用户名: 密码: 验证码:
H13钢表面激光熔覆TiC/Co基涂层及其高温磨损性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
H13钢是国际上广泛使用的热作模具钢,但其经淬火和回火后的硬度不足,加上恶劣的工作环境,在使用过程中表面常会因热磨损和热疲劳而失效,从而使模具报废,严重影响了生产效率。激光熔覆作为一种新兴的表面改性技术,与传统表面改性技术相比,具有冷却速度快、涂层稀释率低、可选区熔覆以及易于实现自动化等突出特点,在大型贵重设备失效部位的表面修复中具有潜在优势。Co基自熔性合金及TiC具有良好的高温强度和耐磨性、但激光熔覆纯TiC粉末存在易开裂、成型性差等缺点,而Co基合金在熔化时具有很好的润湿性,有利于获得致密性好和光滑平整的熔覆层。故选择TiC/Co基混合粉末可获得质量很好的熔覆层,且涂层具有良好抗高温氧化和耐磨等性能。
     为改善H13热作模具钢表面的热磨损性能,采用预置粉末激光熔覆技术在其表面制备了Co50合金涂层和不同TiC含量的TiC/Co50复合涂层(10%TiC+Co50.20%TiC+Ci50和30%TiC+Co50).借助XRD、OM和SEM对比分析了涂层与基材的结合特征、涂层的物相组成和截面显微组织形貌;通过显微硬度计和高温摩擦磨损试验机测试了涂层截面的显微硬度分布和不同温度下的摩擦磨损性能。重点研究了复合涂层中TiC的形态特征和生长机制对其显微硬度和高温摩擦磨损性能的影响规律。结果表明:
     (1)Co50合金涂层和粉末预置层TiC含量小于等于20%(wt.%)时的TiC/Co基复合涂层均与H13钢基材呈良好冶金结合,而TiC含量大于20%时复合涂层与基材未能实现较好的结合,说明激光熔覆技术在模具修复领域具有可行性。Co50合金涂层主要由初生γ-Co枝晶及其间的共晶组织组成,而TiC/Co基复合涂层主要由TiC颗粒、枝晶及细小的共晶组织组成。
     (2)Co50涂层主要由γ-Co固溶体和Cr1.12Ni2.88相组成,但随着预置层粉末TiC含量的增加,TiC/Co基复合涂层中基体相种类减少。10%TiC+Co50复合涂层的基体相由TiCo3、Cr2Ni3和Cr-Ni-Fe-C组成,20%TiC+Co50复合涂层的基体相由Cr2Ni3和γ-Co组成,而30%TiC+Co50复合涂层的基体相为)γ-Co固溶体。
     (3)TiC/Co基复合涂层中的TiC主要源于两部分,一是混合粉末中原有的TiC,二是TiC分解后在后续凝固过程中原位自生的TiC。其中,原位自生TiC是由于TiC含量较少时,预置层粉末中部分TiC颗粒分解出Ti和C,同时重新析出所造成,且原位自生的TiC表现出多种形态。另外,预置粉末层TiC含量对复合涂层中的TiC形态有较大影响,且涂层不同区域的TiC形貌也有所区别。10%TiC+Co50复合涂层中原位自生的TiC以细小颗粒、沉淀析出,呈多边形和花瓣状,而从涂层底部向上,TiC花瓣状数量不断增多、粒径愈来愈大。20%TiC+Co50复合涂层中原位自生的TiC主要为细小颗粒和发达树枝晶,而从涂层底部到表层,未全熔TiC粒径呈现明显的梯度变化。30%TiC+Co50复合涂层中未出现原位自生的TiC,且未全熔TiC粒径没有明显梯度变化。
     (4)经激光熔覆处理后,H13模具钢的截面显微硬度得到显著改善。Co50合金涂层和TiC/Co基复合涂层截面平均显微硬度明显高于H13钢,分别为499HV0.2、552HV0.2、590HV0.2和824HV0.2,各是H13钢基材显微硬度(208HV0.2)的2.4倍、2.7倍、2.8倍和4.0倍。其中,添加TiC陶瓷颗粒与未添加TiC的激光熔覆层相比,复合涂层平均显微硬度提高53~325HV0.2,且随着预置层中TiC含量的增加,TiC/Co50复合涂层的截面平均显微硬度呈上升趋势,最高可达824HV0.2,约为基材的4倍。
     (5)随着载荷的增大,Co50涂层和H13钢的摩擦系数呈递减趋势。随着滑动速度的增大,Co50涂层和H13钢的摩擦系数均表现出先减小后增大的趋势。H13钢髓着滑动速度的增加,磨损率呈先增高后减小的趋势,在滑动速度为200r·min-1时,磨损率达到最大值;而Co50涂层磨损率呈先增大后减小的趋势。温度对Co50涂层的摩擦系数有较大的影响,在室温、200℃和700℃,摩擦副具有较大的摩擦系数;而温度对20%TiC+Co50涂层的摩擦系数影响较小,摩擦系数比较平稳。
     (6)20%TiC+Co50复合涂层的高温耐磨性比H13钢、C050合金涂层和10%TiC+Co50复合涂层显著提高,摩擦系数平稳。涂层在室温下的磨损机理主要为脆性剥落,粘着磨损和犁削;而在700℃时复合涂层表面存在大量氧化物,磨损机制主要为氧化磨损和疲劳磨损
     因此,与H13钢基材相比,20%TiC+Co50复合涂层具有良好的综合性能,显微硬度和高温耐磨性均得到明显改善。
AISI H13steel is widely used in hot work die steel, but after quenching and tempering, its hardness is lack. Additionally, with poor working conditions, its surface often fails due to thermal wear and thermal fatigue that make the mould scrap, and seriously affect production efficiency. Laser cladding (LC) is a new kind of surface modification technologies, compared with conventional surface technology, it has many outstanding characteristics, such as fast cooling speed, low dilution rate, optional area cladding as well as easy automation, so LC has good prospects for development and potential advantage of surface repair, especially in parts of large and expensive equipment partial failures. Co-based self-fluxing alloy and TiC has good high temperature strength and wear resistance, but laser cladding pure TiC powder has the disadvantages of easy cracking, poor formability and so on, while Co-based alloy has good wettability on melting, this is helpful to obtain good dense and smooth cladding layer. Therefore, using TiC/Co-based mixed powder is available to obtained not only good quality, but also good high temperature oxidation resistance and wear resistance of cladding layer.
