用户名: 密码: 验证码:
冲击波压缩下铁电陶瓷力—电失效实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用铁电陶瓷在冲击波压缩作用下相变快速放电的过程,可以用作高功率脉冲电源,有着广阔的应用前景。同时,铁电陶瓷作为脆性材料,易于发生冲击压缩损伤,继而对铁电陶瓷的电学行为造成影响,因此铁电陶瓷的失效问题是一个典型的力-电失效问题。对于铁电陶瓷在冲击条件下的力-电失效问题,目前除了Sandia实验室的Setchell等人报道了多孔PZT95/5陶瓷的屈服效应(对应于多孔陶瓷的孔洞塌缩)外,特别是针对国产致密PZT95/5陶瓷的力-电失效问题,还未见公开报道。
     本论文以国产致密PZT95/5陶瓷为研究对象,采用实验研究为主、理论分析为辅的方法,系统地研究了PZT95/5陶瓷在多场作用下的失效机理。研究结果证实了致密PZT95/5陶瓷具有与多孔PZT95/5陶瓷不同的压缩损伤模式,确定了国产高密度PZT95/5的冲击压缩损伤应力范围,得到了压缩损伤演化规律的定量认识,该压缩损伤演化规律很好地揭示了不同应力下的放电波形变化的内在原因,对指导PZT95/5陶瓷应用、优化脉冲电源设计具有重要意义,也为其它脆性电介质材料的冲击失效研究提供参考。
     论文研究的主要内容和创新点归纳如下:
     1.开展了PZT95/5陶瓷自由面粒子速度波剖面测试,结果表明:在2.0GPa下的波剖面为典型的弹性响应;当应力增加到2.4GPa时,首次在铁电陶瓷波剖面中观察到与二次压缩信号类似的再加载信号;应力进一步增加到4.0GPa及以上时,再加载信号消失,自由面粒子速度出现一个缓爬坡过程。
     2.针对传统测量层裂强度无法区分破坏波与孔洞塌陷的问题,本文通过增加高阻抗蓝宝石窗口这一独特实验设计,证实和确认了2.4GPa下PZT95/5陶瓷存在有低阻抗的破坏区,即存在有破坏波,排除了该应力下孔洞塌缩、相变造成自由面粒子速度二次上升的可能性。同时,本文对自由面粒子速度剖面观测到的多次上升现象,进行了分析解读,也从一个侧面确认了破坏波的存在性。上述实验结果表明致密PZT95/5陶瓷的冲击压缩失效模式以破坏波为主,与Setchell等人报道的多孔PZT95/5陶瓷冲击压缩失效模式明显不同,后者为孔洞塌缩模式。
     3.通过测量和分析不同厚度下样品的破坏波特征参数,获得了PZT95/5陶瓷破坏波的形成、传播和演化规律。结果表明:PZT95/5陶瓷的破坏波形成与材料内部缺陷有关,同时破坏波速度与冲击波速度一致,并且破坏波弛豫时间随应力增加而减小,最终破坏波与冲击波重合,导致在4.0GPa及以上压力,自由面粒子速度无二次压缩信号,解释了实验中观察到的缓爬坡信号。这种二次压缩信号的消失并不说明材料的压缩损伤消失或减轻;相反,随着冲击应力的增加,材料内部的损伤应该是更严重,只是由于破坏区伴随冲击波扩展,无法有效区分破坏波与冲击波而已,因此表现为弥散波行为。上述现象与Grady等人在玻璃中观察到的压缩损伤信号一致,即应力低于破坏波阈值时为典型的弹性响应;冲击应力高于某一应力时,由于裂纹分布均匀化,表现为明显的弥散波行为;只有在一定应力范围内,粒子速度剖面才会出现明显的破坏波特征。
     4.对于极化PZT95/5陶瓷,当冲击应力达到2.4GPa及以上时,发现有破坏波的特征。比较极化陶瓷与未极化陶瓷的破坏波传播特性,发现极化陶瓷的破坏波驰豫时间大于未极化陶瓷驰豫时间,基于“相变增韧”的物理机制,论文解释了极化陶瓷中破坏波驰豫时间增大的原因。
     5.基于理论计算,论文分析了在外加脉冲和直流电场作用下PZT95/5陶瓷的电学失效机制,并与不同冲击应力下PZT95/5陶瓷的放电波形进行了比较,指出在低应力下(1.5GPa),PZT95/5陶瓷失效以电学失效为主;而在高冲击应力下(3.0GPa或4.3GPa),电学参数的变化规律揭示了PZT95/5陶瓷失效以力学失效为主,破坏波即裂纹的萌生、扩展行为主导了PZT95/5陶瓷的放电行为。PZT95/5陶瓷力学损伤演化规律很好地解释了在冲击波作用下电学参数变化的原因,是本文对冲击波压缩下铁电陶瓷力-电失效研究的重要认识。
Ferroelectric ceramics is utilized for the use in shock-driven pulsed power supplies for many years. Not only the electric field, but also the shock stress is applied to the ferroelectric ceramics as shock-driven pulsed power supplies. The failure, induced by electric field or stress, is a key problem to the application of ferroelectric ceramics under shock compression.
