用户名: 密码: 验证码:
低碳马氏体钢中(Ti,Mo)C析出行为及其强韧性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低碳马氏体钢由于碳的固溶强化、位错强化等作用通常具有较高的强度。碳化物析出强化可以进一步提高低碳马氏体钢的强度,多年来Mo2C、VC等碳化物的强化作用已经得到充分研究。但是,直接淬火及回火时低碳马氏体钢中TiC类碳化物的析出行为及其强化作用研究较少。本文通过SEM、TEM、EBSD以及萃取相分析等试验方法,研究低碳马氏体钢中(Ti,Mo)C纳米析出相在不同工艺中的析出行为及其对力学性能的影响,为提高低碳马氏体钢的强韧性提供理论依据。
     利用TEM、相分析并结合热力学、动力学计算等方法,定量研究了(Ti,Mo)C在不同工艺过程中各个阶段析出尺寸、数量及控制因素。研究发现,低碳马氏体钢中(Ti,Mo)C碳化物析出包括两个主导性的阶段:在奥氏体区析出鼻尖温度至大概850℃之间进行变形,可以获得大量5-36nm的纳米析出相,Ti析出量大概达到47.0%;再加热过程进入奥氏体区及随后的奥氏体区保温过程中,奥氏体中会继续析出大量5-18nm的析出相,Ti析出大概为33.0%到46.6%之间。
     利用SEM、TEM、EBSD等方法,研究了组织演变及(Ti,Mo)C对晶粒细化的作用。研究发现,试验钢中(Ti,Mo)C对a/γ界面移动阻碍作用很小,但在奥氏体长大过程中钉扎晶界,成为晶粒细化的主要原因。添加Ti、Mo试验钢中马氏体板条明显变短,相邻板条块位向差增大。低温奥氏体未再结晶区轧制后马氏体组织扁平化,试样中储存的形变能可以显著增加奥氏体形核驱动力及形核率,且变形后亚结构位向关系的改变促进了再加热后位向关系的遗传,再加热后晶粒尺寸得到更进一步的细化。
     系统研究了(Ti,Mo)C析出相及组织遗传对低碳马氏体钢强韧性的影响。利用(Ti,Mo)C及组织遗传对再加热后晶粒细化、强化方式改变,获得了1000-1700MPa高强度低碳马氏体钢,其冲击吸收能量较常用低碳马氏体钢有明显提高,(Ti,Mo)C析出相的晶粒细化作用使低碳马氏体钢的韧脆转变温度降低。
Low carbon martensitic steel has high strength because of the effect of carbon solution strengthening and dislocation strengthening. Moreover, the strength of low carbon martensitic steel can be further improved by the precipitation strengthening of carbides. The strengthening effects of carbides, such as Mo2C and VC, have been widely researched these years. However, the precipitation behaviour of TiC during the direct quenching and tempering processes and their strengthening effects in low carbon martensitic steel have hardly investigated. In the present study, the precipitation behaviours of (Ti,Mo)C during different processes and their effects on mechanical properties in low carbon martensitic steel were investigated by SEM, TEM, EBSD and phase analysis method. These results can provide the theoretic foundation for the mechanical properties improvement of low carbon martensitic steel.
     To elaborate the precipitation behaviors of (Ti,Mo)C nano-precipitates in steel, the size, amount and controlling factors of precipitates during different stages were investigated by performing TEM and phase analysis method combining with the calculation of thermodynamics and kinetics. There are two dominant stages as follows: large amount of nano-precipitates with the diameter in5-36nm were formed during the the austenite deformation between the nose temperature and almost850℃, the whole mass fraction of Ti precipitation can reach47.0%. Furthermore, lots of nano-precipitates with the diameter in5-18nm were also formed during the reheating process, and the whole mass fraction of Ti precipitation can be33.0%to46.6%.
     To describe the microstructures evolution and the effect of (Ti,Mo)C on the grain refinement, the SEM, TEM, EBSD were performed. The results show that the (Ti,Mo)C can hardly inhibit the migration of y/a interface during reverse transformation. However, the (Ti,Mo)C can refine the grain size by the pinning effect on the grain boundary. Meanwhile, obviously shorter martensite lath, increment of high angle grain boundaries and increment of orientation difference between adjacent blocks were found in Ti-Mo steel after reheating process. The martensite became pancake and the austenite nucleation driving force was enhanced by the stored energy after being rolled at low temperature in unrecrytallized austenite region. Therefore, the orientation of sub-structure was inherited and the grain size was further refined after reheating.
