M, de la Rochefoucauld E, Ambroise E, et al. Characterization of mesoporous alumina prepared by surface alumination of SBA-15[J]. Microporous and Mesoporous Materials,2008,110(2/3):232-241.
    [111]Li WC, Lu AH, Schmidt W, et al. High surface area, mesoporous, glassy alumina with a controllable Pore Size by nanocasting from carbon aerogels[J]. Chemistry-A European Journal,2005,11(5):1658-1664.
    [112]Liu Q, Wang A, Wang X, et al. Ordered crystalline alumina molecular sieves synthesized via a nanocasting route [J]. Chemistry of Materials,2006,18(22): 5153-5155.
    [113]Wu ZX, Li Q, Feng D, et al. Ordered mesoporous crystalline γ-Al2O3 with variable architecture and porosity from a single hard template[J]. Journal of the American Chemical Society,2010,132(34):12042-12050.
    [114]Gonzaez-Pena V, Marquez-Alvarez C, Diaz I, et al. Sol-gel synthesis of mesostructured aluminas from chemically modified aluminum sec-butoxide using non-ionic surfactant templating[J]. Microporous and Mesoporous Materials,2005, 80(1/2/3):173-182.
    [115]李志平,赵瑞红,郭奋等,高比表面积有序介孔氧化铝的制备与表征[J],高等学校化学学报,2008,29(1):13-17.
    [116]Niesz K, Yang P, Somorjai G A. Sol-gel synthesis of ordered mesoporous alumina[J]. Chemical Communications,2005,15:1986-1987.
    [117]Deng W, Bodart P, Pruski M, et al. Characterization of mesoporous alumina molecularsieves synthesized by nonionic templating[J]. Microporous and Mesoporous Materials,2002,52(3):169-177.
    [118]Zhao RH, Guo F, Hu YQ, et al. Self-assembly synthesis of organized mesoporous alumina by precipitation method in aqueous solution[J]. Microporous and Mesoporous Materials,2006,93(1/2/3):212-216.
    [119]Maekawaa H, Tanakaa R, Satoa T, et al. Size-dependent ionic conductivity observed for ordered mesoporous alumina-LiI composite[J]. Solid State Ionics,2004, 175(1/2/3/4):281-285.
    [120]Ren TZ, Yuan ZY, Su BL, Microwave-Assisted Preparation of Hierarchical Mesoporous-Macroporous Boehmite AlOOH and γ-Al2O3[J]. Langmuir,2004,20: 1531-1534
    [121]Zhu K, Pozgan F, D'Souza L, et al. Ionic liquid templated high surface area mesoporous silica and Ru-SiO2[J]. Microporous and Mesoporous Materials,2006, 91(1/2/3):40-46.
    [122]Wang T, Kaper H, Antonietti M, et al. Templating behavior of a long-chain ionic liquid in the hydrotherm al synthesis of mesoporous silica[J]. Langmuir,2007,23(3): 1489-1495.
    [123]Zilkova N, Zukal A, Cejka J, Synthesis of organized mesoporous alumina templated with ionic liquids[J]. Microporous and Mesoporous Materials,2006,95(1/2/3): 176-179.
    [124]Park HS, Yang SH, Jun YS, et al. Facile route to synthesize large-mesoporous y-alumina by room temperature ionic liquids[J]. Chemistry of Materials,2007,19(3): 535-542.
    [125]Li DY, Lin YS, Li YC, et al. Synthesis of mesoporous pseudoboehmite and alumina templated with 1-hexadecyl-2,3-dimethyl-imidazolium chloride[J]. Microporous and Mesoporous Materials,2008,108(1/2/3):276-282.
    [126]Xu B, Xiao T, Yan Z,et al. Synthesis of mesoporous alumina with highly thermal stability using glucose template in aqueous system[J]. Microporous and Mesoporous Materials,2006,91(1/2/3):293-295.
    [127]Shan Z, Jansen JC, Zhou W, et al. Al-TUD-1, stable mesoporous aluminas with high surface areas[J]. Applied Catalysis A:General,2003,254(2):339-343.
    [128]Liu Q, Wang A, Wang XD, et al. Mesoporous y-alumina synthesized by hydro-carboxylic acid as structure-directing agent[J]. Microporous and Mesoporous Materials,2006,92(1/2/3):10-21.
    [129]Liu X, Wei Y, Jin D, et al. Synthesis of mesoporous aluminum oxide with aluminum alkoxide and tartaric acid[J]. Materials Letters,2000,42(3):143-149.
    [130]Kosuge K, Ogata A, Effect of SiO2 addition on thermal stability of mesoporous y-alumina composed of nanocrystallites[J]. Microporous and Mesoporous Materials, 2010,135(1/2/3):60-66.
    [131]Kim P, Joo JB, Kim H, et al, Preparation of mesoporous Ni-alumina catalyst by one-step sol-gel method:control of textural properties and catalytic application to the hydrodechlorination of o-dichlorobenzene[J]. Catalysis Letters,2005,104(3-4): 181-189.