     This paper is primarily devoted to study the failure behaviors of PZT95/5ferroelectric ceramics under shock compression through experimental study aided with theoretical analyses. Electric and mechanical failure behaviors of PZT95/5were systematically investigated. The results confirm that the failure mechanism of high density PZT95/5ceramics is different from that of porous PZT95/5ceramics, and the threshold of failure stress and the evolution rules of failure wave have been getted. This kind of failure behaviors are important to the application of PZT95/5or other dielectric materials under shock compression and the optimization of shock-driven pulsed power supplies.
     Following is the main content and conclusion of this study:
     To the unpoled PZT95/5, no obvious recompression signal is observed when the shock pressure is2.0GPa, whereas at2.5GPa, not only the free-surface particle velocity increases, but also a reload signal similar to the recompression signal appears. At a shock stress of4.0GPa or much higher, the reload signals disappear and the free-surface velocity increases slowly to the final state signifying a ramp-wave behavior.
     An innovative experimental method that using a high impendance window (sapphire) adheared to the back of the PZT95/5sample has been established to confirm the existence of failure wave in PZT95/5. The PZT/sapphire interface particle velocity profile indicates that a low impendence zone truelly exists in PZT95/5when the shock stress is2.4GPa and the reload signal is caused by the failure wave but not by pore collapse or pahse transition. In addition, the occurrence of a multi-reload signal in the rear free surface velocity also confirms the failure wave in PZT95/5.
     The delay time and velocity of the failure layer has been determined by measuring samples of varying thicknesses at fixed pressure. Results show that the velocity of failure wave is the same as the shock wave speed, and the delay time decreases with increasing shock stress. When the shock stress increases to4.0GPa, the delay time falls to zero, which means the failure layer and the shock wave will disperse synchronously, and the recompression signal disappears and a ramp wave appears. The disappearance of the recompression signal and the observation of the ramp wave mean the increasing of shock damaged in failure layer. Comparing with the failure signal of glass by Gadry, it finds the same points that when the stress is lower than the threshold of failure stress, the velocity profiles suggest nominal elastic response. The successively high stress will induce the behavior of failure wave. If further increasing the stress, a ramp wave will be formed.
     On the poled samples, the reload signal resulted by the the FE→AFE phase transition is observed at first. In addition to this reload signal, when the pressure increases to2.4GPa or much more, it still has the failure wave. Comparing the failure behaviors of the poled PZT95/5with that of unpoled PZT95/5, results show that the delay time in poled PZT95/5is greated than that of unpoled PZT95/5. This difference is resulted by phase transition (FE→AFE) reinforcement effect.
     Base on the theoretical calculation, the direct current or pulse electric field induced failure of PZT95/5is discussed in this paper, and the current waveforms of PZT95/5under different shock stress have been investigated. The results show that the electric failure dominates the failure behaviors of PZT95/5when the shock pressure is2.0GPa. As the shock stress reaches3.0GPa, which pressure means that the failure wave exists in PZT95/5, and its dielectric strength slightly decreases and equivalent internal resistant decreases to the order of kΩ due to the existence of failure wave in PZT95/5. When the pressure further increased to4.3GPa, not only the internal resistant but also the dielectric strength dramatically decreases. The evolution of the failure wave, such as expansion of microcracks, induces that the dielectric strength and internal resistant of PZT95/5decreases with increasing the shock stress. This point is important to understand the failure behaviors of PZT95/5ceramics under shock compression.
引文
[1]钟维烈.铁电体物理学[M].北京:科学出版社,1998.
    [2]许立寰.铁电与压电材料[M].北京:科学出版社,1978.
    [3]Neilson F W. Ferromagnetic and Ferroelectric explosive-electric on shot explosive electric transducers[J].1956; SCTM230B-56-51.