     Effects of (Ti,Mo)C and microstructure heredity on the mechanical properties of low carbon martensitic steel were systematically investigated.1000MPa-1700MPa high strength martensitic steels had been obtained by the grain refinement and the modification of strengthening mechanisms induced by the (Ti,Mo)C. The impact energies of martensitic steels above had obvious improvement comparing to the usual low carbon martensitic steels. Furthermore, the ductile-brittle transition temperatures of low carbon martensitic steels were also decreased by the grain refinement induced by the (Ti,Mo)C.
引文
[1]徐祖耀.我国应尽早发展高强度钢[C]//中国工程院化工、冶金与材料工程学部第六届学术会议特邀报告,薛群基主编.会议论文集.北京:化学工业出版社,2007,403-406.
    [2]董瀚.钢铁材料基础研究的评述[J].钢铁,2008,43(10):1-7.
    [3]王春明,吴杏芳,等.X70针状铁素体管线钢析出相[J].北京科技大学学报,2006,28(3):253.
    [4]王有铭,李曼云,韦光.钢材的控制轧制和控制冷却[M].北京:冶金工业出版杜,1995.
    [5]吕建华,关小军,徐洪庆.控轧控冷工艺在X60钢板试制中的应用[J].中国冶金,2006,16(12):16-19.
    [6]赵明纯,单以银,等.控轧控冷工艺对X60管线钢组织及力学性能的影响[J].金属学报,2001,37(2):179-183.
    [7]刘守显,罗海文,等.控轧控冷工艺对X100管线钢组织和性能的影响[J].特殊钢,2007,28(5):25-27.
    [8]周民,李德成,等.采用控轧控冷工艺试制X100管线钢的研究[J].中国冶金,2009,19(6):1-4.
    [9]王存宇.30GPa%级超高强度马奥组织钢的研究[D].博士学位论文,钢铁研究总院,2010.
    [10]万翛如.新型高合金二次硬化超高强度钢的发展[J].材料工程,1994,11:1-5I.
    [11]黎秀球,吴静贞.国外几种硬化型高断裂韧性超高强度钢[J].钢铁研究学报,1994,6(2):84-89.
    [12]汪向荣,闫牧夫.AerMet100二次硬化过程组织和性能的研究[J].热处理技术与装备,2007,28(5):28-30.
    [13]李志,赵振业.AerMet100钢的研究与发展[J].航空材料学报,2006,26(3):265-269.
    [14]李阿妮,厉勇,王春旭.Mo含量对AF1410钢二次硬化效果的影响[J].钢铁,2007,42(9):60-62.
    [15]赵振业.合金钢设计[M].北京:国防工业出版社,1999.
    [16]郑明新.工程材料[M].北京:清华大学出版社,1997.
    [17]徐宏伟.国外汽车用先进高强度钢板及其标准综述[J].冶金标准化与质量, 2007,44(2):8-13.
    [18]薛文广,杜义,李伟.低碳马氏体高强度螺栓用钢的研制[J].特殊钢,1998,(5):39-41.
    [19]黎业生,饶克.低碳马氏体弹簧钢35Si2CrVB弹性减退性能的研究[J].金属热处理,2001,(4):18-20.
    [20]张庚喜.谈低碳马氏体及其应用[J].建筑机械,1990,7:39-42.
    [21]谭春晓.关于低碳马氏体钢的应用[J].电大理工,2004,3:27-28.
    [22]张垣.低碳马氏体在模具中的应用[J].金属热处理,2004,29(10):7-10.
    [23]王雷,麻晓红,于信伟.低碳马氏体理论在煤矿机械零件生产中的应用[J].煤矿机械,2001,9:44-46.
    [24]王秀梅,张垣,温新林.低碳马氏体技术与应用[J].金属热处理,2008,33(8):160-164.
    [25]周清跃.钢轨的材质性能及相关工艺[M].北京:中国铁道出版社,2005:61.
    [26]张垣.矿用高强韧性扁平接链环的特殊热处理工艺[A]//当代热处理技术与工艺装备精品集[C].北京:机械工业出版社,2002:301-306.