     In order to improve the wear resistance of AISI H13hot work tool steel, Co50alloy coating and TiC/Co-based composite coatings with different compositions of Co50-TiC precursor powders (10%TiC+Co50,20%TiC+Co50and30%TiC+Co50), were prepared on the H13steel surface by6kW transverse-flow CO2laser. The bonding characteristics, phase composition, microstructure morphology of the coatings were investigated by XRD, SEM and OM; using micro-hardness tester and high-temperature wear tester studied the micro-hardness distribution and the wear behaviors at different temperatures of the coatings. The research was focused on the morphological characteristics and growth mechanism of TiC whose influence on the microhardness and high-temperature wear properties of TiC composite coatings were also investigated. The results indicated that:
     (1) Co50alloy coating as well as TiC/Co composite coatings with the contents of TiC (wt.%) less than20%showed good metallurgical bonding characteristics with the H13steel substrate surface, but when the TiC content was more than20%, the composite coating failed either at the coating/substrate interface. Co50alloy coating was mainly composed of y-Co dendrite and eutectic between y-Co dendrites, while TiC/Co composite coating which contained of TiC particles, dendrite and fine eutectic.
     (2) Co50alloy coating mainly contained of y-Co solid solution and Cr1.12Ni2.88phase, but with the increasing of TiC content, the substrate phase composition of TiC/Co based coatings tended to be simple. Phase composition of Co+10%TiC coating was consisted of TiCo3, Cr2Ni3as well as Cr-Ni-Fe-C phases, and so on, while phase composition of Co+20%TiC coating was Cr2Ni3and y-Co, and phase composition of Co+30%TiC coating mainly composed of y-Co solid solution.
     (3) TiC/Co based coatings were presented in terms of TiC origins which can be divided into two kinds, i.e. undissolved TiC and in-situ TiC particles. In-situ TiC particles is highly dependent on the TiC content. When TiC contents were low, TiC particles in preset powder layers decomposed Ti and C, caused re-precipitation in-situ TiC at the same time. In addition, the contents of TiC in preset powder layers were found to have a significant effect on the morphology characteristics of TiC particles, as well as TiC morphologies in various regions of TiC/Co-based composite coatings were different. In10%TiC+Co50composite coating, in-situ TiC contained of fine TiC, eutectic mixture TiC, polygon TiC and flower-buster; from the coating bottom upwards, the number of flower-buster TiC increased, the diameter of TiC particles were growing. In-situ TiC of20%TiC+Co50coating mainly consisted of fine TiC and developed dendrite TiC; from the bottom to the coating surface, the diameter of undissolved TiC showed obvious gradient.30%TiC+Co50coating had no in-situ TiC and undissolved TiC did not appear significant gradient.
