用户名: 密码: 验证码:
SiO_2-BN陶瓷与Invar合金钎焊中间层设计及界面结构形成机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiO_2-BN陶瓷是以SiO_2陶瓷和BN陶瓷为基础发展起来的新一代导弹天线罩材料,表现出优异的协同强化作用,具有较好的力学和介电性能、优越的抗热震性能以及良好的抗烧蚀性能。在天线罩的实际装配应用过程中,陶瓷天线罩需要与金属环进行可靠连接。Invar合金在室温范围内的热膨胀系数较低,成为国内外金属连接环的常用材料。为了解决胶接方法的耐热性差和易老化问题以及消除机械连接带来的附加重量,本文采用活性钎焊方法实现SiO_2-BN陶瓷与Invar合金的可靠连接,基于液态钎料与母材相互作用过程中的界面特征,通过中间层体系优化设计实现对钎焊接头界面组织的控制以及力学性能的提高。
     设计了两种界面反应模式,采用FIB制样和HRTEM表征方法研究了钎料与SiO_2-BN陶瓷的界面反应。通过在Ag-Cu共晶合金块上放置Ti箔的试验方法研究了液态Ag-Cu/Ti钎料在SiO_2-BN陶瓷表面的润湿铺展行为,揭示了活性元素Ti在反应润湿体系中的作用。研究结果表明,AgCu-Ti/SiO_2-BN体系的润湿性取决于SiO_2-BN陶瓷界面TiN-TiB2反应层的形成;液态钎料中的Ti含量和温度对体系润湿性的影响不明显;陶瓷表面形态仅影响接触角开始降低阶段的速率。采用电子束蒸镀辅助钎焊的方法研究了SiO_2-BN陶瓷自身钎焊过程中的界面特征。钎焊过程中,Ti镀层快速向液态Ag-Cu钎料中溶解扩散直至形成均匀体系。液态钎料中的活性元素Ti在化学势差驱动力作用下向SiO_2-BN陶瓷聚集形成富Ti层。富Ti层与陶瓷反应形成TiN-TiB2纳米晶反应层;并与Cu反应形成不连续的带状Ti-Cu化合物。从热力学角度讨论了润湿铺展以及自身钎焊两种界面反应模式下,活性元素Ti与SiO_2-BN陶瓷的界面反应机制,即解明了厚度为150-200nm的TiN-TiB2纳米晶反应层的形成过程。
     采用Ag-Cu/Ti活性钎料分析了Invar/SiO_2-BN体系的钎焊性,阐明了Ti含量、工艺参数对接头界面组织和性能的影响。Ti含量和工艺参数影响陶瓷界面反应区域的厚度以及Fe_2Ti-Ni_3Ti脆性化合物的形成和分布。当Ti含量为4.5wt.%时,在钎焊温度880℃,保温10min条件下接头的平均抗剪强度最大为32MPa,并且接头的抗剪强度随着工艺参数的改变急剧降低。两种母材固有的热膨胀系数差异产生的残余应力以及钎焊接头中脆性化合物的形成都弱化接头性能。
     为了调节中间层组织的热膨胀系数,缓解接头的残余应力,采用机械球磨法制备h-BN颗粒增强的Ag-Cu-Ti+BN复合钎料中间层体系,通过原位反应钎焊Invar合金和SiO_2-BN陶瓷。使用优化的复合钎料中间层钎焊Invar/SiO_2-BN体系,h-BN颗粒完全与活性元素Ti反应形成TiB晶须和TiN颗粒联合增强的接头;Fe_2Ti-Ni_3Ti脆性化合物的形成得到一定程度的抑制,接头的平均抗剪强度达到39MPa。综合考虑钎焊接头的界面结构、连接体系热膨胀系数的匹配性以及中间层组织的塑性变形能力三方面因素,讨论了钎焊接头的强化机制。
     基于Invar合金向液态钎料中的溶解机制,设计并采用Ag-Cu/Cu/Ag-Cu-Ti软性复合中间层钎焊Invar合金与SiO2-BN陶瓷,实现Fe_2Ti-Ni_3Ti脆性化合物的抑制并缓解接头的残余应力。研究了Cu中间层厚度对Invar/SiO2-BN钎焊接头界面组织和性能的影响,使用软性复合中间层获得的接头强度高于仅使用Ag-Cu-Ti钎料的钎焊接头,当Cu中间层的厚度为100μm时,接头的抗剪强度最大为43MPa。从钎焊过程中的反应次序以及Cu中间层的阻隔作用两方面揭示了接头中Fe_2Ti+Ni_3Ti脆性化合物的抑制机制。结合颗粒增强复合钎料和软性复合中间层两方面的优点,设计Ag-Cu/Cu/Ag-Cu-Ti+BN软性-梯度中间层钎焊Invar合金和SiO2-BN陶瓷。钎焊接头组织既实现对Fe_2Ti+Ni_3Ti脆性化合物的完全抑制,又实现对陶瓷侧热膨胀系数的调节。
     采用有限元模拟方法评价三种中间层体系钎焊Invar合金和SiO2-BN陶瓷接头的残余应力大小和分布。结果表明,三种中间层体系获得钎焊接头的最大残余应力都在近界面反应层的陶瓷基体中形成。采用Ag-Cu-Ti钎料直接钎焊获得接头残余应力最大值是230MPa;采用BN颗粒增强的复合钎料时,陶瓷基体表面的最大残余应力降低为142MPa;使用软性复合中间层时,陶瓷中的最大残余应力仅为69MPa。结果表明,Ag-Cu/Cu/Ag-Cu-Ti软性复合中间层能够很好的缓解Invar/SiO2-BN钎焊接头残余应力。
Based on fused silica and BN ceramic, co-enhanced SiO_2-BN ceramic whichpossess superior thermal and dieletric properites, excellent thermal shock resistanceand good ablation resistance, has been developed to be a new generation of missileradome material. In the practical application of SiO_2-BN ceramic, the assembly ofmissile radome requires joining a SiO_2-BN ceramic radome to a metallic holder.Invar alloy has a very small thermal expansion coefficient around room temperatureand is a commonly used material for metal connecting ring. In order to solve thepoor high-temperature resistence and heat ageing resistance of the joint caused byadhesive bonding, as well as the additional weight produced by mechanical bonding,active brazing is applied to bond SiO_2-BN ceramic to Invar alloy. According to theinterfacial characteriazion during the reaction between liquid filler metal and parentmaterials, interlayer design is used to control interfacial microstructure and improvemechanical properties of an active brazed Invar/SiO_2-BN joint.