    [27]Gladman T. The physical metallurgy of microalloyed steels[M]. London:The Institute of Materials,1997:47-56.
    [28]Norstrom L A. On the yield strength of quenched low-carbon lath martensite[J]. Scandinavian Journal of Metallurgy,1976,5(4):159-165.
    [29]Ansell G S, Arrott A. The strengthening mechanism of ferrous martensite[J]. Trans Metall Soc AIME,1963,227(10):1080-1082.
    [30]Speich G R, Leslie W C. Tempering of steel[J]. Metallurgical Transactions A, 1972,3(5):1043-1054.
    [31]Krauss G. Martensite in steel:strength and structure[J]. Metallurgical Transactions A,1999,273-275:40-57.
    [32]Roberts W, Karlsson S, Bergstrom Y. The rate of dislocation multiplication in polycrystalline iron[J]. Materials Science and Engineering A,1973,11(4): 247-254.
    [33]Gladman T. Precipitation hardening in metals[J]. Materials Science and Technology,1999,15(1):30-36.
    [34]Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solution[J]. Journal of Physical Chemistry Solids,1961,19:35-50.
    [35]Roberts M J. Effect of transformation substructure on the strength and toughness of Fe-Mn alloys[J]. Metallurgical Transactions,1970,1(12):3287-3294.
    [36]Liu M Y, Shi B, Wang C, et al. Normal hall-petch behavior of mild steel with submicron grains[J]. Materials Letters,2003,57(19):2798-2802.
    [37]Swarr T, Krauss G. The Effect of structure on the deformation of as-quenched and tempered martensite in an Fe-0.2pct C alloy[J]. Metallurgical Transactions A, 1976,7A(1):41-48.
    [38]Tomita Y, Okabayashi K. Effect of microstructure on strength and toughness of heat-treated low alloy structural steels [J]. Metallurgical Transactions A,1986, 17A(7):1203-1209.
    [39]王亚男,陈树江,董希淳.位错理论及其应用[M].北京:冶金工业出版社,2007.
    [40]Speich G R, Spitzig W A. Effect of volume fraction and shape of sulfide inclusions on through-thickness ductility and impact energy of high-strength 4340 plate steels[J]. Metallurgical and Materials Transsctions A,1982,13(12): 2239-2258.
    [41]李晓源.不同洁净度装甲钢板的抗枪弹侵彻研究[D].钢铁研究总院,2010.
    [42]雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006:10.
    [43]Lonsdale D, Flewitt P E J. The role of grain size on the ductile-brittle transition of a 2.25 pct Cr-1 pct Mo steel[J]. Metallurgical Transactions,1978,9A(11): 1619-1623.
    [44]Fairchild D P, Howden D G, Clark W A T. The mechanism of brittle fracture in a microalloyed steel:Part I. Inclusion-induced cleavage[J]. Metallurgical and Materials Transctions A,2000,31A(3):641-652.
    [45]Petch N J. The influence of grain boundary carbide and grain size on the cleavage strength and impact transition temperature of steel [J]. Acta Metallurgical,1986,34(7):1387-1399.
    [46]Inoue T, Matsuda S, Okamura Y, et al. The fracture of a low carbon tempered martensite [J]. Transactions of JIM,1970,11(1):36-43.
    [47]Maropoulos S, Ridley N. Inclusions and fracture characteristics of HSLA steel forgings[J]. Materials Science and Engineering A,2004, A384(1-2):64-69.
    [48]Diaz-Fuentes M, Iza-Mendia A, Gutierrez I. Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior[J]. Metallurgical and Materials Transactions A,2003, 34A(11):2504-2516.
    [49]Chen J H, Yan C. A comparison of toughness of C-Mn steel with different grain sizes[J]. Metallurgical Transactions,1992,23A(9):2549-2556.
    [50]Yan C, Chen J H, Sun J, Wang Z. Crital assessment of the local cleavage stress of in notch specimens of C-Mn steel [J]. Metallurgical Transactions A,1993, 24A(5):1381-1389.
    [51]Kim S, Im Y, Lee S, Lee H, Oh Y J, Hong J H. Effects of alloying elements on mechanical and fracture properties of base metals and simulated heat-affected zones of SA 508 Steels[J]. Metallurgical and Materials Transactions A,2001, 32A (4):903-911.
