用户名: 密码: 验证码:
TiAl合金与Si_3N_4陶瓷钎焊工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Si_3N_4陶瓷以其优异的力学性能及良好的透波性能成为下一代天线罩材料的首选,在天线罩装配和服役过程中,需实现罩体与金属的连接。TiAl合金具有高比强度和比刚度,良好的抗氧化性以及优异的高温力学性能。实现二者的连接制成应用于航空航天、武器装备等领域的构件,不仅可以减重而且能够提高服役温度。本课题旨在实现TiAl合金与Si_3N_4陶瓷的钎焊连接,通过试验确定了合适的钎料体系;基于界面反应产物的表征分析了钎焊过程中钎料与母材之间的反应,深入探讨了钎焊连接机理。根据复合强化理论,设计了纳米Si_3N_4颗粒增强的AgCuTi复合钎料,并采用该钎料实现了TiAl合金和Si_3N_4陶瓷的连接。通过界面结构的分析解明了钎焊过程中纳米颗粒的反应及弥散机理。采用有限元模拟及X射线应力分析的方法,对接头残余应力的分布进行了分析。
     开发了TiNiNb和TiNiV两种TiNi基高温共晶钎料,并采用这两种钎料围绕TiAl合金和Si_3N_4陶瓷进行了钎焊连接试验,成功实现了TiAl合金的高质量钎焊连接。通过SEM,EDS,TEM以及XRD等分析方法确定了TiAl/TiNiNb界面结构为:TiAl/B2+γ+O-Ti2AlNb/γ+τ3-Al3(Ti,Nb)2Ni+O-Ti2AlNb;TiAl/TiNiV界面结构为:TiAl/B2+γ/B2+τ3-Al3NiTi2+γ/B2+τ3-Al3NiTi2。采用TiNiNb钎料在1200°C和1220°C钎焊时获得的接头分别具有最高的室温及高温抗剪强度为308MPa和172MPa。采用TiNiNb和TiNiV钎料钎焊Si_3N_4陶瓷自身及TiAl合金时发现钎料与两侧母材均能发生冶金反应,并在钎缝中形成了连续的TiN、Ti-Si及Ni2Ti脆性化合物层。然而,在接头残余应力的作用下于脆性化合物中形成了贯穿钎缝的裂纹,即使采用Nb箔作为应力缓解层也无法实现TiAl合金和Si_3N_4陶瓷的可靠连接。
     采用具有塑性变形能力的AgCu共晶钎料实现了TiAl合金与Si_3N_4陶瓷的可靠连接。接头典型界面结构为:TiAl/B2/AlCuTi/AlCu_2Ti/Ag(s,s)+AlCu_2Ti/TiN+Ti_5Si_3+AlCu_2Ti/Si_3N_4。钎焊过程中,活性元素Ti与陶瓷反应形成了连续的TiN+Ti_5Si_3反应层;一部分Cu与TiAl反应在TiAl侧形成了连续的AlCuTi及AlCu_2Ti反应层。V与Al反应形成了弥散分布的细颗粒Al3V化合物,作为AlCu_2Ti相析出的形核质点,导致了颗粒状AlCu_2Ti相在钎缝中的弥散分布。基于试验结果,获得了TiN反应层成长的动力学方程。另外,在研究钎焊工艺对TiAl/AgCu/Si_3N_4界面结构的影响时发现,当钎焊温度较低或时间较短时,反应层厚度较薄,颗粒状AlCu_2Ti化合物在Ag基体中弥散程度较差;当钎焊温度较高或时间较长时,反应层厚度显著增加,颗粒状AlCu_2Ti化合物聚集长大,钎缝中出现裂纹。当钎焊工艺合适时(860°C/5min),在钎缝中形成了弥散分布的颗粒状AlCu_2Ti化合物增强的Ag基复合材料组织。
     为了缓解接头残余应力及提高接头高温性能,采用机械球磨的方法制备了纳米Si_3N_4增强的AgCuTi复合钎料(AgCuTic),并采用该复合钎料成功实现了TiAl合金和Si_3N_4陶瓷的连接,接头典型界面结构为:TiAl/AlCu_2Ti/Al_4Cu_9+TiN+Ti_5Si_3+Ag(s,s)/TiN+Ti_5Si_3/Si_3N_4。钎焊过程中,液相钎料中的Ti元素与纳米Si_3N_4反应形成了纳米尺寸的TiN和Ti_5Si_3颗粒,这些颗粒作为微米尺度Al_4Cu_9化合物的形核质点,使得钎缝中形成了微纳米颗粒增强的Ag基复合材料组织。研究发现Ti元素的溶解及扩散是Ag基复合材料组织钎缝形成的关键因素,基于试验结果,获得了880°C条件下TiAl合金的溶解厚度方程。复合钎料中增强相含量、钎焊温度、钎焊时间等工艺参数对接头界面结构和力学性能影响较大,当增强相含量为3wt.%,钎焊温度为880°C,钎焊时间为5min时,接头室温及高温(400°C)抗剪强度最大分别为115MPa和156MPa,比采用AgCuTi钎料获得的接头强度提高一倍。
     研究了复合钎料使用对接头性能改善的原因,一方面复合钎缝中弥散分布的细颗粒TiN及Ti_5Si_3化合物作为第二相通过剪切滞后、位错强化及Orowan强化等方式强化了Ag基体,提高了钎缝性能;另一方面通过降低钎缝的热膨胀系数在一定程度上缓解了接头残余应力,从而提高了接头室温及高温性能。接头残余应力有限元模拟结果表明:复合材料的使用对接头的应力分布形式影响不大,但减小了残余应力分布区域以及应力峰值。X射线应力分析表明:增强相含量为3wt.%时,Si_3N_4陶瓷表面压应力峰值降低70MPa左右,与模拟结果相吻合。
Due to the excellent mechanical properties and good wave penetratingperformance, Si_3N_4ceramics are preferred as the next generation materials forradomes, which need be connected with metallic materials in the assembly andservice process. TiAl alloys possess high specific strength, high specific stiffness,good oxidation resistance, as well as excellent high-temperature mechanicalproperties. The components made by joining the two materials could be applied tothe fields of aerospace and weaponry, which can not only reduce weight but alsoincrease service temperature. The objective of this study is to achieve the joiningof TiAl alloys and Si_3N_4ceramics. In the present study, appropriate brazing alloysystems were determined by experiments. The interactions between molten brazingalloys and parent materials as well as the brazing mechanism was investigatedbased on the characterization of interfacial microstructure. In addition, accordingto the composite reinforcement theory, AgCuTi+nano-Si_3N_4composite brazingalloys were developed and used to achieve the brazing of the two materials. Thedispersion mechanism of fine compounds in brazing seams was discussed and thedistribution of residual stress in joints was analyzed by finite element methodsimulation and X-ray analysis.