     The interfaicial characterization between liquid filler and parent materials wasstudied by two interfacial reaction modes using FIB sample preparation and HRTEMmethod. The wetting and spreading behaviour of liquid Ag-Cu/Ti filler on SiO_2-BNceramic was researched by the means of a piece of Ti over the Ag-Cu eutectic alloyon the substrate. And the role of active element Ti in the reaction wetting processwas revealed. When the Ti concentration in the liquid/solid interface was enough totrigger the chemical reaction, the reaction drived spreading of the system would takeplace. And Ti content has little effect on the final contact angle of the system. Thewettability of AgCu-Ti/SiO_2-BN system was dependent on TiN-TiB2reaction layerformed on SiO_2-BN ceramic interface. Increasing of Ti content in the liquid fillermainly affected the formation and distribution of Ti-Cu compound. The testingtemperature and surface state of SiO_2-BN ceramic only affected the reduction rate ofcontact angle in the early stage. The interfacial characterization of self-brazedSiO_2-BN ceramic was studied by electron beam evaporation assisted brazing method.During brazing process, the electron beam evaporated Ti layer dissolved into theAg-Cu liquid rapidly until formed a homogeneous system.The active Ti atomsaccumulated at the surface of SiO_2-BN ceramic to form a Ti-rich zone due to thechemical potential difference. Ti reacted with SiO_2-BN ceramic to form a TiN-TiB2reaction layer. On the other hand, it reacted with Cu to form Ti-Cu compounds. Thereaction mechanism between the active element Ti and SiO_2-BN ceramic wasdiscussed from the viewpoint of thermodynamics. The formation mechanism of150-200nm thick TiN-TiB2reaction layer was explained.
     Invar alloy and SiO_2-BN ceramic was brazed with Ag-Cu/Ti filler metal, therelationship among Ti content, brazing parameters and joint microstruction andproperties was established. Ti content and brazing parameters affected the thicknessof reaction layer as well as the formation and distribution of Ti-Cu compounds in thejoint. When the Ti content was4.5wt.%, shear strength of joints brazed at880℃for10min reached32MPa. Additionally, the joint strength reduced dramatically withthe change of brazing parameters. The bonding properties became weaken becauseof the residual stress yieled by mismatch of thermal expansion coefficient betweenInvar alloy and SiO_2-BN ceramic and the formation of brittle compounds.
     In order to adjust the thermal expansion coefficient of the interlayer and relievethe residual stress of the joints, Ag-Cu-Ti+BN composite filler which fabricated bymechanical milling was used to braze Invar and SiO_2-BN. The BN content in thecomposite filler was optimized through the joining of Ti/SiO_2-BN, and the reactionmechanism between Ti and BN was studied. When the optimized composite fillerwas used to braze Invar and SiO_2-BN, the h-BN was completely reacted with Ti toform TiB whiskers and TiN nano-grains, meanwhile Fe_2Ti-Ni_3Ti composites wereinhibited in a certain degree. The shear strength of joints reached39MPa. The jointstrength was determinted by the interfacial structure of the joint, the CTE mismatchbetween the joined materials, and the plastic deformability of the brazing seam. Thebalance of the three factors could be achieved by adjusting the BN content.
     In order to completely inhibit the formation of Fe_2Ti-Ni_3Ti brittle compounds,Ag-Cu/Cu/Ag-Cu-Ti composte interlayer was designed to braze Invar and SiO_2-BN.The effect of Cu-foil thickness on the microstructure and mechanical properties ofthe brazed joints was investigated. It was found from the curve that the shearstrength of the joints brazed with Cu foils of different thickness were higher thanthat of the joints obtained with single Ag-Cu-Ti foil. Additionally, the joint strengthfirst increased dramatically and then decreased slightly with the increase of Cu-foilthickness. The maximum joint strength reached43MPa when a100μm thick Cu-foilwas used, which was more than twice higher than these joints brazed with Ag-Cu-Tifoil. The inhibition of brittle Fe2Ti and Ni3Ti compounds was believed to beinvolved in the reaction sequences and the addition of Cu barrier layer. Based on theabove results, Ag-Cu/Cu/Ag-Cu-Ti+BN interlayer was designed to braze Invar alloyand SiO_2-BN ceramic. The formation of Fe2Ti and Ni3Ti brittle compounds wascompletely inhibited and the CTE of the interlayer adjacent to SiO_2-BN ceramic wasreduced.