    [52]Bouyne E, Flower H M, Lindley T C, et al. Use of EBSD technique to examine microstructure and cracking in a bainitic steel[J]. Scripta Materialia,1998,39 (3): 295-300.
    [53]时捷,高性能马氏体钢组织调控研究[D].北京:钢铁研究总院,2012.
    [54]Clausing D P. Effect of Plastic Strain State on Ductility and Toughness [J]. International Journal of Fracture,1970,6(1):71-85.
    [55]Pickering E B. Toward Improved Ductility and Toughness[J]. Kyoto:Climax Molybdenum Corporation,1971:9-32.
    [56]Hulka K, Bergmen B, Steibelberger A, et al. Development trends in high strength tructural steel. Proc. Int. Conf. On Processing, Microstructure and Properties of Microalloyed and other Moldern High Strength Low Alloyed Steels [C]. Warredale, PA, Iron and Society,1991:177-187.
    [57]王有铭,李曼云,韦光.钢材的控制轧制和控制冷却[M].北京:冶金工业出版社,1995.
    [58]赵英利.1500MPa级直接淬火马氏体钢的组织控制与强化机理研究[D].昆明理工大学,2010.
    [59]Palmiere E J. Influence of processing conditions and alloy chemistry on the static recrystallization of microalloyed austenite [J].Mater. Forum,1998,284-296: 151-158.
    [60]潘大刚.直接淬火工艺对中厚钢板组织性能的影响[D].沈阳:东北大学,2003.
    [61]王国栋等译.高强度低合金钢的控制轧制与控制冷却[M].北京:冶金工业出版社,1992:264.
    [62]雍岐龙,马鸣图,吴宝榕.微合金钢物理和力学冶金[M].北京:机械工业出版社,1989.
    [63]DeArdo A J. Microalloyed strip steels for the 21st century [J]. Materials Science
    [64]王祖滨.低合金钢和微合金钢的发展[J].中国冶金,1999,(3):19-23.
    [65]Meyer L.微合金化元素Nb、V、Ti、Zr和B及其在现代汽车钢中的作用[J].宝钢情报,1989,(4):70-80.
    [66]姚连登.微合金化与控制轧制的进展[J].宽厚板,1999,5(1):1-4.
    [67]雍岐龙.微合金钢中微合金碳氮化物在奥氏体中的沉淀问题[D].北京:钢铁研究总院,1987.
    [68]Zener C. Grains, Phases, and Interfaces:An Interpretation of Microstructure[J]. Trans AIME,1948,175:47
    [69]Hillert M. On the Theory of Normal and Abnormal Grain Growth[J]. Acta Met, 1965,13:227-238.
    [70]Gladman T. The Theory of Precipitate Particles on Grain Growth in Metals[J]. Proc Roy Soc,1966,294A:298-309.
    [71]Gray J M, DeArdo A J. Fundamental Metallurgy of Niobium in Steel[C]. HSLA steels:metallurgy and applications. ASM Int, USA,1986.
    [72]Balance J B. The Hot Deformation of Austenite[M]. New York:TMS-AIME, 1976.
    [73]Stalheim D. The Use of Microalloyed Steels for Rolling Plate and Coil[C]//高温轧制工艺(HTP)国际研讨会暨技术讲座报告集.北京,2006.
    [74]Andrade H L, Akben M G, Jonas J J. Effect of molybdenum, niobium and vanadium on static recovery and recrystallization and on solute strengthening in microalloyed steels[J]. Metall Trans A,1983,14:1967-77.
    [75]Craven AJ, He K, Garvie LA, Baker TN. Complex heterogeneous precipitation in Ti-Nb microalloyed Al-killed HSLA steels[J]. Acta Mater 2000,48:3857-3868.
    [76]Charleux M, Poole W J, Militzer M, et al. Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel[J]. Metall Mater Trans A,2001,32: 1635-47.
    [77]Xu G, Gan X L, Ma G J, et al. The development of Ti-alloyed high strength microalloy steel[J]. Mater Des,2010,31:2891-2896.
    [78]Jia Z, Misra RDK, O'Malley R, et al. Fine-scale precipitation and mechanical properties of thin slab processed titanium-niobium bearing high strength steels[J]. Mater Sci Eng A,2011,528:7077-7083.
    [79]Farahat A I Z, El-Bitar T A. Effect of Nb, Ti and cold deformation on microstructure and mechanical properties of austenitic stainless steels[J]. Mater Sci Eng A 2010,527:3662-69.