     (4) After laser cladding processing, cross-section microhardness of H13steel surfaces have been substantially improved, the average cross-section microhardness of Co-based coating and TiC/Co based coatings were significantly higher than that of H13steel substrate (208HV0.2), are499HV0.2,552HV0.2,590HV0.2and824HV0.2, respectively, about2.4-4.0times higher than the H13steel. In comparision, microhardness of TiC/Co based coatings were higher than that of Co-based coating, with the increasing of TiC content, microhardness of TiC/Co based coatings was increased, the highest hardness could be increased up to824HVo.2, about4times greater than the substrate. This result plays a beneficial role to improve the wear resistance of H13steel substrate surface.
     (5) With the increasing of the wear load, in all cases, friction coefficient of Co50coating and H13steel showed a decreasing tendency. As the sliding velocity increased, friction coefficient of Co50coating and H13steel showed a trend of first decreasing then increasing. With the increasing of the sliding velocity, the wear rate of H13steel was first increased and then decreased, when the sliding speed of200r·min-1, the wear rate reached the maximum value; while Co50coating was first decreased and then increased to the contrary. Friction coefficient of the Co50coating was found to be strongly influenced by temperatures, at room temperature,200℃and700℃the coating has a large friction coefficient. In contrast, not much difference in the friction coefficient of20%TiC+Co50coating was as observed as various temperature, further, the average friction coefficient was relatively stable.
     (6) Co+20%TiC coating showed better wear behavior than H13steel, Co50coating and10%TiC+Co50coating, as well as had a more stable fiction coefficient; The wear mechanism at room temperature was caused by brittle spalling wear, adhesive wear and plough wear; while high-temperature wear mechanism was mainly caused by oxidation wear and fatigue wear.
     Overall, comparing with the H13steel substrate, Co+20%TiC composite coating has good comprehensive properties, its hardness and high-temperature wear resistance can meet the use requirements.
引文
[1]马建民,金新安.模具加工中的高速切削.模具制造,2006,(7):52-55
    [2]胡可文,陈文革,车福宏.常用模具材料热处理的显微组织及性能分析.热加工工艺,2009,(14):137-143
    [3]中国模具工业协会.模具行业“十二五”发展规划.模具工业,2011,37(1):1-8
    [4]刘全坤,王成勇,刘传经.模具技术的现状与未来发展的重点.模具工业,2011,37(5):1-4
    [5]Matevz F, Tadej M, Goran K, et al. Thermal fatigue properties of differently constructed functionally graded materials aimed for refurbishing of pressure-die-casting dies. Engineering Failure Analysis,2012,25:238-249
    [6]Cui Xianghong, Shan Jun, Yang Zirun, et al. Alloying design for high wear-resistant cast hot-forging die steels. Journal of Iron and Steel Research, International,2008,15(4):67-72
    [7]崔向红,王树奇,姜启川,等.铸造热锻模具的应用及失效分析.金属热处理,2001,(1):17-18
    [8]Hardro J P. Development of materials for the rapid manufacture of die cast tooling [PhD Dissertation]. Newport:University of Rhode Island,2001