     The size and distribution of residual stresses yieled in Invar and SiO_2-BN jointbrazed with three different types of interlayers were evaluated by finite elementsimulation method. The results showed that the maximum residual stress in thejoints for the three interlayers was yieled in the ceramic substrate adjacent to the reaction layer, and a bowed distribution was observed. When Ag-Cu-Ti filler metalwas used to braze Invar alloy and SiO_2-BN ceramic, the maximum residual stesss inthe joint was as high as230MPa; while Ag-Cu-Ti+BN composite filler was usedbraze Invar and SiO_2-BN, the maximum residual stesss in the joint was142MPa;when Ag-Cu/Cu/Ag-Cu-Ti composite interlayer was used, the maximum residualstesss in the joint was only69MPa. It was found that Ag-Cu/Cu/Ag-Cu-Ti compositeinterlayer has the best effect to relax the residual stress in the Invar/SiO_2-BN brazedjoints. Particularlly, this type of composite interlayer can also be applied to brazeother ceramic-metal systems.
引文
[1] Wen G, Wu G L, Lei T Q, Zhou Y, Guo Z X. Co-Enhanced SiO2-BN Ceramicsfor High-Temperature Dielectric Applications [J]. Journal of the EuropeanCeramic Society,2000,20:1923-1928.
    [2] Jia D C, Zhou L Z, Yang Z H, Duan X M, Zhou Y. Effect of PreformingProcess and Starting Fused SiO2Particle Size on Microstructure andMechanical Properties of Pressurelessly Sintered BNp/SiO2CeramicComposites [J]. Journal of the American Ceramic Society,2011,94(10):3552-3560.
    [3] Jiang Y G, Zhang C R, Cao F, Wang S Q, Hu H F, Cao Y B. Effects ofThermal Load on Mechanical Properties and Microstructures of3DSiO2f/Si3N4-BN Composites Using Polyborosilazane [J]. Materials Scienceand Engineering A,2008,487:597-600.
    [4] Zhai H Z, Cai H N, Yang X Z, Li J B, Guo G F, Cao C B. Preparation andProperties of BN-SiO2Composite Ceramics [J]. Key Engineering Materials,2007,336-338:1426-1428.
    [5] Zheng X, Cahill D G, Zhao J C. Effect of MeV Ion Irradiation on theCoefficient of Thermal Expansion of Fe-Ni Invar Alloys: A CombinatorialStudy [J]. Acta Materialia,2010,58:1236-1241.
    [6] Gorria P, Blanco D M, Blanco J A, Smith R I. Neutron PowderThermo-Diffraction in Mechanically Alloyed Fe64Ni36Invar Alloy [J].Journal of Alloys and Compound,2010,495:495-498.
    [7] Dokania A K, Kocdemir B, Diebolder R, Cai J, Behm R J, Hibst R, Herr U. αto γ Phase Transformation in Electrodeposited Invar Film by Short PulseLaser Treatment [J]. Materials Science and Engineering A,2007,456:64-71.
    [8] Akselsen O M. Advances in Brazing of Ceramics [J]. Journal of MaterialsScience,1992,27:1989-2000.
    [9] Fernie J A, Drew R A L, Knowles K M. Joining of Engineering Ceramics [J].International Materials Reviews,2009,54:283-331.
    [10] Naidich Y V, Zhuravlev V S, Gab I I, Kostyuk B D, Krasovskyy V P,Adamovskyy A A, Taranets N Y. Liquid Metal Wettability and AdvancedCeramic Brazing [J]. Journal of the European Ceramic Society,2008,28:717-728.
    [11] Suganuma K, Miyamoto Y, Koizumi M. Joining of Ceramics and Metals [J].Annual Review of Materials Science,1988,18:47-73.
    [12] Sun Y, Zhang J, Zhang H W, Fan G H, He Y M. Microstructure Evolution ofthe Si3N4/Si3N4Joints Brazed Using Au-Ni-V Filler Alloys with Different VContent [J]. Journal of Alloys and Compounds,2011,509:8407-8412.
    [13]刘会杰,冯吉才.陶瓷与金属的连接方法及应用[J].焊接,1999,6:5-9.
    [14] Zhang J X, Chandel R S, Seow H P. Effects of Chromium on the Interface andBond Strength of Metal-Ceramic Joints [J]. Materials Chemistry and Physics,2002,75:256-259.
    [15] Rijnders M R, Peteves S D. Joining of Alumina Using a V-Active Filler Metal[J]. Scripta Materialia,1999,41(10):1137-1146.
    [16] Sun Y, Zhang J, Geng Y P, Ikeuchib K, Shibayanagi T. Microstructure andMechanical Properties of an Si3N4/Si3N4Joint Brazed with Au-Ni-Pd-V FillerAlloy [J]. Scripta Materialia,2011,64:414-417.