     TiNiNb and TiNiV eutectic brazing alloys were developed and reliablejoining of TiAl alloys was realized with the two brazing alloys. The typcialinterfacial microstructure of TiAl joints brazed using TiNiNb and TiNiV brazingalloys were TiAl/B2+γ+O-Ti2AlNb/γ+τ3-Al3(Ti,Nb)2Ni+O-Ti2AlNb and TiAl/B2+γ/τ3-Al3NiTi2+B2+γ/B2+τ3-Al3NiTi2resepectively, which were determined bySEM, EDS, TEM and XRD. The highest shear strength at room temperature andhigh temperature (600°C) reached308MPa and172MPa when joints were brazedusing TiNiNb brazing alloy at1200°C and1220°C resepectively. Metallurgicalreactions occurred when the two eutectic brazing alloys were used to braze Si_3N_4ceramics to themselves and to TiAl alloys, which resulted in a continuous TiNlayer was formed adjacent to Si_3N_4side and a brittle Ni2Ti layer in the brazingseam. However, cracks always formed in these brittle reaction layers because oflarge residual stress in joints, which resulted in the failure of brazed joints eventhough Nb foil was introduced as a stress-release interlayer.
     Brazing of TiAl alloys and Si_3N_4ceramics was achieved using AgCu eutucticbrazing alloy. The interfacial microstructure was TiAl/B2/AlCuTi/AlCu_2Ti/Ag(s,s)+AlCu_2Ti/TiN+Ti_5Si_3+AlCu_2Ti/Si_3N_4. During brazing, active element Ti reactedwith Si_3N_4to form a continuous TiN+Ti_5Si_3layer and a part of Cu reacted withTiAl to form AlCuTi and AlCu_2Ti reaction layers. V reacted with Al to form fine dispersed Al3V particles, as the nucleations of AlCu_2Ti phase, resulting in thedispersion of granular AlCu_2Ti compounds in brazing seam. In addition, thekinetic equation of TiN layer was obtained based on the experimental datas. As theincrease of brazing temperature or brazing time, the thickness of reaction layersincreased and granular AlCu_2Ti compounds aggregated, even some microcrackswere formed in brazing seams. The optimal process parameter was860°C/5min.
     AgCuTi+nano-Si_3N_4composite brazing alloys (AgCuTic) were developed andused to braze TiAl alloys and Si_3N_4ceramics in order to reduce residual stress injoints and improve joining properties. The typical interfacial microstructure ofTiAl/AgCuTic/Si_3N_4joint was TiAl/AlCu_2Ti/Al_4Cu_9+TiN+Ti_5Si_3+Ag(s,s)/TiN+Ti_5Si_3/Si_3N_4. During brazing, nano-TiN and nano-Ti_5Si_3compounds were formedby the reaction of Ti and nano-Si_3N_4, which acted as nucleations of Al_4Cu_9compounds resulting in the formation of Ag based composite structure in brazingseams. The investigation shows that the dissolution and diffusion of element Tiwere the key foctors in the formation of composite brazing seams and thedissolution equation of TiAl was obtained. In addition, reinforcement content,brazing temperature, as well as brazing time had a significant impact on theinterfacial microstructure and joining properties. The highest shear strength atroom temperature and high temperature (400°C) were115MPa and156MParespectively when brazed at880°C for5min using AgCuTic with3wt.%nano-Si_3N_4addition, which was2times as high as that of joints brazed usingAgCuTi brazing alloy.