    [9]Choi J, Chang Y. Characteristics of laser aided direct metal/material deposition process for tool steel. International Journal of Machine Tools and Manufacture, 2005,45(4-5):597-607
    [10]Costa L, Vilar R, Reti T, et al. Rapid tooling by laser powder deposition:Process simulation using finite element analysis. Acta Materialia,2005,53(14): 3987-3999
    [11]Qi Huan, Liu Zhaoyang. Modeling of crystal orientations in laser powder deposition of single crystal material. Physics Procedia,2012,39:903-912
    [12]Morrow W R, Qi H, Kim I, et al. Environmental aspects of laser-based and conventional tool and die manufacturing. Journal of Cleaner Production,2007, 15(10):932-943
    [13]刘喜明.Co基自熔合金+WC送粉激光熔覆层再加热冷却过程中的显微组织变化特征.稀有金属材料与工程,2007,36(4):621-624
    [14]Herrera Y, Grigorescu I C, Ramirez J, et al. Microstructural characterization of vanadium carbide laser clad coatings. Surface and Coatings Technology,1998, 108-109(10):308-311
    [15]Yang Jiaoxi, Liu Falan, Miao Xuanhe, et al. Influence of laser cladding process on the magnetic properties of WC-FeNiCr metal-matrix composite coatings. Journal of Materials Processing Technology,2012,212(9):1862-1868
    [16]Amado J M, Tobar M J, Alvarez J C, et al. Laser cladding of tungsten carbides (Spherotene(?)) hardfacing alloys for the mining and mineral industry. Applied Surface Science,2009,255(10):5553-5556
    [17]Przybylowicz J, Kusinski J. Structure of laser cladded tungsten carbide composite coatings. Journal of Materials Processing Technology,2001,109(1-2): 154-160
    [18]Gu Shengting, Chai Guozhong, Wu Huaping, et al. Characterization of local mechanical properties of laser-cladding H13-TiC composite coatings using nanoindentation and finite element analysis. Materials & Design,2012,39:72-80
    [19]Pei Y T, Zuo T C. Gradient microstructure in laser clad TiC-reinforced Ni-alloy composite coating. Materials Science and Engineering,1998,241(1-2):259-263
    [20]Wu X L. In situ formation by laser cladding of a TiC composite coating with a gradient distribution. Surface and Coatings Technology,1999,115(2-3):111-115
    [21]Sun R L, Lei Y W, Niu W. Laser clad TiC reinforced NiCrBSi composite coatings on Ti-6A1-4V alloy using a CW CO2 laser. Surface and Coatings Technology,2009,203(10-11):1395-1399
    [22]王宏宇.纳米颗粒增强NiCoCrAlY激光熔覆涂层制备及其特性研究[博士学位论文].江苏:南京航空航天大学,2010
    [23]Yang Sen, Liu Wenjin, Zhong Minlin, et al. TiC reinforced composite coating produced by powder feeding laser cladding. Materials Letters,2004,58(24): 2958-2962
    [24]Gaumann M, Henry S, Cleton F, et al. Epitaxial laser metal forming:analysis of microstructure formation. Materials Science and Engineering:A,1999,271(1-2): 232-241
    [25]Shi Yongjun, Shen Hong, Yao Zhenqiang, et al. An analytical model based on the similarity in temperature distributions in laser forming. Optics and Lasers in Engineering,2007,45(1):83-87