    [17] Asthana R, Singh M. Joining of ZrB2-Based Ultra-High-Temperature CeramicComposites Using Pd-Based Braze Alloys [J]. Scripta Materialia,2009,61:257-260.
    [18] Ramsheh H H, Sani M A F, Kokabi A H. Microstructure and MechanicalProperties of MoSi2-MoSi2Joints Brazed by Ag-Cu-Zr Interlayer [J].Materials and Design,2013,49:197-202.
    [19] Liu G W, Qiao G J, Wang H J, Yang J F, Lu T J. Pressureless Brazing ofZirconia to Stainless Steel with Ag-Cu Filler Metal and TiH2Powder [J].Journal of the European Ceramic Society,2008,28:2701-2708.
    [20] Abed A, Jalham I S, Hendry A. Wetting and Reaction Between β'-Sialon,Stainless Steel and Cu-Ag Brazing Alloys Containing Ti [J]. Journal of theEuropean Ceramic Society,2001,21:283-290.
    [21] Guedes A, Pinto A M P, Vieira M, Viana F. Multilayered Interface inTi/Macor Machinable Glass-Ceramic Joints [J]. Materials Science andEngineering A,2001,301:118-124.
    [22] Guedes A, Pinto A M P, Vieira M, Viana F. The Effect of Brazing Temperatureon the Titanium/Glass-Ceramic Bonding [J]. Journal of Materials ProcessingTechnology,1999,92-93:102-106.
    [23] Liu H B, Zhang L X, Wu L Z, Liu D, Feng J C. Vacuum Brazing of SiO2Glass Ceramic and Ti-6Al-4V Alloy Using AgCuTi Filler Foil [J]. MaterialsScience and Engineering A,2008,498:321-326.
    [24] Liu H B, Zhang L X, Liu D, He P, Feng J C. Interface Microstructure Analysisof SiO2Glass Ceramic and Ti-6Al-4V Alloy Joint Brazed with Ti-Zr-Ni-CuAlloy [J]. Materials Science and Technology,2010,26(2):188-192.
    [25] Zhang L X, Wu L Z, Liu D, Feng J C, Liu H B. Interface Microstructure andMechanical Properties of the Brazed SiO2Glass Ceramic and30Cr3High-Tensile Steel Joint [J]. Materials Science and Engineering A,2008,496:393-398.
    [26] Feng J C, Liu D, Zhang L X, Lin X C, He P. Effects of Processing Parameterson Microstructure and Mechanical Behavior of SiO2/Ti-6Al-4V Joint Brazedwith AgCu/Ni Interlayer [J]. Materials Science and Engineering A,2010,527:1522-1528.
    [27]刘多.基于AgCu/Ni中间层的SiO2陶瓷与TC4钛合金钎焊工艺及机理研究[D].哈尔滨:哈尔滨工业大学博士论文,2009:11.
    [28]赵磊,张丽霞,田晓羽,何鹏,冯吉才.石英纤维复合材料与因瓦合金的活性胶辅助钎焊连接[J].焊接学报,2010,31(6):49-52.
    [29]赵磊. SiO2f/SiO2复合材料与Invar合金的钎焊接头界面结构及形成机理[D].哈尔滨:哈尔滨工业大学博士论文,2010:10.
    [30] Zhao L, Feng J C, Tian X Y, Zhang L X, He P. Brazing of Micrograin-FilledQuartz Fiber Reinforced Silica Composites and Invar Using Ag-21Cu-4.5TiAlloy [J]. Chinese Science Bulletin,2011,56(26):2869-2873.
    [31] Zhao L, Zhang L X, Tian X Y, He P, Feng J C. Interfacial Microstructure andMechanical Properties of Joining Electroless Nickel Plated Quartz FibersReinforced Silica Composite to Invar [J]. Materials and Design,2011,32:382-387.
    [32]陈波,熊华平,毛唯,程耀永. SiO2f/SiO2复合材料与TC4,Ti3Al和TiAl的钎焊[J].材料工程,2012,2:41-90.
    [33] Wang S Q, Mayer J W. Thermally Induced Reactions of Thin Ti and Nb Filmswith SiO2Substrate [J]. Journal of Applied Physics,1990,67:2923-2938.
    [34] Eichler J, Lesniak C. Boron Nitride (BN) and BN Composites for HighTemperature Applications [J]. Journal of the European Ceramic Society,2008,28:1105-1109.
    [35] Cho W S, Cho M W, Lee J H, Munir Z A. Effects of h-BN Additive on theMicrostructure and Mechanical Properites of AlN-Based MachinableCeramics [J]. Materials Science and Engineering A,2006,418:61-67.
    [36] Li H B, Zheng Y T, Han J C, Zhou L J. Microstructure, Mechanical Propertiesand Thermal Shock Behavior of h-BN-AlN Ceramic Composites Prepared byCombustion Synthesis [J]. Journal of Alloys and Compounds,2011,509:1661-1664.
    [37] Ma X D, Ohtsuka T, Hayashi S, Nakagawa Z. The Effect of BN Addition onThermal Shock Behavior of Fiber Reinforced Porous Ceramic Composite [J].Composites Science and Technology,2006,66:3089-3093.