     The effects of composite brazing alloy on improving joining properties wereinvestigated and the results show that brazing seams were strengthened by loadbearing effect, dislocation strengthening and Orowan strengthening. Furthermore,the residual stress in joint was reduced due to the reduction of the CTE coefficientof brazing seams. FEM simulation results show that residual stress distributionform unchanged but both the stress area and stress peaks were reduced whencomposite brazing alloys were utilized. X-ray stress analysis show thatcompressive stress peak on the surface of Si_3N_4ceramics was reduced by70MPawhen AgCuTic with3wt.%nano-Si_3N_4addition was used in this research, whichwas coincide with the simulation results.
引文
1沈强,陈裴,闫法强,张联盟.新型高温陶瓷天线罩材料的研究进展[J].材料导报,2006,20(9):1-4.
    2雷景轩,施志伟,胡伟.高温宽频带陶瓷导弹天线罩研究进展[J].陶瓷学报,2007,2(28):144-148.
    3J. Barta, M. Manela, R. Fischer. Si3N4and Si2N2O for high performanceradomes[J]. Materials Science and Engineering,1985,71:265-272.
    4G. H. Beall. Refractory glass–ceramics based on alkaline earthaluminosilicates[J]. Journal of the European Ceramic Society,2009,29(7):1211-1219.
    5蒋海峰,周丽,张万良.大间隙高强度胶粘剂在粘接石英陶瓷与低膨胀合金中的应用[J].宇航材料工艺,2004,4:48-50.
    6S. Q. Ding, Y. P. Zeng, D. L Jiang. Oxidation bonding of porous silicon nitrideceramics with high strength and low dielectric constant[J]. Materials Letters,2007,61(11-12):2277-2280.
    7赵磊. SiO2f/SiO2复合材料与Invar合金的钎焊接头界面结构及形成机理[D].哈尔滨工业大学博士学位论文.2010.
    8张谟杰.导弹天线罩的结构可靠性[J].制导与引信,2006,27(2):44-46.
    9J. H. Xiong, J. H. Huang, H. Zhang, X. K. Zhao. Brazing of carbon fiberreinforced SiC composite and TC4using AgCuTi brazing alloy[J]. MaterialsScience and Engineering A,2010,527(4-5):1096-1101.
    10J. C. Feng, L. X. Zhang. Interface structure and mechanical properties of thebrazed joint of TiC cermet and steel[J]. Journal of the European CeramicSociety,2006,26(7):1287-1292.
    11W. Q. Huang, Y. J. Li, J. Wang, Q. L.Jiang. Element distribution and phaseconstitution of Al2O3-TiC/W18Cr4V vacuum diffusion bonded joint[J].Vacuum,2010,85(2):327-331.
    12Y. Sechi, T. Tsumura, K. Nakata. Dissimilar laser brazing of boron nitride andtungsten carbide[J]. Materials&Design,2010,31(4):2071-2077.
    13A. Elrefaey, W. Tillmann. Correlation between microstructure, mechanicalproperties, and brazing temperature of steel to titanium joint[J]. Journal ofAlloys and Compounds,2009,487(1-2):639-645.
    14O. Kozlova, M. Braccini, R. Voytovych, N. Eustathopoulos, P. Martinetti, M. F.Devismes. Brazing copper to alumina using reactive CuAgTi alloys[J]. ActaMaterialia,2010,58(4):1252-1260.
    15J. C. Sung, M. Sung. The brazing of diamond[J]. International Journal ofRefractory Metals and Hard Materials,2009,27(2):382-393.
    16方洪渊,冯吉才.材料连接过程中的界面行为[M].哈尔滨工业大学出版社,2005.
    17李金山,张铁邦,常辉,寇宏超,周廉. TiAl基金属间化合物的研究现状与发展趋势[J].中国材料进展,2010,29(3):1-5.
    18X. H. Wu. Review of alloy and process development of TiAl alloys[J].Intermetallics,2006,14:1114-1122.
    19柴丽华.快速凝固TiAl基合金的组织演变研究[D].哈尔滨工业大学博士学位论文,2010.
    20李宝辉,孔凡涛,陈玉勇,陈子勇,张军伟. TiAl金属间化合物的合金设计及研究现状[D].航空材料学报,2006,26(2):72-78.
    21王勇. β凝固高Cr铸造TiAl基合金显微组织及力学性能研究[D].上海交通大学博士学位论文,2005.
    22林均品,陈国良. TiAl基金属间化合物的发展[J].中国材料进展,2009,28(1):31-37.
    23J. P. Lin, L. L. Zhao, G. Y. Li, L. Q. Zhang, X. P. Song, F. Ye, G. L. Chen.Effect of Nb on oxidation behavior of high Nb containing TiAl alloys[J].Intermetallics,2011,19(2):131-136.