    [4]Neilson F W. Effect of strong of shocks in ferroelectric material[J]. Bull Am Phy Soc.,1957; 2:302.
    [5]王永龄.功能陶瓷性能与应用[M].北京:科学出版社,2003.
    [6]Zhang F P, Du J M, Liu Y S, He H L. Inspection of remnant polarization in the Ferroelectric ceramic PZT 95/5 through pyroelectric effect[J]. J Am Ceram Soc.,2007; 90:2639-2641.
    [7]Bruce A T, James E S, Joseph C, et al. Robocast Pb(Zr0.95Ti0.05)O3 Ceramic Monoliths and Composites [J]. J Am Ceram Soc,2001; 84:872-874.
    [8]Roger H M, Ted V M, and Thomas L S. Chem-Prep PZT 95/5 for Neutron Generator Applications: Development of Laboratory-Scale Powder Processing Operations[R]. SAND2003-4645,2003.
    [9]刘高旻.PZT 95/5陶瓷冲击相变压力实验研究[D].硕士论文,中国工程物理研究院,2002.
    [10]陈学峰,刘雨生,冯宁博等.冲击压力和温度老化对PZT 95/5铁电陶瓷放电的影响[J].电子元件与材料.2009;28:1-4.
    [11]Sipola D L, Voigt J A, Lockwood S J, et al. Chem-Prep PZT 95/5 for neutron generator applications: Particle size distribution comparison of development and production-scale podwers. Sandia Report 2002-2065, July 2002.
    [12]Yang P, Moore R H, Lockwood S J. Chem-Prep PZT 95/5 for Neutron Generator Applications:The effect of pore formation type and density on the depoling behavior of chemically prepared PZT 95/5 ceramics[R]. Sandia Report 2003-3866, October 2003.
    [13]Lockwood S J, Rodman E D, Deninno S M, et al. Chem-prep PZT 95/5for neutron generator application:Production scale-up early history[R]. Sandia Report 2003-0943, March 2003.
    [14]Voigt J A, Sipola D L, Ewsuk B A, et al. Solution synethesis and processing of PZT Materials for neutron generator applications[R]. Sandia Report 1998-2750,1998.
    [15]Fritz I J, Keck J D. Pressure-temperature phase diagrams for several modified lead zirconate ceramics [J]. J Chem solids,1978; 39:1163-1167.
    [16]Bruce A T, Pin Y, John H Q et al. Pressure-induced phase transformation of controlled-porosity Pb(Zro.95Ti0.05)O3 ceramics[J]. J Am Ceram Soc.,2001; 84:1260-1264.
    [17]Avdeev M, Jorgensen J D, Short S, et al. Pressure-induced ferroelectric to antiferroelectric phase transition in Pb0.99(Zr0.95Ti0.05)0.98Nb0.0203[J]. Phys Rev B,2006; 73:064105.
    [18]章冠人.冲击波作用下铁电体的击穿[J].高压物理学报,1995;9:1-4.
    [19]温殿英,林其文.冲击波压缩下PZT 95/5铁电陶瓷的电介质击穿[J].高压物理学报,1998;12:199-205.
    [20]贺元吉,爆电能源高功率超宽带脉冲发生器研究[D],博士学位论文,长沙:国防科技大学,2001.
    [21]贺元吉,张亚洲,李传胪.PZT95/5铁电陶瓷击穿的统计分析[J],高压物理学报,2000;27:24-25.
    [22]贺元吉,张亚洲,李传胪.爆电换能的理论分析[J],国防科技大学学报,2000;22:43-48.
    [23]贺元吉,张亚洲,李传胪.PZT95/5铁电陶瓷脉冲源用于nF电容器充电[J],高压物理学报,2004;30:34-45.
    [24]贺元吉,张亚洲,李传胪.冲击应力作用下PZT 95/5铁电陶瓷电响应的理论分析[J],功能材料与器件学报,2001;7:157-161.
    [25]张福平,贺红亮,杜金梅等.PZT-95/5陶瓷晶粒度对冲击波作用下击穿电压的影响[J],无机材料学报,2005;20:1019-1024.
    [26]刘雨生,刘高旻,张福平等.不同加载压力下PZT 95/5铁电陶瓷放电特性研究[J].压电与声光,2008;30:371-374.
    [27]王军霞,杨世源,贺红亮等.冲击波合成Pb(Zr0.95 Ti0.05)O3粉体的结构和特性[J].硅酸盐学报,2005;33:718-722.