    [38] Wei D Q, Meng Q C, Jia D C. Microstructure of Hot-Pressed h-BN/Si3N4Ceramic Composites with Y2O3-Al2O3Sintering Additive [J]. CeramicsInternational,2007,33:221-226.
    [39] Ding W F, Xu J H, Shen M, Fu Y C, Xiao B. Behavior of Titanium in theInterfacial Region Between Cubic BN and Active Brazing Alloy [J].International Journal of Refractory Metals&Hard Materials,2006,24:432-436.
    [40] Ding W F, Xu J H, Shen M, Su H H, Fu Y C, Xiao B. Joining of CBNAbrasive Grains to Medium Carbon Steel with AgCu/Ti Powder Mixture asActive Brazing Alloy [J]. Materials Science and Engineering A,2006,430:301-306.
    [41] Ding W F, Xu J H, Shen M, Fu Y C, Su H H, Xiao B. Solid-State InterfacialReactions and Compound Morphology of cBN Grain and Surface Ti Coating[J]. Vacuum,2006,81:434-440.
    [42] Wang Y, Qiu X M, Sun D Q, Yin S Q. Influence of Ti on Microstructure andStrength of c-BN/Cu-Ni-Sn-Ti Composites [J]. Int. Journal of RefractoryMetals and Hard Materials,2011,29:293-297.
    [43]王毅,邱小明,卢广林,任露泉. CuNiSnTi钎料钎焊立方氮化硼的焊接性与微观结构[J].稀有金属材料与工程,2007,36(3):343-346.
    [44] Sechi Y, Tsumura T, Nakata K. Dissimilar Laser Brazing of Boron Nitride andTungsten Carbide [J]. Materials and Design,2010,31:2071-2077.
    [45] Sechi Y, Takezaki A, Tsumura T, Nakata K. Dissimilar Laser Brazing ofBoron Nitride and Tungsten Carbide [J]. Smart Process Technol,2008,2:27-30.
    [46] Faran E, Gotman I, Gutmanas E Y. Coating of BN Via Solid State Reactionwith Ti Powder [J]. Materials Letters,2000,43:192-196.
    [47] Saiz E, Cannon R M, Tomsiare A P. Reactive Spreading: Adsorption, Ridgingand Compound Formation [J]. Acta Materialia,2000,48(18-19):4449-4462.
    [48] Saiz E, Tomsia A P, Kineties of High-Temperature Spreading [J]. CurrentOpinion in Solid State and Materials Science,2005,9(4-5):167-173.
    [49] Gremillard L, Saiz E, Radmilovic V R, Tomsia A P. Role of Titanium on theReactive Spreading of Lead-Free Solders on Alumina [J]. Journal ofMaterials Research,2006,21(12):3222-3233.
    [50] Aksay I A, Hoge C E, Pask J A. Wetting Under Chemical Equilibrium andNonequilibrium Conditions [J]. Journal of Physical Chemistry,1974,78(12):1178-1183.
    [51] Mao Y W, Mombello D, Baroni C. Wettability of Ni-Cr Filler on SiC Ceramicand Interfacial Reactions for the SiC/Ni-51Cr System [J]. Scripta Materialia,2011,64:1087-1090.
    [52] Luz A P, Ribeiro S. Wetting Behaviour of Silicon Nitride Ceramics by Ti-CuAlloys [J]. Ceramics International,2008,34:305-309.
    [53] Lin Q L, Shen P, Yang L L, Jin S B, Jiang Q C. Wetting of TiC by Molten Alat1123-1323K [J]. Acta Materialia,2011,59:1898-1911.
    [54] Eustathopoulos N. Dynamics of Wetting in Reactive Metal/Ceramic Systems[J]. Acta materialia,1998,46(7):2319-2327.
    [55] EspiéL, Drevet B, Euetathopoulos N. Experimental Study of the Influence ofInterfacial Energies and Reactivity on Wetting in Metal/Oxide Systems [J].Metallurgical and Materials Transactions A,1994,25(3):599-605.
    [56] Voytovych R, Ljungberg L Y, Eustathopoulos N. The Role of Adsorption andReaction in Wetting in the CuAg-Ti/Alumina System [J]. Scripta Materialia,2004,51:431-435.
    [57] Kozlova O, Voytovych R, Eustathopoulos N. Initial Stages of Wetting ofAlumina by Reactive CuAgTi Alloys [J]. Scripta Materialia,2011,65:13-16.
    [58] Voytovych R, Robaut F, Eustathopoulos N. The Relation Between Wettingand Interfacial Chemistry in the CuAgTi/Alumina System [J]. Acta Materialia,2006,54:2205-2214.
    [59] Eustathopoulos N. Progress in Understanding and Modeling Reactive Wettingof Metals on Ceramics [J]. Current Opinion in Solid State and MaterialsScience,2005,9(4-5):152-160.
    [60] Nomura M, Iwamoto C, Tanaka S-I. Nonastructure of Wetting Triple Line ina Ag-Cu-Ti/Si3N4Reactive System [J]. Acta Materialia,1999,47(2):407-413.