    [80]Show BK, Veerababu R, Balamuralikrishnan R, et al. Effect of vanadium and titanium modification on the microstructure and mechanical properties of a microalloyed HSLA steel[J]. Mater Sci Eng A,2010,527:1595-1604.
    [81]Ooi SW, Fourlaris G. A comparative study of precipitation effects in Ti only and Ti-V Ultra Low Carbon (ULC) strip steels[J]. Mater Charact 2006,56(3): 214-226.
    [82]Soto R, Saikaly W, Bano X, et al. Statistical and theoretical analysis of precipitates in dual-phase steels microalloyed with titanium and their effect on mechanical properties[J]. Acta Mater,1999,47(12):3475-81.
    [83]Regone W, Jorge Jr. AM, Balancin O. Evidence of strain-induced precipitation of Ti4C2S2 during hot deformation of Ti-only stabilized IF steel. Scripta Mater 2003, 48:773-8.
    [84]Ghosh P, Ghosh C, Ray RK, Bhattacharjee D. Precipitation behavior and texture formation at different stages of processing in an interstitial free high strength steel. Scripta Mater 2008,59:276-78.
    [85]Yoshimasa Funakawa, Tsuyoshi Shiozaki, Kunikazu Tomita, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides[J]. ISIJ International,2004,44(11):1945-1951.
    [86]Lnoue K, Ishikawa N. Calculation of Phase Equilibria between Austenite and (Nb, Ti, V) (C, N) in Microallyed Steel[J]. ISIJ,2001,141(92):175-182.
    [87]Yuan Shao-qiang, Liang Guo-li, Zhang Xiao-juan. Interaction between elements Nb and Mo during precipitation in microalloyed austenite [J]. Journal of Iron and Steel Research, International,2010,17(9):60-63.
    [88]Yoshimasa Funakawa, Kazuhiro Seto. Coarsening behavior of nanometer-sized carbides in hot-rolled high strength sheet steel [J]. Materials Science Forum, 2007, (539-543):4813-4818.
    [89]苑少强,王春,梁国俐,等.含Mo微合金钢的析出行为[J].唐山学院学报,2008,21(4):1-3.
    [90]Jae-Gil Jung, June-Soo Park, Jiyoung Kim, et al. Carbide precipitation kinetics in austenite of a Nb-Ti-V microalloyed steel [J]. Materials Science and Engineering A,2011, (528):5529-5535.
    [91]Niu Tao, Kang Yonglin,Gu Hong-wei, et al. Precipitation behavior and its strengthening effect of X100 pipeline steel[J]. Journal of Iron and Steel Research, international,2010,17(11):73-78.
    [92]蔡庆伍,段修刚,武会宾.Ti-Mo全铁素体基微合金高强钢纳米尺度析出相[J].金属学报,2011,47(2):251-256.
    [93]Hung-Wei Yen, Ching-Yuan Huang, Jer-Ren Yang. Characterization of interphase-precipitated nanometer-sized carbides in a Ti-Mo-bearing steel [J]. Scripta Materialia,2009, (61):616-619.
    [94]C Y Chen, H W Yen, F H Kao, et al. Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides[J]. Materials Science and Engineering A,2009, (499):162-166.
    [95]Seto Kazuhiro, Funakawa Yoshimasa, Kaneko Shinjiro. Hot rolled high strength steels for suspension and chassis parts "NANOHITEN"and"BHT steel"[J]. JFE Technical Report,2007, (10):19-25.
    [96]段修刚.铁素体Ti-Mo微合金钢纳米粒子析出规律研究[D].北京:北京科技大学,2012.
    [97]P. Baviera, S. Harel, H. Garem and M. Grosbras[J]. Scripta Mater.,2001,44: 2721.
    [98]A. Mani, P. Aubert, F. Mercier, et al. Effects of residual stress on the mechanical and structural properties of TiC thin films grown by RF sputtering[J]. Surf. Coat. Technol,2005,194:190.
    [99]S B Li, W H Xiang, H X Zhai, et al. Powder Technol.2008,185:49.
    [100]王昭东,曲锦波,刘相华,等.松弛法研究微合金钢碳氮化物的应变诱导析出行为[J].金属学报,2000,36(6):618-621.