    24Y. H. Wang, J. P. Lin, X. J. Xu, Y. H. He, Y. L. Wang, G. L. Chen. Effect offabrication process on microstructure of high Nb containing TiAl alloy[J].Journal of Alloys and Compounds,2008,458(1-2):313-317.
    25A. Lasalmonie. Intermetallics: Why is it so diffult to intriduce them in gasturbine engines[J]. Intermetallics,2006,14:1123-1129.
    26于宏宝.细晶TiAl基合金制备及组织和性能研究[D].哈尔滨工业大学博士学位论文,2008.
    27刘荣华. TiAl合金定向凝固技术及组织结构研究[D].中国科学院金属研究所博士学位论文,2009.
    28D. Eylon, M. M. Keller, P. E. Jones. Development of permanent-mold castTiAl automotive valves[J]. Intermetallics,1998,6(7-8):135-138.
    29H. Saari, J. Beddoes, D. Y. Seo, L. Zhao. Development of directionallysolidified γ-TiAl structures[J]. Intermetallics,2005,13(9):937-943.
    30陈玉勇,陈艳飞,田竟,孔凡涛,肖树龙,徐丽娟. TiAl基合金熔模精密铸造技术的发展现状[J].稀有金属材料与工程,2009,38(3):554-558.
    31M. F. Arenas, V. L. Acoff. Analysis of gamma titanium aluminide weldsproduced by gas tungsten arc welding[J]. Welding Journal,2003,72(5):110-115.
    32D. J. Bharani and V. L. Acoff. Autogenous gas tungsten arc weldability of castalloy Ti-48Al-2Cr-2Nb (Atomic percent) versus extruded alloyTi-46Al-2Cr-2Nb-0.9Mo (Atomic percent)[J]. Metallurgical and MaterialsTransaction A,1998,29:927-935.
    33M. C. Chaturvedi, Q. Xu, N. L. Richards. Development of crack-free welds ina TiAl based alloy[J]. Journal of Materials Processing Technology,2001,118:74-78.
    34Q. Xu, M. C. Chaturvedi, N. L. Richards. The role of phase transformation inelectron-beam welding of TiAl-based alloys[J]. Metallurgical and MaterialsTransactions A,1999,30:1717-1726.
    35吴会强,冯吉才,何景山,周利.电子束焊接TiAl基合金接头组织结构及其裂纹产生的敏感性[J].材料工程,2005,4:7-10.
    36张秉刚,陈国庆,何景山,冯吉才. Ti-43Al-9V-0.3Y/TC4异种材料电子束焊接(EBW)[J].焊接学报,2007,28:41-44.
    37G. Cam, M. Kocak. Diffusion bonding of investment cast γ-TiAl[J]. Journal ofMaterials Science,1999,34:3345-3354.
    38W. Glatz, H. Clemens. Diffusion bonding of intermetallic Ti-47Al-2Cr-0.2Sisheet material and mechanical properties of joints at room temperature andelevated temperatures[J]. Intermetallics,1997,5:415-423.
    39G. Q. Wu, Z. Huang, C. Q. Chen, Z. J. Ruan, Y. Zhang. Superplastic diffusionbonding of γ-TiAl based alloy[J]. Materials Science and Engineering A,2004,380:402-407.
    40G. X. Luo, G. Q. Wu, Z. Huang, Z. J. Ruan. Diffusion bonding oflaser-surface-modified titanium aluminide alloy to nickel-base casting alloy[J].Scripta Materialia,2007,57:521-524.
    41C. A. Blue, R. A. Blue, R. Y. Lin. Microstructure evolution in joining of TiAlwith liquid Ti alloy[J]. Scripta Metalluriga and Materialia,1995,32:127-132.
    42P. Yan. Diffusion bonding of intermetallic compound TiAl[R]. InternationalTrends in Welding Science and Technology. Gatlinburg, Tenessee, USA,1992.
    43M. F. Isiam, N. Ridley. Characterization of diffusion bonds formed betweenTi-6Al-4V and titanium aluminide super alpha-2[J]. Materials Science andTechnology,1996,8(12):623-627.
    44M. Holmquist, V. Recina, J. Ockborn, B. Pettersson, E. Zumalde. Hot Isostaticpressing diffusion bonding of titanium alloy Ti-6Al-4V to Gamma TitaniumAluminide IHI alloy01A[J]. Scripta Materialia,1998,39(8):1101-1106.
    45何鹏,冯吉才,钱乙余. TiAl/40Cr钢扩散连接界面组织结构对接头强度的影响[J].材料科学与工艺,2003,11:144-146.
    46何鹏,冯吉才,韩杰才,钱乙余. TiAl/Ti/V/Cu/钢扩散连接界面组织结构对接头强度的影响[J].焊接,2002,11:15-18.
    47H. J. Liu, J. C. Feng, Y. Y. Qian. Interface structure and formation mechanismof diffusion-bonded joints of SiC ceramic to TiAl-based alloy[J]. ScriptaMaterialia,2000,43:49-53.