    [132]Sun ZX, Zheng TT, Bo QB, et al. Effects of calcination temperature on the pore size and wall crystalline structure of mesoporous alumina[J]. Journal of Colloid and Interface Science,2008,319(1):247-251.
    [133]Sun ZX, Zheng TT, Bo Q.B, et al. Effects of alkali metal ions on the formation of mesoporous alumina[J]. Journal Materials Chemistry,2008,18:5941-5947.
    [134]Kaluza L, Zdrazil M, Zilkova N, et al. High activity of highly loaded MoS2 hydrodesulfurization catalysts supported on organized mesoporous alumina[J]. Catalysis Communications,2002,3:151-157.
    [135]Cejka J, Zilkova N, Kaluza L, et al. Mesoporous Alumina as a Support for Hydrodesulfurization Catalysts[J]. Studies in Surface Science and Catalysis,2002, 141:243-250.
    [136]Hicks RW, Castagnola NB, Zhang ZR, et al. Lathlike mesostructured y-alumina as a hydrodesulfurization catalyst support[J]. Applied Catalysis A:General,2003,254(2): 311-317.
    [137]Liu Q, Wang AQ, Wang XH, et al. Synthesis, characterization and catalytic applications of mesoporous y-alumina from boehmite sol[J]. Microporous and Mesoporous Materials,2008,111 (1/2/3):323-333.
    [138]Solsona B, Dejoz A, Garcia T, et al. Molybdenum-Vanadium supported on mesoporous alumina catalysts for the oxidative dehydrogenation of ethane[J]. Catalysis Today,2006,117(1/2/3):228-233.
    [139]Bagshaw SA, Prouzet E, Pinnavaia TJ, Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants[J]. Science,1995,269(5228):1242-1244.
    [140]Wang Y, Bryan C, Xu H, et al. Interface chemistry of nanostructured materials:Ion adsorption on mesoporous alumina[J]. Journal of Colloid and Interface Science,2002, 254(1):23-30.
    [141]Gan ZH, Ning GL, Lin Y, et al. Morphological control of mesoporous alumina nanostructures via template-free solve thermal synthesis[J]. Materials Letters,2007, 61(17):3758-3761.
    [142]Cejka J, Kooyman PJ, Vesela L, et al. High-temperature transformations of organised mesoporous alumina[J]. Physical Chemistry Chemical Physics,2002,4:4823-4829.
    [143]Sing KSW, Everett DH, Haul RAW, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and applied Chemistry,1985,57(4):603-619.
    [144]Tanev PT, Pinnavaia TJ, A Neutral Templating Route to Mesoporous Molecular Sieves[J]. Science,1995,267(5199):865-867.
    [145]Cabrera S, Haskouri JE1, Alamo J, et al. Surfactant-Assisted Synthesis of Mesoporous Alumina Showing Continuously Adjustable Pore Sizes[J]. Advanced Materials,1999, 11(5):379-381.
    [146]Zhang Y, Yang M, Huang X, Arsenic(V) removal with a Ce(IV)-doped iron oxide adsorbent[J]. Chemosphere,2003,51(9):945-952.
    [147]Babou F, Coudurier G, Vedrine JC, Acidic Properties of Sulfated Zirconia:An Infrared Spectroscopic Study[J]. Journal of Catalysis,1995,152(2):341-349.
    [148]Liu C, Liu YC, Ma QX, et al. Mesoporous transition alumina with uniform pore structure synthesized by alumisol spray pyrolysis[J]. Chemical Engineering Journal, 2010,163(1/2):133-142.
    [149]Kim T, Lian JB, Ma JM, et al. Morphology Controllable Synthesis of y-Alumina Nanostructures via an Ionic Liquid-Assisted Hydrothermal Route[J]. Crystal Growth & Design,2010,10(7):2928-2933.
    [150]Pillewan P, Mukherjee S, Roychowdhury T, et al. Removal of As(Ⅲ) and As(Ⅴ) from water by copper oxide incorporated mesoporous alumina[J]. Journal of Hazardous Materials,2011,186(1):367-375.
    [151]Blazquez G, Martin-Lara MA, Tenorio G. et al.Batch biosorption of lead(Ⅱ) from aqueous solutions by olive tree pruning waste:Equilibrium, kinetics and thermodynamic study[J]. Chemical Engineering Journal,2011,168(1):170-177.
    [152]Saha B, Chakraborty S, Das Q A mechanistic insight into enhanced and selective phosphate adsorption on a coated carboxylated surface[J]. Journal of Colloid and Interface Science,2009,331(1):21-26.
    [153]McKay G, Bino MJ, Altamemi AR, The adsorption of various pollutants from aqueous solutions on to activated carbon[J]. Water Research,1985,19(4):491-495.
    [154]张继义,梁丽萍,蒲丽君等,小麦秸秆热处理生物碳质对Cr(Ⅵ)的吸附性能[J],兰州理工大学学报,37(2):64-68.
    [155]Lin TF, Wu JK, adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics[J]. Water Research,2001,35(8):2049-2057.
    [156]Swain SK, Patnaik T, Singh VK, et al. Kinetics, equilibrium and thermodynamic aspects of removal of fluoride fromdrinking water using meso-structured zirconium phosphate[J]. Chemical Engineering Journal,2011,171(3):1218-1226.