    [26]Neugebauer R, Altan T, Geiger M, et al. Sheet metal forming at elevated temperatures. CIRP Annals-Manufacturing Technology,2006,55(2):793-816
    [27]张国定,赵昌正.金属基合金材料.上海:上海交通大学出版社,1996
    [28]李强,雷廷权.激光熔覆TiCp/Ni基合金复合涂层中TiCp的行为.材料科学与工艺,1999,7(1):1-6
    [29]黄忠东,才庆魁,牛建平,等.外加颗粒强化钢铁材料的研究进展.材料热处理技术,2011,40(8):79-83
    [30]严有为,魏伯康,林汉同,等.化学成分对原位TiCp/Fe复合材料组织和性能的影响.中国有色金属学报,1999,9(2):225-230
    [31]Acker V K, Vanhoyweghen D, Persoons R, et al. Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings. Wear,2005,258(1-4):194-202
    [32]Correa E O, Santos J N, Klein A N. Microstructure and mechanical properties of WC Ni-Si based cemented carbides developed by powder metallurgy. International Journal of Refractory Metals and Hard Materials,2010,28(5): 572-575
    [33]曹晓卿,贺海燕,周珊珊,等.H13钢表面激光熔覆Ni60A合金组织及性能分析.太原理工大学学报,2010,41(4):360-363
    [34]张春华,张松,李春彦,等.热作模具钢表面激光熔覆Stellite X-40钴基合金.焊接学报,2005,26(1):17-20
    [35]贺海燕.H13钢表面激光熔覆Ni基、Co基合金粉末的试验研究[硕士学位论文].山西:太原理工大学,2010
    [36]Zhao Y M, Wang J L, Mou J W. Microstructures and properties of Co-based alloy coatings prepared on surface of H13 steel. China Welding,2010,19(3):41-44
    [37]张伟,石淑琴,陈云祥,等.激光熔覆WC颗粒增强Ni基合金组织性能的研究.应用激光,2012,32(1):18-21
    [38]郭绍义,李兴俊,杨秋合,等.激光熔覆WC-Ni/TiC涂层的组织和摩擦磨损性能研究.材料工程,2008,(6):72-75
    [39]叶良武,张群莉,姚建华,等.热锻模表面宽带激光熔覆超细碳化钨试验研究.应用激光,2007,27(3):164-168
    [40]张春华,张松,张宁,等.H13钢表面激光熔覆NiFeBSi-Si3N4合金的组织及腐蚀性能.金属热处理,2006,31(9):49-51
    [41]刘录录.H13钢表面激光熔覆改性研究[硕士学位论文].天津:天津工业大学,2008
    [42]侯义芳,顾盛挺,鲍雨梅,等.激光熔覆H13-TiC复合涂层的力学性能测试与数值模拟.轻工机械,2011,29(4):87-91
    [43]汤晓丹,姚建华,孔凡志,等.激光熔覆H13-TiC梯度复合涂层的制备与组织性能.激光技术,2010(3):326-330,334
    [44]Jiang W H, Kovacevic R. Laser deposited TiC/H13 tool steel composite coatings and their erosion resistance. Journal of Materials Processing Technology,2007, 186(1-3):331-338
    [45]Liu Y, Ngan A H W. Depth dependence of hardness in copper single crystals measured by nanoindentation. Scripta Materialia,2001,44(2):237-242
    [46]刘旋.WC颗粒增强钢基表面复合材料的制备及摩擦磨损性能研究[硕士学位论文].云南:昆明理工大学,2009
    [47]朱蓓蒂,彭英姿,陶曾毅,等.H13模具钢表面激光熔覆钴基合金的研究.特殊钢,1994,15(5):3840
    [48]钱星月,童和强,张丹莉,等.H13模具钢表面激光熔覆Co基合金涂层的组织和性能.冶金丛刊,2011,(5):1-3
    [49]张松,张春华,文忠,等.2Crl3钢表面激光熔覆Co基合金组织及其性能.稀有金属材料与工程,2001,30(3):220-223
    [50]张松,张春华,孙泰礼,等.激光熔覆钴基合金组织及其抗腐蚀性能.中国激光,2001,28(9):860-864
    [51]李明喜,何宜柱,孙国雄.Ni基合金/45#钢宽、窄带熔覆Co基合金的组织.中国激光,2003,30(11):1044-1048
    [52]李明喜,何宜柱,孙国雄.Co基合金激光熔覆层组织及近表面结晶方向.东南大学学报(自然科学版),2002,32(6):1-4
    [53]李志远,赵伟毅,聂登攀,等.TiN对Co基合金激光熔覆层组织与性能的影响.强激光与粒子束,2010,22(7):1657-1660
    [54]斯松华,徐锟,袁晓敏,等.激光熔覆Cr3C2/Co基合金复合涂层组织与摩擦磨损性能研究.摩擦学学报,2006,26(2):125-129
    [55]斯松华,袁晓敏,徐锟,等.B4C对激光熔覆钴基合金涂层组织与耐磨性的影响.焊接学报,2004,25(3):61-64
    [56]斯松华,何宜柱,袁晓敏,等.激光熔覆含p, SiCp钴基合金涂层的组织与 耐磨性能.中国有色金属学报,2003,13(2):454-459
    [57]Chen Y, Wang H M. Microstructure and wear resistance of a laser clad TiC reinforced nickel aluminides matrix composite coating. Materials Science and Engineering,2004,368(1-2):80-87
    [58]Dong Y J, Wang H M. Microstructure and dry sliding wear resistance of laser clad TiC reinforced Ti-Ni-Si intermetallic composite coating. Surface and Coatings Technology,2009,204(5):731-735