    [28]杜金梅,张毅,张福平等.冲击加载下PZT 95/5铁电陶瓷的脉冲大电流输出特性[J].物理学报,2006;20:217-219.
    [29]蒋东东.强自生电场下锆锡钛酸铅铁电陶瓷冲击相变及电学行为研究[D],博士学位论文,西安:西安交通大学,2012.
    [30]Jiang D D, Du J M, Guy an et al, Self-generated electric field suppressing the ferroelectric to antiferroelectric phase transition in ferroelectric ceramics under shock wave compression[J]. Journal Applied Physics,2012; 111:024103.
    [31]喻寅.多孔脆性介质冲击波压缩破坏机制研究[D],硕士学位论文,成都:四川大学,2012.
    [32]刘高旻.高密度PZT95/5陶瓷的冲击相变及放电性能研究[D],博士学位论文,绵阳:中国工程物理研究院,2009.
    [33]刘高旻,张毅,杜金梅等.PZT 95/5铁电陶瓷的冲击压缩Hugoniot特性研究[J],高压物理学报,2008;22:22-25.
    [34]Liu G M, Zhang F P, Du J M, et al. Phase transition and current properties of PZT 95/5-2Nb ferroelectric ceramic under dynemic loading[J]. International Journal of Modern Physics B,2008; 22:9-11.
    [35]Doran D G. Shock-wave compression of barium titanate and 95/5 lead zirconate titanate[J]. Journal of Applied Physics,1968,39:40-47
    [36]Dick J J, Vorthman J E. Effect of electrical state on mechnical and electrical response of a ferroelectric ceramic PZT95/5 to impact loading[J]. Journal of Applied Physics,1978; 49:2494-2498.
    [37]Chhabildas L C. Dynamic shock studies of PZT 95/5 ferroelectric ceramic[R]. SAND-84-1729,1984.
    [38]Chhabildas L C, Carr M J, Kunz S C, et al. Shock-recovery experimental on PZT 95/5[A]. Gupta Y M. Shock Compression of Condensed Matter-1985[C]. New York:AIP Conference Proceedings,1986: 785-790.
    [39]Furnish M D, Setchell R E, Chhabildas L C, et al. Gas gus impact testing of PZT95/5 part Ⅰ:unpoled state [R]. SAND-99-1963,1999.
    [40]Setchell R E, Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: depoling current[J]. Journal of Applied Physics,2005; 97:013507.
    [41]Setchell R E, Tuttle B A and Voigt J A. Effects of Microstructural Variables on the Shock Wave Response of PZT 95/5[R]. SAND2003-0537,2003.
    [42]Setchell R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: Hugoniot states and constitutive mechanical properties[J]. Journal of Applied Physics,2003; 94:573-588.
    [43]Setchell R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.9sTi0.05)0.98Nb0.02O3: Micro-structural effects[J]. Journal of Applied Physics,2007,101:053525.
    [44]张沛霖.压电陶瓷的材料参数及其测试原理[J].电子元件与材料特刊(压电陶瓷材料性能测试方法专辑),1984,4-20.
    [45]刘梅东.压电铁电材料与器材[M].北京:高等教育出版社,1990.
    [46]王保林.压电材料及其结构的断裂力学[M].北京:国防工业出版社,2003.
    [47]McHenry K D and Koepke B G. in Fracture Mechanics of Ceramics, edited by R. C. Bradt, D. P. Hasselman, and F. F. Lange (Plenum, New York,1983), Vol.5, pp.337-352.
    [48]Cao H and Evans A G. Electric field induced fatigue crack growth in piezoelectricity[J]. J. Am. Ceram. Soc.1994; 77:1783-1786.
    [49]Wang H Y and Sigh R N. Crack propagation in piezoelectric ceramic:Effects of applied electric field. Journal of Applied Physics,1997;81:7471-7479.
    [50]Sindo Y, Narita F, Horiguchi K, et al. Electric frature and polariztion switching properities of piezoelectric ceramic PZT studied by the modified small punch test[J]. Act Materialia,2003; 51:4773~4782.
    [51]杨卫.力电失效学[M].北京:清华大学出版社,2001.
    [52]刘彬.铁电晶体断裂与疲劳研究[D].博士学位论文,北京:清华大学,2000.