    [101]Liu W J, Jonas J J. A stress relaxation method for following carbonitride precipitation in austenite at hot working temperatures [J]. Metallurgical Transaction A, 1983,19A(6):1403-1413.
    [102]Jonas J J, Weiss I. Effect of precipitation on recrystallization in microalloyed steels[J]. Metal Science,1979,13:38-245.
    [103]J. Adamczyk. Development of the microalloyed constru-ctional steels[J]. Achievements, Mater. Manuf. Eng,2006,14(1-2):9-20.
    [104]A C Kneissl, C I Garcia, A J DeArdo. HSLA Steels:Processing, Properties and Applications [J]. The Minerals, Metals & Materials Society, Warrendale,1992: 99-105.
    [105]傅杰,朱剑,迪林,等.微合金钢中TiN的析出规律研究[J].金属学报,2000,36(8):801-804.
    [106]Yamamoto, S, Ouchi C, Osuka, T. The Effect of Microalloying Elements on the Recovery and Recrystallization in Deformed Austenite[C]//Proceedings of the International Conference, Thermomechanical Processing of Microalloyed Austenite. Warrendale, PA,1982:613-639.
    [107]Akben M G, Chandra T, Plassiard P, et al. Dynamic precipitation and solute hardening in a titanium microalloyed steel containing three levels of manganese[J]. Acta.Metall.,1984,32(4):591-601.
    [108]M. G. Akben, I. Weiss, J. J. Jonas, Acta Metall.29(1981) 111.
    [109]H.Watanabe, Y. E. Smith, R. D. Pehlke. Precipitation kinetics of niobium carbonitride in austenite of high-strength low-alloy steels[A]. The Hot Deformation of Austenite, New York, NY:TMS-AIME,1977:140-168.
    [110]Zhenqiang Wang, Xinjun Sun, Zhigang Yang, et al. Carbide precipitation in austenite of a Ti-Mo-containing low-carbon steel during stress relaxation[J]. Materials Science & Engineering A,2013,573:84-91.
    [111]Zhenqiang Wang, Xinping Mao, Zhigang Yang, et al. Strain-induced precipitation in a Ti micro-alloyed HSLA steel[J]. Materials Science and Engineering A,2011, (529):459-467
    [112]Jang J H, Lee C H, Heo Y U, et al. Stability of (Ti, M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Mater.,2012,60: 208-217.
    [113]A. Bakkaloglu. Mater. Lett.,2002,56:200-209.
    [114]A.P. Singh, A. Prasad, K. Prakash, et al. Murty, Mater. Sci. Technol.,1999,15: 121-125.
    [115]P.C.M. Rodigues, E.V. Pereloma, D.B. Santos, Mater. Sci. Eng. A 283 (2000) 136-143.
    [116]H. Niakana, A. Najafizadeh, Mater. Sci. Eng. A 527 (2010) 5410-5414.
    [117]T. Siwecki, B. Hutchinson, S. Zajac, Proc. Int. Conf. Microalloying, Pittsburgh, PA,1995, pp.197-209.
    [118]S. Zajac, T. Siwecki, B. Hutchinson, Metall. Trans.22A (1991) 2681-2693.
    [119]A.J. DeArdo, Proceedings of the Third International Conference on HSLA Steels, China Science and Technology Press, Beijing,1995, pp.99.
    [120]J. Zrnik, T. Kvackaj, A. Pongpaybul, P. Sricharoenchai, J. Vilk, V. Vrchovinsky, Mater. Sci. Eng. A 319-321 (2001) 321-325.
    [121]Adamczyk J, Kalinowska-Ozgowicz E, Ozgowicz W, et al. Interaction of carbonitrides V(C,N) undissolved in austenite on the structure and mechanical properties of microalloyed V-N steels[J]. J Mater Proc Tech,1995,53:23-32.
    [122]Matsuo S, Ando T, Grant NJ. Grain refinement and stabilization in spray formed AISI 1020 steel[J]. Mater Sci Eng A,2000,288A:34-41.
    [123]Lazarova R, Petrov RH, Gaydarova V, et al. Microstructure and mechanical properties of P265GH cast steel after modification with TiCN particles[J]. Mater Des,2011,32:2734-41.
    [124]Rasouli D, Khameneh Asl Sh, Akbarzadeh A, et al. Optimization of mechanical properties of a micro alloyed steel[J]. Mater Des,2009,30:2167-72.