    [61] Iwamoto C, Tanaka S. Atomic Morphology and Chemical Reactions of theReactive Wetting Front [J]. Acta Materialia,2002,50:749-755.
    [62] Landry K, Rado C, Eustathopoulos N. Influence of Interfacial ReactionsRates on the Wetting Driving Force in Metal/Ceramic Systems [J].Metallurgical and Materials Transactions A,1996,27:3181-3186.
    [63] Landry K, Kalogeropoulou S, Eustathopoulos N. Wettability of Carbon byAluminum and Aluminum Alloys [J]. Materials Science and Engineering A,1998,254:99-111.
    [64]方洪渊,冯吉才.材料连接过程中的界面行为[M].哈尔滨:哈尔滨工业大学出版社,2005:51-63.
    [65] Valette C, Devismes M, Voytovych R, Eustathopoulos N. InterfacialReactions in Alumina/CuAgTi Braze/CuNi System [J]. Scripta Materialia,2005,52:1–6.
    [66] Stephens J J, Vianco P T, Hlava P F, Walker C A. Microstructure andPerformance of Kovar/Alumina Joints Made with Silve-Copper Base ActiveMetal Braze Alloys [J]. Advanced Brazing and Soldering Technologies,2000:240-251.
    [67] Kim T W, Chang H, Park S W. Mechanical Properties of Silicon Nitride/SteelJoint with Ni-Interlayer [J]. American Ceramic Society,2002:843-848.
    [68] Arróyave r, Eagar T W. Metal Substrate Effects on the Thermochemistry ofActive Brazing Interfaces [J]. Acta Materialia,2003,51:4871-4880.
    [69] Kundu S, Chatterjee S, Olson D, Mishra B. Effects of Intermetallic Phases onthe Bond Strength of Diffusion-Bonded Joints between Titanium and304Stainless Steel Using Nickel Interlayer [J]. Metallurgical and MaterialsTransactions A,2007,38:2053-2059.
    [70] Kundu S, Chatterjee S. Interface Microstructure and Mechancial Propeities ofDiffusion-Bonded Titanium-Stainless Steel Joints Using a Nickel Interlayer[J]. Materials Science and Engineering A,2006,425:107-113.
    [71] Vannod J, Bornert M, Bidaux J-E, Bataillard L, Karimi A, Drezet J M,Rappaz M, Hessler-Wyser A. Mechanical and Microstructural Integrity ofNickel–Titanium and Stainless Steel Laser Joined Wires [J]. Acta Materialia,2011,59:6538-6546.
    [72] Brochu M, Pugh M D, Drew R A L. Brazing Silicon Nitride to an Iron BasedIntermetallic Using a Copper Interlayer [J]. Ceramics International,2004,30:901-910.
    [73] Chang H, Park S W, Choi S C, Kim T W. Effect of Residual Stress onFracture Strength of Si3N4/Stainless Steel Joints with a Cu-Interlayer [J].Journal of Materials Engineering and Performance,2002,11:640-644.
    [74] Zhong Z H, Zhou Z J, Ge C C. Brazing of Doped Graphite to Cu Using StressRelief Interlayers [J]. Journal of Materials Processing Technology,2009,209:2662-2670.
    [75] Park J W, Mendez P F, Eagar T W. Strain Energy Release in Ceramic to MetalJoints by Ductile Metal Interlayers [J]. Scripta Materialia,2005,53:857-861.
    [76] Sabetghadam H, Hanzaki A Z, Araee A. Diffusion Bonding of410StainlessSteel to Copper Using a Nickel Interlayer [J]. Materials Characterization,2010,61:626-634.
    [77] Sam S, Kundu S, Chatterjee S. Diffusion Bonding of Titanium Alloy toMicro-Duplex Stainless Steel Using a Nickel Alloy Interlayer: InterfaceMicrostructure and Strength Properties [J]. Materials and Design,2012,40:237-244.
    [78] Zhang J, Xiao Y, Luo G Q, Shen Q, Zhang L M. Effect of Ni Interlayer onStrength and Microstructure of Diffusion-Bonded Mo/Cu Joints [J]. MaterialsLetters,2012,66:113-116.
    [79] Xiong J T, Li J L, Zhang F S, Huang W D. Joining of3D-C/SiC Compositesto Niobium Alloy [J]. Scripta Materialia,2006,55:151-154.
    [80] Cao J, Zheng Z J, Wu L Z, Qi J L, Wang Z P, Feng J C. ProcessingMicrostructure and Mechanical Properties of Vacuum-Brazed Al2O3/Ti6Al4VJoints [J]. Materials Science and Engineering A,2012,535:62-67.
    [81]邹贵生,吴爱萍,任家烈等. Ti/Ni/Ti复合层TLP扩散连接Si3N4陶瓷结合机理[J].清华大学学报,2001,41(4/5):51-54.
    [82] Zhu D Y, Ma M L, Jin Z H, Wang Y L The Effect of Molybdenum NetInterlayer on Thermal Shock Resistance of Al2O3/Nb Brazed Joint [J]. Journalof Materials Processing Technology,1999,96:19-21.
    [83] Shen Y X, Li Z L, Hao C Y, Zhang J S. A Novel Approach to Brazing C/CComposite to Ni-Based Superalloy Using Alumina Interlayer [J]. Journal ofthe European Ceramic Society,2012,32:1769-1774.