    48S. Simos, F. Viana, M. Kocak, A. S. Ramos, M. T. Vieira, M. F. Vieira.Diffusion bonding of TiAl using reactive Ni/Al nanolayers and Ti and Nifoils[J]. Materials Chemistry and Physics,2011,128:202-207.
    49L. I. Durate, A. S. Ramos, M. F. Vieira, F. Viana, M. T. Vieira, M. Kocak.Solid-state diffusion bonding of gamma-TiAl alloys using Ti/Al thin films asinterlayers[J]. Intermetallics,2006,14:1151-1156.
    50宫下卓也,日野春树. TiAl金属间化合物的摩擦压接特性[J].日本金属学会志,1994,58(2):215-220.
    51H. Horn. Investigations of friction welding titanium aluminides[R]. Proc Euro.1, November1991, Scrasbourg, France.1991:441-448.
    52赵忠全. TiAl金属间化合物与结构钢摩擦焊接技术研究[D].西北工业大学硕士学位论文,2000.
    53W. B. Lee, Y. J. Kim, S. B. Jung. Effect of copper insert layer on the propertiesof friction welded joints between TiAl and AISI4140structural steel[J].Intermetallics,2004,12(6):671-678.
    54T. Tetsui. Effects of brazing filler on properties of brazed joints between TiAland metallic materials[J]. Intermetallic,2001,9(3):253-260.
    55R. K. Shiue, S. K. Wu, S. Y. Chen. Infrared brazing of TiAl intermetallic usingpure silver[J]. Intermetallics,2004,12:929-936.
    56R. K. Shiue, S. K. Wu, S. Y. Chen. Infrared brazing of TiAl intermetallic usingBAg-8braze alloy[J]. Acta Materialia,2003,51:1991-2004.
    57Y. L. Li, P. He, J. C. Feng. Interface structure and mechanical properties of theTiAl/42CrMo steel joint vacuum brazed with Ag-Cu/Ti/Ag-Cu filler metal[J].Scripta Materialia,2006,55:171-174.
    58张柯,吴鲁海,楼松年,阮鹤. TiAl/40Cr的扩散钎焊[J].焊接,2002,10:35-38.
    59薛小怀,吴鲁海,茅及放,阮鹤,楼松年. TiAl合金与40Cr钢的真空钎焊研究[J].航空材料学报,2003,23:136-138.
    60高强,郭建亭,刘午,张俊善. TiAl合金与42CrMo扩散钎焊的界面组织即形成机理[J].航空材料学报,2003,23:51-54.
    61Z. W. Yang, P. He, L. X. Zhang, J. C. Feng. Microstructure evolution andmechanical properties of the joint of TiAl alloys and C/SiC compositesvacuum brazed with Ag-Cu filler metal[J]. Materials Characterization,2011,62:825-832.
    62H. Q. Wang, J. Cao, J. C. Feng. Brazing mechanism and infiltrationstrengthening of CC composites to TiAl alloys joint[J]. Scripta Materialia,2010,63:859-862.
    63I. C. Wallis, H. S. Ubhi, M. P. Bacos, P. Josso, J. Lindqvist, D. Lundstrom, A.Wisbey. Brazed joints in γ TiAl sheet: microstructure and properties[J].Intermetallics,2004,12:303-316.
    64S. J. Lee, S. K. Wu, R. Y. Lin. Infrared joining of TiAl intermetallics usingTi15Cu15Ni foil—I. The microstructure morphologies of joint interfaces[J].Acta Materialia,1998,46(4):1283-1295.
    65韩明,康慧,曲平. Ti-15Cu-15Ni真空钎焊TiAl合金[J].航天制造技术,2004,4:22-24.
    66A. Guedes, M. P. Pinto, M. F. Vieira, F. Viana. Joining Ti-47Al-2Cr-2Nb with aTi/(Cu,Ni)/Ti clad-laminated braze alloy[J]. Journal of Materials Science,2003,38:2409-2414.
    67J. Cao, P. He, M. Wang. Mechanical milling of Ti-Ni-Si filler metal for brazingTiAl intermetallics[J]. Intermetallics,2011,19:855-859.
    68P. He, D. Liu, E. J. Shang, M. Wang. Effect of mechanical milling on Ni-TiH2powder alloy filler metal for brazing TiAl intermetallic alloy: Themicrostructure and joint's properties[J]. Materials Characterization,2009,60:30-35.
    69T. Noda, T. Shimizu, M. Okabe, T. Iikubo. Joining of TiAl and steels byinduction brazing[J]. Materials Science and Engineering A,1997,239-240:613-618.
    70R. K. Shiue, S. K. Wu, Y. T. Chen, C. Y. Shiue. Infrared brazing of Ti50Al50and Ti-6Al-4V using two Ti-based filler metals[J]. Intermetallics,2008,16:1083-1089.
    71朱颖,张茉,王国建,康慧,曲平. TiAl基合金和42CrMo钢的真空钎焊[J].航天制造技术,2005,4:21-23.
    72周群,贺跃辉,江垚,高海燕,沈培智.多孔TiAl金属间化合物和434L不锈钢的钎焊连接[J].粉末冶金材料科学与工程,2008,13:30-34.