    [125]L. Xu, J. Shi, W.Q. Cao, et al, J. Mater. Sci.46 (2011) 3653-3658.
    [126]M. Diaz-Fuentes, A. Iza-Mendia, I. Gutierrez, Metall. Mater. Trans.36A (2003) 2505-2516.
    [127]B. Hwang, Y.G. Kim, S. Lee, Y.M. Kim, N.J. Kim, J.Y. Yoo, Metall. Mater. Trans.36A (2005) 2107-2114.
    [128]W. Wang, W. Yan, L. Zhu, P. Hu, Y.Y. Shan, K. Yang, Mater. Design 30 (2009) 3436-3443.
    [129]R. A. Roberts and R. F. Mehl:Trans. AIME,31 (1943),613.
    [130]C. R. Brooks:Principles of the Austenitization of Steels[M]. London:Elsevier Applied Science,1992:81.
    [131]N. Nakada, N. Hirakawa, T. Tsuchiyama and S. Takaki:Scr. Mater.,57 (2007) 153.
    [132]S. E. Offerman, N. H. van Dijk, J. Sietsma, S. Grigull, E. M. Lauridsen, L. Margulies, H. F. Poulsen, M. Th. Rekveldt and S. van der Zwaag:Science,298 (2002),1003.
    [133]N. Moelans, B. Blanpain, P. Wollants:CALPHAD,32 (2008),268.
    [134]L. Q. Chen:Annu. Rev. Mater. Res., (32) 2002,113.
    [135]W. J. Boettinger, J. A.Warren, C. Beckermann and A. Karma:Annu. Rev. Mater. Res., (32) 2002,163.
    [136]Munekazu Ohno, Kiyotaka Matsuura:Acta Mater.,58 (2010),5749.
    [137]I. Steinbach, F. Pezzolla:Physica D,134 (1999),385.
    [138]J. Tiaden, B. Nestler, H. J. Diepers, I. Steinbach:Physica D,115 (1998),73.
    [139]S. G. Kim, W. T. Kim, T. Suzuki:Phsysical Review E,60 (1999),7186.
    [140]S. G. Kim, W. T. Kim, T. Suzuki, M. Ode:Journal of crystal growth,261 (2004), 135.
    [141]Munekazu Ohno, Kiyotaka Matsuura:Acta Mater.,58 (2010),6134.
    [142]R.F. Almgren:SIAM J Appl Math.,59 (1999),2086.
    [143]C. S. Smith:Trans. AIME,175 (1948).
    [144]Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Materialia,2003,51(6):1789-1799.
    [145]Kitahara H, Ueji R, Ueda M, et al. Crystallographic features of lath martensite in low-carbon steel[J]. Acta Materialia,2006,54(5):1279-1288.
    [146]李昭东.变形和合金元素对钢中奥氏体组织形成和分解相变的影响[D].北京:清华大学,2011.
    [147]赵建平,张秀敏,沈士明.材料韧脆转变温度数据处理方法探讨[J].石油化工设备,2004,33(4):29-32.
    [148]周昌玉,夏翔鸣.CrMo钢材料韧脆转变温度曲线的回归分析[J].压力容器,2003,20(6):13-18.
    [149]钟群鹏,张峥,李洁,等。材料韧脆转移过程中的数学模拟和定量分析[J].机械工程学报,1992,28(5):1-7.
    [150]侯世颖.管线钢韧脆转变和韧性断裂研究[D].北京:北京科技大学,2006:22-23.
    [151]林虎,徐远超,张长义,等.秦山核电厂第三根监督管试样冲击试验数拟合[J].中国原子能科学研究院年报,2001(1):83-84.
    [152]HW Luo, J Sietsma, S Van Der Zwaag. A novel observation of strain-induced ferrite-to-austenite retransformation after intercritical deformation of C-Mn steel[J]. Metall Mater Trans A,2004,35A:2789-2797.
    [153]王春芳.低合金马氏体钢强韧性组织控制单元的研究[D].北京:钢铁研究总院,2008.
    [154]Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels[J]. Materials Science and Engineering A,2006, 438-440(25):237-240.
    [155]Ohmori Y, Ohtaniand H, Kunitake T. Tempering of the bainite and the bainite/martensite duplex structure in a low-carbon low-alloyed steel [J]. Metal Science,1974,8(11):357-366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700