用户名: 密码: 验证码:
镍钴合金电铸成形精密器件应用与机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内对于精密薄壁件的研发起步较晚,稳定的成形工艺相当稀缺,特别是第二代红外探测器冷屏件和微型波纹管等这类精密器件工艺的研发少之甚少。目前对于冷屏件和微型波纹管的研制还处在初级阶段,存在着精度低、应力波动大、组织成分和物理力学性能不稳定等诸多问题,那么,自主研发稳定的成形工艺方法来生产精度高、组织成分稳定、力学性能好的精密薄壁冷屏件和波纹管显得尤为重要。常规的加工方法无法满足精密薄壁件的加工制作。因此,需要采用特殊的工艺方法进行制作,而电铸是加工此类精密器件最为理想的方法之一。
     本课题将具有耐磨性、耐腐蚀、高刚度、高硬度以及电磁性等良好的物理、化学和机械性能的镍钴合金材料应用于电铸技术中,替代了传统的电铸纯镍工艺,获得了稳定的电铸镍钴合金工艺流程,成功的制备出符合实际生产需求的冷屏件和微型波纹管,并讨论了电铸Ni-Co合金的工艺条件对铸层组织和性能的影响,分析了氨基磺酸根对镍钴合金异常共沉积行为的影响,探讨了电沉积Ni-Co合金异常共沉积可能存在的机理。同时,对冷屏件和微型波纹管成品进行了检测。主要取得以下成果:
     硫酸盐型电铸Ni-Co合金可制备出钴含量处在7%-15%,最大壁厚不均匀度小于10%,表面粗糙度Ra≤0.4,显微硬度HV≥400的杜瓦用冷屏件。铸液组成及操作条件为:NiSO4·6H2O250-350g/L,CoSO4·7H2O9-15g/L,NaCl20-25g/L, H3BO335-45g/L,表面活性剂0.05-0.1g/L,络合剂TN15-15g/L,添加剂TN20.08-0.15g/L,Dk2-6A/dm2,pH值4-5,温度55-65℃,搅拌为磁力搅拌。
     该工艺中CoSO4·7H2O的浓度对铸层钴含量、形貌、应力、硬度以及微观结构均具有一定的影响。铸液中Co2+浓度的增加,铸层钴含量不断升高,铸层应力和显微硬度也呈上升趋势,铸层晶粒逐渐变小、更均匀平整,铸层的衍射峰呈宽化趋势但没有其他相的衍射峰出现。电流密度对铸层钴含量、应力影响较显著。电流密度的增大,铸层钻含量呈下降趋势,铸层应力呈先增大后减小的趋势,显微硬度略微下降,铸层晶粒逐渐增大,铸层衍射图中没有其他相的衍射峰出现,但衍射峰(111)和衍射峰(200)均出现了增强,晶核择优取向,其生长方向主要沿着[100]方向,部分沿着[111]方向。添加剂TN1和TN2对铸层应力影响较大。添加剂对铸层应力的影响与添加剂的种类有关。TN2能够使铸层产生压应力,其浓度的增加,铸层应力呈下降趋势;添加剂TN3能够使铸层产生张应力,其浓度的增加,铸层应力不断升高。
     自主研发的添加剂TN2能够使铸层形貌更加光亮平整,降低铸层应力的同时提高铸层的显微硬度,能够很好的应用于硫酸盐型电铸镍钴合金工艺中,性能稳定。添加剂TN3能够使铸层达到全光亮,同时,也能使铸层硬度明显升高,但由于它的加入会使铸层应力升高,故需慎重使用。
     氨基磺酸盐型电铸镍钴合金可制备出泄露率低,疲劳寿命在2×105以上、壁厚均匀性高(0.03mm+0.0040),伸长量均匀(2.5mm+0.3),刚度高(>700g/mm)的符合实际应用要求的微型波纹管。铸液组成和操作条件为:Ni(SO3NH2)2·4H2O500-650g/L, Co(SO3NH2)2·4H2O10-16g/L,NiCl2·6H2O10-15g/L,H3BO335-40g/L,表面活性剂0.15-0.2g/L,pH值3.5-4.5,温度40-50℃,搅拌为磁力搅拌,脉冲峰值电流2-6A/dm2。若需要研制表面光亮、刚度更高的微型波纹管,则需添加HP1(0.15-0.5g/L)和HP2(0.1-0.3g/L)。
     该工艺中Co(SO3NH2)2·4H2O的浓度对于铸层钴含量、形貌、硬度以及微观结构均具有一定的影响。铸液中Co2+浓度的增加,铸层钴含量随之升高,铸层晶粒细化,铸层显微硬度不断增大,铸层的晶体结构并没有明显改变,铸层晶面(200)受到了抑制,各衍射峰的半高宽得到宽化。脉冲峰值电流密度对于铸层钴含量和铸层形貌影响较大。峰值电流密度的增大,铸层钴含量升高,铸层菜花包状晶胞增大,界面更清晰。脉冲峰值电流密度对铸层显微硬度和微观结构影响较小。添加剂HP1和HP2对铸层形貌、显微硬度以及微观结构影响较大。添加剂HP1能够细化晶粒,HP2具有很好的整平效果,二者均能够使铸层显微硬度增加和衍射峰宽化,添加剂HP1对晶面具有选择性,晶核主要沿着[100]方向生长,而添加剂HP2对晶面的选择性不同,晶核主要沿着[111]方向生长。
     该工艺中采用脉冲电流制备微型波纹管,很大程度上增强了铸液的分散能力以及渗透能力。添加剂HP1和HP2为自主研发,能够很好的增强铸层的表面光洁度以及显微硬度,具有很高的应用价值。
     硫酸盐体系和氨基磺酸盐体系中电铸镍钴合金均属于异常共沉积。弱场配体氨基磺酸根的存在会加剧镍钴合金异常共沉积现象。在晶体场理论的基础上探讨了镍钴合金异常共沉积的两种机理。(1)吸附能力较强的的弱场配体的存在,将导致Co2+的d轨道电子发生分裂,Co2+与弱场配体形成更易分解的八面体高自旋配合物,从而使Co优先沉积。(2)在沉积过程中,阴极附近由于H+的析出,导致局部pH值升高,OH-与Co2+易形成Co(OH)2胶体在阴极表面吸附,从而对Ni2+的还原起到抑制作用。