    73秦川.高温用Gamma-TiAl合金的钎焊[J].稀有金属与硬质合金,2003,31:52-54.
    74R. K. Shiue, S. K. Wu, S. Y. Chen. Infrared brazing of TiAl using Al-basedbraze alloys[J]. Intermetallics,2003,11:661-671.
    75王彦芳,王存山,高强,董闯,霍树斌,王佳杰. TiAl基合金的非晶钎焊[J].焊接学报,2004,25:111-114.
    76韩桂芳,陈照峰,张立同,成来飞,徐永东.高温透波材料研究进展[J].航空材料学报,2003,23(1):57-62.
    77李坊森,周万城,胡汉军等.氮化硅多孔陶瓷制备技术的研究进展[J].材料导报,2008,22(10):18-21.
    78王东,刘永胜,成来飞等.氮化物高温透波材料及其应用研究进展[J].航空制造技术,2008,3:71-73.
    79宋银锁.高速战术导弹天线罩材料综述[J].航空兵器,2003,1:42-44.
    80姜勇刚,张长瑞,曹峰等.高超音速导弹天线罩透波材料研究进展[J].硅酸盐通报,2007,26(3):501-505.
    81张伟儒.高性能氮化物透波材料的设计、制备及特性的研究[D].武汉理工大学博士学位论文,2007.
    82徐洁,周万城,王俊勃,苏晓磊,贺辛亥. α/β相变对多孔氮化硅陶瓷介电性能的影响[J].硅酸盐学报,2011,39(3):475-480.
    83袁磊.利用反应烧结法制备Si3N4复合材料及其多孔材料的研究[D].东北大学博士学位论文,2008.
    84孙银宝.氮化硅基多孔透波材料制备及其性能表征[D].哈尔滨工业大学博士学位论文,2009.
    85陈力.氮化硅陶瓷材料的研究现状及其应用[J].硬质合金,2002,19(4):226-229.
    86Y. Zhang, D. Feng, Z. Y. He, et al. Progress in joining ceramics to metals[J].Journal of Iron and Steel Research,2006,13(2):1-5.
    87T. Hirata, K. Akiyama, T. Morimoto. Synthesis of β-Si3N4particles fromα-Si3N4particles[J]. Journal of the European Ceramic Society,2000,20:1191-1195.
    88Y. V. Naidich, V. S. Zhuravlev, I. I. Gab, et al. Liquid metal wettablity andadvanced ceramic brazing[J]. Journal of the European Ceramic Society,2008,28:717-728.
    89冼爱平.金属-陶瓷界面的浸润与结合机制[R].中科院沈阳金属所,1995.
    90A. Abed, I. S. Jalham, A. Hendry. Wetting and reaction between β′-sialon,stainless steel and Cu-Ag brazing alloys containing Ti[J]. Journal of EuropeanCeramic Society,2001,21:283-290.
    91W. Y. Liu, S. W. Yao, J. X. Qu. Brazing Si3N4Ceramic to AISI5140Steel underPressure[J]. ASM International,1996,5:209-212.
    92A. P. Luz, S. Ribeiro. Wetting behaviour of silicon nitride ceramics by Ti-Cualloys[J]. Ceramics International,2008,34:305-309.
    93J. Zhang, X. M. Zhang, Y. Zhou, et al. Interfacial microstructure ofSi3N4/Si3N4brazing joint with Cu-Zn-Ti filler alloy[J]. Materials Science andEngineering A,2008,495:271-275.
    94G. M. Liu, G. S. Zou, A. P. Wu, et al. Improvements of the Si3N4brazed jointswith intermetallics[J]. Materials Science and Engineering A,2006,415:213-218.
    95R. Polanco, A. De pablos, P. Miranzo, et al. Metal-ceramic interfaces: joiningsilicon nitride to stainless steel[J]. Applied Suface Science,2004,238:506-512.
    96A. H. ElSawy, M. F. Fahmy. Brazing of Si3N4ceramic to copper[J]. Journal ofMaterials Processing Technology,1998,77:266-272.
    97C. F. Liu, J. Zhang, Q. C. Meng, et al. Joining of Silicon nitride with aCu76.5Pd8.5Ti15filler alloy[J]. Ceramics International,2007,33:427-431.
    98G. Blugan, J. J. Rusch, J. Kuebler. Properties and fractography of Si3N4/TiNceramic joined to steel with active single layer and double layer braze filleralloys[J].Acta Materialia,2004,52:4579-4588.
    99J. S. Zou, Z. G. Jiang, Q. Z. Zhao, et al. Brazing of Si3N4with amorphousTi40Zr25Ni15Cu20filler[J]. Materials Science and Engineering A,2009,507:155-160.
    100邹家生,吴斌,赵其章. Si3N4/Cu68Ti20Ni12的界面结构机连接强度[J].稀有金属材料与工程,2005,34(1):103-106.
    101J. Zhang, Y. L. Guo, M. Naka, et al. Microstructure and reaction phases inSi3N4/Si3N4joint brazed with Cu-Pd-Ti filler alloy[J]. Ceramics International,2008,34:1159-1164.