    [59]Chen Y, Wang H M. Microstructure and wear resistance of laser clad TiC reinforced FeAl intermetallic matrix composite coatings. Surface and Coatings Technology,2003,168(1):30-36
    [60]Wang X H, Zhang M, Liu X M, et al. Microstructure and wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding. Surface and Coatings Technology,2008,202(15):3600-3606
    [61]Sun R L, Mao J F, Yang D Z. Microscopic morphology and distribution of TiC phase in laser clad NiCrBSiC-TiC layer on titanium alloy substrate. Surface and Coatings Technology,2002,155(2-3):203-207
    [62]Emamian A, Corbin F S, Khajepour A. Tribology characteristics of in-situ laser deposition of Fe-TiC. Surface & Coatings Technology,2012,206(22):4495-4501
    [63]Emamian A, Corbin F S, Khajepour A. Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe-TiC composite coatings. Surface and Coatings Technology,2010,205(7):2007-2015
    [64]Wu Xiaolei, Hong Youshi. Microstructure and mechanical properties at TiCp/Ni-alloy interfaces in laser-synthesized coatings. Materials Science and Engineering:A,2001,318(1-2):15-21
    [65]武晓雷,洪友士.激光熔覆TiCp/Ni合金涂层中界面结构及界面硬度与弹性模量分布.金属学报,2000,36(3):282-286
    [66]裴宇韬.激光熔覆TiCp/Ni合金自生梯度涂层及其自生机制.金属学报.1998,34(9):987-991
    [67]陈传忠,于慧君,侯勇,等.45钢表面激光熔覆WC/Co金属陶瓷.陶瓷学报,1998,19(03):137-143
    [68]李养良,彭西峰,陈清宇,等.45钢激光重熔WC-Co涂层磨损性能研究.应用激光,2009,29(2):108-111
    [69]吴玉萍,林萍华,王泽华,等.多层预涂敷等离子熔覆TiC/Ni梯度涂层研究.材料热处理学报,2004,25(3):74-77
    [70]’许伯藩,史华忠,张细菊.双层预涂覆对激光熔覆金属陶瓷涂层的影响.中国激光,1998,25(8):763-767
    [71]Yang Sen, Chen Na, Liu Wenjin, et al. Fabrication of nickel composite coatings reinforced with TiC particles by laser cladding. Surface and Coatings Technology,2004,183(2-3):254-260
    [72]李强,付涛.激光熔覆镍基碳化钨金属陶瓷气孔问题研究.激光杂志,2006,27(3):61-62
    [73]陈艳霞,钟敏霖,刘文今,等.激光送粉熔覆WC/Co硬质合金的气孔问题.材料热处理学报,2002,23(2):49-53
    [74]熊云,王勇,张开峰,等.激光熔覆Stellite6/WC的组织与性能研究.中国表面工程,2008,21(1):37-40
    [75]周笑薇,晁明举,杨坤.A1203对Ni60激光熔覆层组织和耐磨性的影响.激光杂志,2006,27(5):81-83
    [76]相珺,李刚,徐艳菊,等.A1203对激光熔覆镍基涂层耐磨性的影响.热处理技术与装备,2009,30(4):6-10
    [77]李明喜,李辉生,袁晓敏,等.纳米A1203对激光熔覆钴基合金涂层组织的影响.焊接学报,2005,26(6):36-39
    [78]‘马明星,柳沅汛,谷雨,等.激光制备AlxCoCrNiMo高熵合金涂层的研究.应用激光,2010,(6):433-437
    [79]赵静娟,何占启.激光熔覆裂纹问题的研究.新技术新工艺,2011,(10):58-61
    [80]王新林,漆海滨.厚层激光熔覆层裂纹控制的综合实验研究与理论分析.南华大学学报(理工版),2001,15(3):36-55
    [81]石世宏.激光熔覆工艺与粉末对覆层开裂行为的影响.表面技术,1998,27(4):27-29
    [82]Hemmati I, Ocelik V, Hosson D J T M. Dilution effects in laser cladding of Ni-Cr-B-Si-C hardfacing alloys. Materials Letters,2012,84(1):69-72
    [83]高焕明,陈超英.激光熔覆TiC-Ni复合涂层的摩擦磨损性能和磨损机制研究.光学技术,2009,35(4):546-548
    [84]许伯藩,方军,史华忠,等.TiC量对激光熔覆金属陶瓷涂层的影响.机械工 程材料,1998,22(1):20-22
    [85]裴宇韬,孟庆昌,欧阳家虎,等.激光熔覆TiCp/Ni合金复合涂层中TiC颗粒的溶解析出行为与分布特征.中国激光,1995,22(12):935-938
    [86]Li Y X, Bai P K, Wang Y M, et al. Effect of TiC content on Ni/TiC composites by direct laser fabrication. Materials & Design,2009,30(4):1409-1412
    [87]张晓伟,刘洪喜,蒋业华,等.激光原位合成TiN/Ti3Al基复合涂层.金属学报,2011,47(8):1086-1093