    [84] Luo Z H, Jiang D L, Zhang J X, Lin Q L, Chen Z M, Huang Z R.Development of SiC-SiC Joint by Reaction Bonding Method Using SiC/CTapes as the Interlayer [J]. Journal of the European Ceramic Society,2012,32:3819-3824.
    [85] Shirzadi A A, Zhu Y, Bhadeshia H K D H. Joining Ceramics to Metals UsingMetallic Foam [J]. Materials Science and Engineering A,2008,496:501-506.
    [86] Wang X, Cheng L F, Fan S W, Zhang L T. Microstructure and MechanicalProperties of the GH783/2.5D C/SiC Joints Brazed with Cu-Ti+MoComposite Filler [J]. Materials and Design,2012,36:499-504.
    [87] Qin Y Q, Feng J C. Active Brazing Carbon/Carbon Composite to TC4withCu and Mo Composite Interlayer [J]. Materials Science and Engineering A,2009,525:181-185.
    [88] Xian A P, Si Z Y. Interlayer Design for Joining Pressureless Sintered SialonCeramic and40Cr Steel Brazing with Ag57Cu38Ti Filler Metal [J]. Journal ofMaterials Science,1992,27:1560-1566.
    [89] Fang F, Zheng C, Lou H Q, Sui R Z. Bonding of Silicon Nitride CeramicsUsing Fe-Ni/Cu/Ni/Cu/Fe-Ni Interlayers [J]. Materials Letters,2001,47:178-181.
    [90] Zhou Y, Bao F H, Ren J L, North T H. Interlayer Selection andThermal-Stresses in Brazed Si3N4-Steel Joints [J]. Materials Science andTechnology,1991,7(9):863-868.
    [91] Suanuma K, Okamato T, Koizumi M, Shimada M. Method for PreventingThermal Expansion Mismatch Effect in Ceramic-Metal Joint [J]. Journal ofMaterials Science Letters,1985,4(5):648-650.
    [92] Lin G B, Huang J H, Zhang H. Joints of Carbon-Reinforced SiC Compositesto Ti-Alloy Brazed by Ag-Cu-Ti Short Carbon Fibers [J]. Journal of MaterialsProcessing Technology,2007,189:256-261.
    [93] Lin G B, Huang H J. Brazed Joints of Cf-SiC Composite to Ti Alloy UsingAg-Cu-Ti-(Ti+C) Mixed Powder as Interlayer [J]. Powder Metallurgy,2006,49:345-348.
    [94] He Y M, Zhang J, Liu C F, Sun Y. Microstructure and Mechanical Propertiesof Si3N4/Si3N4Joint Brazed with Ag-Cu-Ti+SiCpComposite Filler [J].Materials Science and Engineering A,2010,527:2819-2825.
    [95] He Y M, Sun Y, Zhang J, Li X D. An Analysis of Deformation Mechanism inthe Si3N4-AgCuTi+SiCp-Si3N4Joints by Digital Image Correlation [J].Journal of the European Ceramic Society,2013,33:157-164.
    [96] Zhang J, He Y M, Sun Y, Liu C F. Microstructure Evolution of Si3N4/Si3N4Joint Brazed with Ag-Cu-Ti+SiCpComposite Filler [J]. CeramicsInternational,2010,36:1397-1404.
    [97] Blugan G, Kuebler J, Bissig V, Janczak-Rusch J. Brazing of Silicon NitrideCeramic Composite to Steel Using SiC-Particle-Reinforced Active BrazingAlloy [J]. Ceramic International,2007,33(6):1033-1039.
    [98] Zhu M G, Chung D D L. Improving the Strength of Brazed Joints to Aluminaby Adding Carbon Fibers [J]. Journal of Materials Science,1997,32:5321-5333.
    [99] Lin G B, Huang J H, Zhang H, Liu H Y. Microstructure and MechanicalPerformance of Brazed Joints of C/SiC Composite and Ti Alloy UsingAg-Cu-Ti-W [J]. Science and Technology of Welding and Joining,2006,11:379-383.
    [100] He Y M, Zhang J, Sun Y, Liu C F. Microstructure and Mechanical Propertiesof the Si3N4/42CrMo Steel Joints Brazed with Ag-Cu-Ti+Mo CompositeFiller [J]. Journal of the European Ceramic Society,2010,30:3245-3251.
    [101] He Y M, Sun Y, Zhang J, Li X D. Revealing the Strengthening Mechanism inSi3N4Ceramic Joint by Atomic Force Microscopy Coupled withNanoindentation Techniques [J]. Journal of the European Ceramic Society,2012,32:3379-3388.
    [102] He Y M, Zhang J, Pan F, Liu C F, Li X D. Uncovering the Critical Factor inDetermining the Residual Stresses Level in Si3N4-GM Filler Alloy-42CrMoJoints by FEM Analysis and Experiments [J]. Ceramics International,2013,39:709-718.
    [103] Yang J G, Fang H Y, Wan X. Al2O3/Al2O3Joint Brazed With Al2O3Particulate Contained Composite Ag-Cu-Ti Filler Material [J]. Journal ofMaterials Science and Technology,2005,21(5):782-784.