    102J. Zhang, Y. Zhou, M. Naka. Interfacial microstructure of the Si3N4/Si3N4jointbrazed with Cu-Pd-Ti filler alloy[J]. Journal of the European Ceramic Society,2006,26:3459-3466.
    103G. Ceccone, M. G. Nicholas, S. D. Peteves, et al. The Brazing of Si3N4withNi-Cr-Si Alloys[J]. Journal of the European Ceramic Society,1995,15:563-572.
    104Y. N. Liang, M. I. Osendi, P. Miranzo. Joining mechanism in Si3N4bondedwith a Ni-Cr-B interlayer[J]. Journal of the European Ceramic Society,2003,23:547-553.
    105李亚江.特种连接技术[M].机械工业出版社,2007.
    106J. Lemus-Ruiz, C. A. Leon-Patino, E. A. Aguilar-Reyes. Interface behaviourduring the self-joining of Si3N4using a Nb-foil interlayer[J]. ScriptaMaterialia,2006,54:1339-1343.
    107J. Lemus-Ruiz, E. A. Aguilar-Reyes. Mechanical properties of silicon nitridejoints using a Ti-foil interlayer[J]. Materials Letters,2004,58:2340-2344.
    108M. I. Osendi, A. Depablos, P. Miranzo. Microstructure and mechanicalstrength of Si3N4/Ni solid state bonded interfaces[J]. Materials Science andEngineering A,2001,308:53-59.
    109J. Lemus, A. L. Drew. Joining of silicon nitride with a titanium foilinterlayer[J]. Materials Science and Engineering A,2003,352:169-178.
    110陈铮,顾晓波,李国安等.用中间层为非活性金属FeNi/Cu的Si3N4陶瓷与Ni的扩散连接[J].焊接学报,2001,22(3):25-28.
    111A. Krajewski. Joining of Si3N4to wear-resistant steel by direct diffusionbonding[J]. Materials Processing Technology,1995,54:103-108.
    112袁颖,袁启民,吴厚政等. Si3N4/Si3N4扩散连接的力学性能研究[J].硅酸盐通报,2002.2:18-21.
    113A. E. Martinelli, R. A. L. Drew. Microstructure and mechanical strength ofdiffusion-bonded silicon nitride-molybdenum joints[J]. Journal of theEuropean Ceramic Society,1999,19:2173-2181.
    114Y. C. Chen, C. Iwamoto, Y. Ishida. Chemical behavior in diffusion bonding ofSi3N4-Ni and Si3N4-superalloy In-738[J]. Scripta Materialia,1996,35(6):675-681.
    115杨敏,邹增大,王新洪等.中间层材料对Si3N4陶瓷/Inconel600高温合金连接性的影响[J]. Welding Technology,2004,33(2):11-14.
    116G. Ceccone, M. G. Nicholas, S. D. Peteves, et al. An Evaluation of the partialtransient liquid phase bonding of Si3N4using Au coated Ni-22Cr foils[J]. ActaMaterialia,1996,44(2):657-667.
    117邹贵生,吴爱萍,任家烈等. Al/Ti/Al复合层原位生成金属间化合物连接陶瓷[J].稀有金属材料与工程,2003,32(12):981-985.
    118邹家生,许志荣,初亚杰等. Si3N4/Ti/Cu/Ni/Cu/Ti/Si3N4二次部分瞬间液相连接强度[J].焊接学报,2005,26(2):41-44.
    119杨敏,邹增大,王新洪等. Si3N4陶瓷/Nb/Cu/Ni/Inconel600界面反应层形成机制研究[J].材料科学与工艺,2006,14(4):400-407.
    120周飞,李志章. Ti/Cu/Ti部分瞬间液相连接Si3N4的界面反应和连接强度[J].中国有色金属学报,2001,11(2):273-278.
    121邹贵生,吴爱萍,任家烈等. Ti/Ni/Ti复合层TLP扩散连接Si3N4陶瓷与接头质量控制[J].航空材料学报,2001,21(1):18-22.
    122Z. Chen, M. S. Cao, Q. Z. Zhao, et al. Interfacial microstructure and strengthof partial transient liquid-phase bonding of silicon nitride with Ti/Nimulti-interlayer[J]. Materials Sciences Engineering A,2004,380:394-401.
    123J. J. Kim, J. W. Park, T. W. Eagar. Interfacial microstructure of partialtransient liquid phase bonded Si3N4-to-Inconel718joints[J]. MaterialsScience and Engineering A,2003,344:240-244.
    124邹家生,蒋志国,初亚杰等.用Ti/Cu/Ni中间层二次部分瞬时液相连接Si3N4陶瓷的研究[J].航空材料学报,2005,25(5):30-33.
    125P. A. Walls, M. J. Ueki. Joining of non-oxide ceramics for high-temperatureapplication[J]. Journal of the European Ceramic Society,1995,78(4):999-1005.
    126F. Zhou. Effect of adhesive composition on bonding of silicon nitrideceramic[J]. Ceramics International,2003,29:293-298.