    [88]李荣久.陶瓷-金属复合材料.北京:冶金工业出版社,1995
    [89]陈华辉,赵会友,马向东,等.我国耐磨材料的使用与发展概况.中国特殊钢年会2005论文集,2005
    [90]张春良.核阀零件激光熔覆Co基涂层的组织研究.激光技术,2001,25(2):129-133
    [91]辛丽,王文(译).金属高温氧化导论.北京:高等教育出版社,2010
    [92]樊丁,戴景杰,孙耀宁,等.激光表面合金化制备TiC/Ti复合涂层的组织与性能.兰州理工大学学报,2006,32(4):13-15
    [93]彭成松,张茂润.工艺条件对纳米钴粒子的粒径及形貌的影响.安徽理工大学学报(自然科学版),2008,28(3):57-60
    [94]赵海锋,朱丽慧,马学鸣.纳米WC硬质合金制备新工艺.材料科学与工程学报,2003,21(1):130-133
    [95]赵敏海,郭面焕,冯吉才,等.外加颗粒增强表层复合材料制备方法.焊接学报,2007,28(2):108-111
    [96]刘黎明,牛济泰,田艳红,等.激光焊接条件下SiCw/6061A1铝基复合材料界面反应研究.材料工程,1999,(3):38-44
    [97]Chen Y, Wang H M. Eutectic MC carbide growth morphologies of a laser clad TiC/FeAl composite coating. Materials Letters,2005,59(28):3699-3702
    [98]李传强,陈少克.45钢表面激光熔覆Ni/TiC性能研究.装备制造技术,2011,(08):20-22
    [99]Cui Chengyun, Guo Zuoxing, Wang Hongying, et al. In situ TiC particles reinforced grey cast iron composite fabricated by laser cladding of Ni-Ti-C system. Journal of Materials Processing Technology,2007,183(2-3):380-385
    [100]Karantzalis A E, Lekatou A, Tsirka K. Solidification observations and sliding wear behavior of vacuum arc melting processed Ni-Al-TiC composites. Materials Characterization,2012,69:97-107
    [101]张建斌.钛表面机械强化及其激光合金化研究[博士学位论文].甘肃:兰州理工大学,2007
    [102]Karantzalis A E, Lekatou A, Georgatis E, et al. Solidification observations of vacuum arc melting processed Fe-Al-TiC composites:TiC precipitation mechanisms. Materials Characterization,2011,62(12):1196-1204
    [103]回丽,赵海霞,王维.激光熔覆原位自生TiC耐磨涂层的组织分析.航空精密制造技术,2010,46(2):37-40
    [104]陈瑶,王华明.激光熔覆TiC/FeAl复合材料涂层显微组织及初生TiC生长机制研究.稀有金属材料与工程,2003,32(7):569-572
    [105]Wei M X, Wang S Q, Wang L, et al. Effect of tempering conditions on wear resistance in various wear mechanisms of H13 steel. Tribology International, 2011,44(7-8):898-905
    [106]陈瑶,王华明.激光熔覆TiC增强FeAl金属间化合物基复合材料涂层磨损性研究.稀有金属材料与工程,2003,32(10):840-843
    [107]Chen Y, Wang H M. High-temperature wear resistance of a laser clad TiC reinforced FeAl in situ composite coating. Surface and Coatings Technology, 2004,179(2-3),23:252-256
    [108]Kashani H, Amadeh A, Ghasemi H M. Room and high temperature wear behaviors of nickel and cobalt base weld overlay coatings on hot forging dies. Wear,2007,262(7-8):800-806
    [109]Wei Minxian, Wang Shuqi, Wang Lan, et al. Selection of heat treatment process and wear mechanism of high wear resistant cast hot-forging die steel. Journal of Iron and Steel Research, International,2012,19(5):50-57
    [110]Wei M X, Wang F, Wang S Q, Cui X H. Comparative research on the elevated-temperature wear resistance of a cast hot-working die steel. Materials & Design,2009,30(9):3608-3614
    [111]Cui Xianghong, Wang Shuqi, Jiang Qichuan, et al. Research on thermal wear of cast hot forging die steel modified by rare earths. Journal of Rare Earths,2007, 25(1):88-92
    [112]Guo J S, Su J W, Guang C S. Research on impact wear resistance of in situ reaction TiCp/Fe composite. Wear,2010,269(3-4):285-290

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700