    [53]Yang G, Yue Z X, Ji Y, Li L T. Dielectric nonlinearity of piezoelectric stack actuator under combined uniaxial compressive stress and electric field[J]. Journal of Applied Physics,2008; 104:074116.
    [54]杨刚.多层铁电压电器件在力电载荷下的介电响应和疲劳研究[D].博士学位论文,北京:清华大学,2009.
    [55]Park S, Sun C T. Fracture criteria foe piezoelectric ceramics[J]. J Am Ceram Soc.,1995; 78:1475-1480.
    [56]Huwang S C, Lynch C S, McHenry K D. Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall Mater.1995; 43:2073-2084.
    [57]劳恩B R,威尔肖R著,龚江宏译.脆性固体断裂力学[M].北京:高等教育出版社,1985,1-6.
    [58]金宗哲.脆性材料力学性能评价与设计[M].北京:高等教育出版社,1996,23-27.
    [59]Sandia News. http://www.sanida.gov/publications/Labnews/archive/05-06-07.html.
    [60]田道全.特种陶瓷工艺学[M].武汉:武汉工业大学出版社,1989,100-102.
    [61]Rasorenov S V, Kanel G I, Fortov V E, Abasehov M M. The Fracture of Glass under High-Pressure Impulsive Loading [J]. High Press Res,1991; 6:225-232.
    [62]Kanel G I, Rasorenov S V, Fortov V E. The Failure Waves and Spallations in Homogeneous Brittle Materials [A]//Schmidt S C, Dick R D, et al. Shock Compression Of Condensed Matter-1991 [C]. New York:North-Holland,1991:451-454.
    [63]Bourne N K, Rosenberg Z, Field J E. High-Speed Photography of Compressive Failure in Glasses[J]. Journal Applied Physics,1995; 78(6):3736-3739.
    [64]贺红亮.冲击波极端条件下脆性介质的力学响应特性及其细观结构破坏特征[D].博士学位论文.绵阳:中国工程物理研究院,1997.
    [65]He H L, Jin X G, Jing F Q. Dynamic Fracture of Shock-Loaded Glass [J]. Chin Phys Lett,1997,14(7):. 538-541.
    [66]Bourne N K, Millett J, Rosenberg Z. On the Origin of Failure Waves in Glass [J]. Journal of Applied Physics.1997; 81:6670-6674.
    [67]赵剑衡.冲击压缩下玻璃等脆性材料中失效波的实验和理论研究[D].博士学位论文.北京:中国科学院力学所,2000.
    [68]Grady D E. Dynamic Failure of Brittle Solids. Sandia Technical Report, TMDG 0794,1994.
    [69]Clifton R J, Analysis of failure waves in glasses[J]. Appl. Mech. Rev.,1993; 46:540-546.
    [70]程登平.冲击波压缩下岩石介质中的破坏波研究[D].硕士学位论文,武汉:武汉理工大学,2006.
    [71]Chen D P, He H L, Jing F Q. Delayed Failure of the Shock Compressed Inhomogeneous Brittle Material [J]. Journal of Applied Physics.2007,102:033519(1-5).
    [72]Bourne N K, Millett J, Rosenberg Z, Murray N H. On the shock induced failure of brittle solids. J Mech Phys Solids.1998; 46:1887-1908.
    [73]Murray N H and Proud W G Measurement of lateral stress and spall strength in ceramics. Proceedings of International conference on Fundamental Issues and Applications of Shock-wave, and High-strain-rate Phenomena (EXPLOMET 2000). Albuquerque,2000, USA, No.28:151-156.
    [74]姚国文.冲击压缩下氧化铝陶瓷中的破坏波研究[D].博士学位论文.重庆:重庆大学,2003.
    [75]Zhang Q M, Huang F L, Han L M. Failure wave motion of 3D-C/SiC composites subjected to shock compression. Chinese Science Bulletin,2000; 45:408-411.
    [76]Grady D E, Moody R L. Shock compression profiles in ceramics[R]. SAND96-0551,1996.
    [77]孙占锋.冲击波压缩下岩石介质中的破坏波研究[D].博士学位论文,四川绵阳:中国工程物理研究院,2012.
    [78]胡邵楼.激光干涉测速技术[M].北京:国防工业出版社,2001:16-27.
    [79]Strand O T, Goosman D R, Martinez C, et al. Compact system for high-speed velocimetry using heterodyne technique[J]. Rev Sci Instrum,2006; 77:083108.
    [80]Weng J D, Tan H, Wang X, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution[J]. Appl Phys Lett,2006; 89:111101.