    127R. J. Xie, L. P. Huang, Y. Chen, et al. Bonding silicon nitride usingY2O3-Al2O3-SiO2adhesive[J]. Ceramics International,1999,25:535-538.
    128F. Luo, D. M. Zhu, H. Zhang, et al. Properties of reaction-bonded SiC/Si3N4ceramics[J]. Materials Science and Engineering A,2006,431:285-289.
    129闫焉服.颗粒增强锡基复合钎料研究[D].北京工业大学博士学位论文,2004.
    130杨俊,吴爱萍,邹贵生,张德库. TiN改性钎料连接Si3N4陶瓷的接头高温性能[J].焊接学报,2006,27(7):18-20.
    131G. Blugan, J. Kuebler, V. Bissig, J. J. Rusch. Brazing of silicon nitride ceramiccomposite to steel using SiC-particle-reinforced active brazing alloy [J].Ceramics International,2007,33(6):1033-1039.
    132M. G. Zhu, R. C. Wetherhold, D. D. L. Chung. Evaluation of the interfacialshear in a discontinuous carbon fiber/mortar matrix composite[J]. Cement andConcrete Research,1997,27(3):437-451.
    133杨建国.复合钎料钎焊的Al2O3陶瓷微观组织及残余应力研究[D].哈尔滨工业大学博士学位论文,2003.
    134林国标,黄继华,毛建英,李海刚. SiC陶瓷与钛合金(Ag-Cu-Ti)-SiCp复合钎焊接头组织结构研究[J].航空材料学报,2005,25(6):24-28.
    135Y. M. He, J. Zhang, C. F. Liu, Y. Sun. Microstructure and mechanicalproperties of Si3N4/Si3N4joint brazed with Ag-Cu-Ti+SiCpcomposite filler[J].Materials Science and Engineering A,2010,527:2819-2825.
    136熊进辉,黄继华,张华,赵兴科,林国标. Cf/SiC复合材料与Ti合金的Ag-Cu-Ti-TiC复合钎焊[J].中国有色金属学报,2009,19(6):1038-1043.
    137闫焉服,刘建萍,史耀武,夏志东.银镍金属微细颗粒对锡铅基复合钎料力学性能的影响[J].稀有金属材料与工程,2005,34(4):622-626.
    138W. Wang, K. Ishikawa, K. Aoki. Microstructure change-induced lowering ofhydrogen permeability in eutectic Nb-TiNi alloy[J]. Journal of MembraneScience,2010,351:65-68.
    139K. Ishikawa, Y. Seki, K. Kita, M. Matsuda, M. Nishida, K. Aoki. Hydrogenpermeation in rapidly quenched amorphous and crystallized Nb20Ti40Ni40alloy ribbons[J]. International Journal Hydrogen Energy,2011,36:1784-1792.
    140F. A. Sadi, C. Servant. On the B2→O phase transformation in Ti–Al–Nballoys[J]. Materials Science Engineering A,2003,346(1-2):19-28.
    141L. Germann, D. Banerjee, J. Y. Guedou, J. L. Strudel. Effect of composition onthe mechanical properties of newly developed Ti2AlNb-based titaniumaluminide[J]. Intermetallics,2005,13(9):920-924.
    142M. Takeyama, S. Kobayashi. Physical metallurgy for wrought gamma titaniumaluminides: Microstructure control through phase transformations[J].Intermetallics,2005,13(9):993-999.
    143Y. G. Jin, J. N. Wang, J. Yang, Y. Wang. Microstructure refinement of castTiAl alloys by β solidification[J]. Scripta Materialia,2004,51(2):113-117.
    144Villars, Prince, Okamoto, Handbook of Ternary Alloy Phase Diagrams, ASMInternational,1995.
    145T. Torvund, O. Grong. A process model for active brazing of ceramics: part Igrowth of reaction layer[J]. Journal of Materials Science,1996,31:6215-6222.
    146T. Torvund, O. Grong. A process model for active brazing of ceramics: part IIOptimization of brazing condition and joint properties[J]. Journal of MaterialsScience,1997,32:4437-4442.
    147X. P. Zhang, Y. W. Shi. A dissolution model of base metal in liquid brazingfiller metal during high temperature brazing[J]. Scripta Materialia,2004,50(7):1003-1006.
    148H. L. Cox. The elasticity and strength of paper and other fibrous materials[J].Journal of Applied Physics,1952,3:72-78.
    149C. S. Goh, J. Wei, L. C. Lee, M. Gupta. Properties and deformation behaviourof Mg-Y2O3nanocomposites[J]. Acta Materialia,2007,55:5115-5121.
    150F. Tang, I. Anderson, T. G. Herod, H. Parsk. Pure Al matrix compositesproduced by vacuum hot pressing tensile properties and strengtheningmechanisms[J]. Materials Science and Engineering A,2004,383:362-373.
    151Z. Zhang, D. L. Chen. Contribution of Orowan strengthening effect inparticulate-reinforced metal matrix nanocomposites[J]. Materials Science andEngineering A,2008,483-484:148-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700