    [104] Song X G, Cao J, Wang Y F, Feng J C. Effect of Si3N4-Particles Addition inAg-Cu-Ti Filler Alloy on Si3N4/TiAl Brazed Joint [J]. Materials Science andEngineering A,2011,528:5135-5140.
    [105] Song X G, Cao J, Wang Y F, Feng J C. Interfacial Microstructure and JoiningProperties of TiAl/Si3N4Brazed Joints [J]. Materials Science and EngineeringA,2011,528:7030-7035.
    [106] Yang M X, Lin T S, He P, Huang Y D. Brazing of Al2O3to Ti-6Al-4V Alloywith in Situ Synthesized TiB-Whisker-Reinforced Active Brazing Alloy [J].Ceramics International,2011,37:3029-3035.
    [107] Yang M X, Lin T S, He P, Huang Y D. In Situ Synthesis of TiB WhiskerReinforcements in the Joints of Al2O3/TC4During Brazing [J]. MaterialsScience and Engineering A,2011,528:3520-3525.
    [108] Lin T S, Yang M X, He P, Huang C, Pan F, Huang Y D. Effect of in SituSynthesized TiB Whisker on Microstructure and Mechanical Properties ofCarbon-Carbon Composite and TiBw/Ti-6Al-4V Composite Joint [J].Materials and Design,2011,32:4553-4558.
    [109] He P, Yang M X, Lin T S, Jiao Z. Improving the Strength of Brazed Jointswith in Situ Synthesized TiB Whiskers [J]. Journal of Alloys and Compounds,2011,509: L289-L292.
    [110] Yang M X, Lin T S, He P. Cu+TiB2Composite Filler for Brazing Al2O3andTi-6Al-4V Alloy [J]. Journal of Alloys and Compounds,2012,512:282-289.
    [111] Park J W, Mendez P F, Eagar T W. Strain Energy Distribution in Ceramic toMetal Joints [J]. Acta Materialia,2002,50:883-899.
    [112] Park J W, Eagar T W. Strain Energy Release in Ceramic to Metal Joints withPatterned Interlayers [J]. Scripta Materialia,2004,50:555-559.
    [113] Galli B M, Botsis J, Janczak-Rusch J. Relief of the Residual Stresses inCeramic-Metal Joints by a Layered Braze Structure [J].2006,8:197-201.
    [114] Cao J, He P, Wang M. Mechanical Milling of Ti-Ni-Si Filler Metal forBrazing TiAl Intermetallics [J]. Intermetallics,2011,19:855-859.
    [115] He P, Liu D, Shang E J, Wang M. Effect of Mechanical Milling on Ni-TiH2Powder Alloy Filler Metal for Brazing TiAl Intermetallic Alloy: TheMicrostructure and Joint's Properties [J]. Materials Characterization,2009,60:30-35.
    [116] Kritsalis P, Coudurier L, Eustathopoulos N. Contribution to the Study ofReactive Wetting in the CuTi/A12O3System [J]. Journal of Materials Science,1991,26(12):3400-3408.
    [117] Smorygo O, Kim J S, Kim M D, Eom TG. Evolution of the InterlayerMicrostructure and the Fracture Modes of the Zirconia/Cu-Ag-Ti Filler/TiActive Brazing Joints [J]. Materials Letters,2007,61:613-616.
    [118] Valenza Y F, Muolo M L, Passerone A, Cacciamani G, Artini C. Control ofInterfacial Reactivity Between ZrB2and Ni-Based Brazing Alloys [J]. Journalof Materials Engineering and Performance,2012,21:660-666.
    [119] Duarte L I, Klotz U E, Leinenbach C, Palm M, Stein F, L ffler J F.Experimental Study of the Fe-Ni-Ti System [J]. Intermetallics,2010,18:374-384.
    [120] Paulasto M, Kivilahti J K. Formation of Interfacial Microstructure in Brazingof Si3N4with Ti-actived Ag-Cu Filler Alloys [J]. Scripta Materialia,1995,32(8):1209-1214.
    [121] Singh M, Asthana R, Varela F M, Martínez-Fernández J. Microstructural andMechanical Evaluation of a Cu-based Active Braze Alloy to Join SiliconNitride Ceramics [J]. Journal of the European Ceramic Society,2011,31:1309-1316.
    [122] Nam T H, Guillermo R, Degischer P. Thermal Expansion Behaviour ofAluminum Matrix Composites with Densely Packed SiC Particles [J].Composites: Part A,2008,39:856-865.
    [123] Webb E B, Grest G S, Heine D R. Precursor Film Controlled Wetting of Pbon Cu [J].Physical Review Letters,2003,91(236102):1-4.
    [124] Zhou P C, Beyerlein I J, Richard L. Plastic Deformation Mechanisms of FccSingle Crystals at Small Scales [J]. Acta Materialia,2011,59:7673-7682.
    [125] Uchic M D, Dimiduk D M, Florando J N, Nix W D. Sample DimensionsInfluence Strength and Crystal Plasticity [J]. Science,2004,305:986-989.
    [126] Yu D Y W, Spaepen F. The Yield Strength of Thin Copper Films on Kapton[J]. Journal of Applied Physics,2004,95:2991-2996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700