    [81]Weng J D, Tan H, Hu S L, et al. New all-fiber velocimeter[J]. Rev Sci Instrum,2005; 76:093301.
    [82]Steinberg D J, Cochran S G, Guinan M W. A Co nstitut ive Mo del fo r Metals Applicable at H ig h Str ain Rate [J] Journal of Applied Physics,1980; 51:1498-1503.
    [83]宋萍.无氧铜高压卸载研究[D].硕士学位论文,四川绵阳:中国工程物理研究院,2003.
    [84]经福谦.实验物态方程导引[M].北京:科学出版社,1986.
    [85]方俊鑫,殷之文.电介质物理学[M].北京:科学出版社,2000:134.
    [86]张福学.现代压电学[M].北京:科学出版社,2001.
    [87]GB3389.5-1982.
    [88]IEEE standard on piezoeletricity 176-1987.
    [89]Heywang W, Lubitz K and wersing W. Piezoelectricity[M]. Springer-verlag Berlin Heidelberg 2008.
    [90]曹树谦,张文德,萧龙翔.振动结构模态分析—理论、实验与应用[M].天津:天津大学出版社,2001:73-84.
    [91]Dungan R H, Storz L J. Relation between chemical, mechanical and electrical properties of Nb2O5-modified 95 Mol% PbZrO3-5 Mol% PbTiO3[J]. J Am Ceram Soc.,1985; 68:530-533.
    [92]李维新.一维不定常流与冲击波[M].北京:国防工出版社,2003:255-257.
    [93]Bourne N K_, Rosenberg Z, Field J E. High-speed Photography of compressive failure in glasses[J]. Journal of Applied Physics,1995; 78:3736-3739.
    [94]Heaton T H. Evidence for and implications of self-healing pulses of slip in earthquake rupture[J]. Physics of Earth and Planetary Interiors,1990; 64:1-20.
    [95]Broberg K B. How fast can a crack go?[J]. Material science,1996; 32:80-86.
    [96]Jensen B J, Holtkamp D B, Rigg P A, and Dolan D H. Accuracy limits and window corrections for photon Doppler velocimetry[J]. Journal of Applied Physics,2007; 101:013523.
    [97]蒋仁言.威布尔模型族特性、参数估计和应用[M],北京:科学出版社,1998:12-19.
    [98]He H L, Jing F Q and Jing X G. Evaluating the damage in shock compressed glass coupling with VISAR measurement[J]. International Journal of Impacting energy,2001,25:599-605.
    [99]Lange F F. Transformation toughening Part1:Size Effects Associated with the Thermodynamics of Constrained Transformation[J]. J Mater Sci,1982; 17:225-234.
    [100]Lange F F. Transformation Toughening Part3:Experimental Observation in the ZrO2-Y2O3 System [J]. J Mater Sci.,1982; 17:240-246.
    [101]Shockev D A et al. Damage in steel plates from hypervelocity impact. I. Physics changes and effects of projectile materials[J]. Journal of Applied Physics,1976; 46:3766.
    [102]Bertholf L D et al. Damage in steel plates from hypervelocity impact. II. Numerical results and spall measurement J]. Journal of Applied Physics,1976,46:3776.
    [103]Lysne P C, Percival C M. Electric energy generation by shock compression of ferroletric ceramics: normal mode response of PZT 95/5[J]. Journal of Applied Physics,1975; 46:1519-1525.
    [104]Shuker R, Sterer E. Pressure induced insulator to metal transition in amorphous SiO2[J].Phys Rev B, 2007,76:161102.
    [105]Brady B T, Rowell GA. Laboratory Investigation of the Electrodynamics of Rock Fracture[J]. Nature, 1986; 321:488-492.
    [106]Hashimoto H Emission of Charged Particles from Indention Fractures of Rocks[J].Nature,1990; 346:641-643.
    [107]Dickinson J T, Donaldson E E, and Park M K. The Emission of electrons and positive ions from fracture of materials[J].J Mater Sci.,1981; 16:2897-2908.
    [108]杨佳.K9玻璃动态损伤过程中的电阻率测量实验研究[D].硕士学位论文,四川绵阳:中国工程物理研究院,2011.
    [109]Grady D E. Analysis of shock and high-rate data for ceramics:Strength and failure of brittle solids. ARA Project No.17168, Printed July 2007.
    [110]范天佑.断裂动力学[M].北京:北京理工大学出版社,2002:25-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700