    [157]Vasiliu S, Bunia I, Racovita S, et al. Adsorption of cefotaxime sodium salt on polymer coated ion exchange resin microparticles:Kinetics, equilibrium and thermodynamic studies[J]. Carbohydrate Polymers,2011,85(2):376-387.
    [158]Meng XG, Bang S, Korfiatis GP, Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride[J]. Water Research,2000,34(4):1255-1261.
    [159]Li W, Cao CY, Wu LY, Superb fluoride and arsenic removal performance of highly ordered mesoporous aluminas[J]. Journal of Hazardous Materials,2011,198(30): 143-150.
    [160]Singh R, Chadetrik R, Kumar R, et al. Biosorption optimization of lead(II), cadmium(Ⅱ) and copper(Ⅱ) using response surface methodology and applicability in isotherms and thermodynamics modeling[J]. Journal of Hazardous Materials,2010, 174(1/2/3):623-634.
    [161]Wu Z, Li H, Ming J, et al. Optimization of Adsorption of Tea Polyphenols into Oat β-Glucan Using Response Surface Methodology[J]. Journal of Agricultural and Food Chemistry,2011,59(1):378-385.
    [162]Rana-Madaria P, Nagarajan M, Rajagopal C, et al. Removal of Chromium from Aqueous Solutions by Treatment with Carbon Aerogel Electrodes Using Response Surface Methodology[J]. Industrial & Engineering Chemistry Research,2005,44(17): 6549-6559.
    [163]Kim YH, Kim C, Choi I, et al. Arsenic Removal Using Mesoporous Alumina Prepared via a Templating Method[J]. Environ. Sci. Technol.,2004,38 (3):924-931
    [164]Doukkali ME, Iriondo A, Arias PL, et al. Bioethanol/glycerol mixture steam reforming over Pt and PtNi supported on lanthana or ceria doped alumina catalysts[J]. International Journal of Hydrogen Energy,2012,37(10):8298-8309.
    [165]Ma Y, Zheng YM, Chen JP, A zirconium based nanoparticle for significantly enhanced adsorption of arsenate:Synthesis, characterization and performance[J]. Journal of Colloid and Interface Science,2011,354(2):785-792.
    [166]Guan XH, Wang JM, Chusuei CC, Removal of arsenic from water using granular ferric hydroxide:Macroscopic and microscopic studies[J]. Journal of Hazardous Materials,2008,156(1/2/3):178-185.
    [167]Chen YM, Wang MK, Huang PM, et al. Influence of catechin on precipitation of aluminum hydroxide[J]. Geoderma,2009,152(3/4):296-300.
    [168]Music S, Dragcevic O, Popovic S, Hydrothermal crystallization of boehmite from freshly precipitated aluminium hydroxide[J]. Materials Letters,1999,40(6):269-274
    [169]Hou HW, Xie Y, Yang Q, et al. Preparation and characterization of y-AlOOH nanotubes and nanorods[J]. Nanotechnology,2005,16(6):741-745.
    [170]Joglekar AM, May AT, Product excellence through design of experiments [J]. Cereal Foods World,1987,32:857-868.
    [171]邹照华.新型Al-Si介孔材料对砷的吸附研究:[硕士学位论文].昆明:昆明理工大学,2010.
    [172]Ahmad MA, Rahman NK, Equilibrium, kinetics and thermodynamic of Remazol Brilliant Orange 3R dye adsorption on coffee husk-based activated carbon[J]. Chemical Engineering Journal,2011,170(1):154-161.
    [173]Zhao YP, Huang MS, Wu W, et al. Synthesis of the cotton cellulose based Fe(Ⅲ)-loaded adsorbent for arsenic(V) removal from drinking water[J]. Desalination, 2009,249(3):1006-1011.
    [174]Thommes M, physical adsorption characterization of nanoporous materials[J]. Chemie Ingenieur Technik,2010,82(7):1059-1073.
    [175]Jang M, Shin EW, Park JK, et al. Mechanisms of Arsenate Adsorption by Highly-Ordered Nano-Structured Silicate Media Impregnated with Metal Oxides[J]. Environmental Science & Technology,2003,37 (21):5062-5070.
    [176]李定龙,朱宏飞,关小红,吸附法去除饮用水中砷的研究进展[J],水资源保护,2007,23(6):44-51.
    [177]Sharma VK, Sohn M, Aquatic arsenic:Toxicity, speciation, transformations, and remediation[J]. Environment International,2009,35(4):743-759.
    [178]Yadanaparthi SKR, Graybill D, von Wandruszka R, Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters[J]. Journal of Hazardous Materials,2009,171(1/2/3):1-15.
    [179]Gupta K, Biswas K, Ghosh UC, Nanostructure Iron(Ⅲ)-Zirconium(Ⅳ) Binary Mixed Oxide:Synthesis, Characterization, and Physicochemical Aspects of Arsenic(Ⅲ) Sorption from the Aqueous Solution[J]. Industrial & Engineering Chemistry Research,2008,47(24):9903-9912.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700