     红外探测器杜瓦用冷屏件和自调节节流制冷器用微型波纹管的成功研制,填补了国内此类红外精密器件研制技术的空白,使我国在重大国防装备的关键零部件上得以自主保障,对于带动了我国军事事业和精密制造业的发展,具有重大意义。
     研究工作的主要创新点:(1)自主研发了稳定的硫酸盐体系和氨基磺酸盐体系电铸镍钴合金工艺流程。(2)研制出了性能优良、稳定性好的添加剂。(3)在晶体场理论的基础上,探究了镍钴合金异常共沉积的机理,对以后的研究具有参考价值。(4)成功的将电铸镍钻合金技术应用于精密器件的研制,填补了国内关于该项技术的空白,打破了国外的封锁。
The domestic development in precision devices electroforming starts relatively late, as to stable molding process being rather scarce. Especially the r&ds of the cold-shield material used in the second generation of infrared detector's dewar and the miniature corrugated pipe are more less. At present, research to the cold-shield material and the miniature corrugated pipe is still in the primary stage. There are many problems in the precision thin-wall parts such as the low accuracy, big stress, and instable organization composition, physical and mechanical performance etc. So it is particularly important that independently to investigate stable molding process method to produce the cold-shield material and the miniature corrugated pipe which have high precision, stability organization composition and good mechanical properties. But the conventional processing methods can't satisfy the precision devices requirement.Therfore, adopting special process methods for its production is very necessary, and the electroforming is one of the most ideal methods to produce such precision devices.
     Ni-Co alloy material has been applied in electroforming technology in taking the place of the traditional pure nickel for its good physical, chemical and mechanical properties such as wear resistance, corrosion resistance, high rigidity, high hardness and electric magnetic. Stable electroforming Ni-Co alloy technological process is achieved in this way. The cold-shield material and the miniature corrugated pipe are successful prepared consistent with the actual production requirements. The influence of electroforming Ni-Co alloy process conditions on the casting layer' organization and properties has been discussed. The influence of sulfamate root to Ni-Co alloy anomaly codeposition behavior has been analysed and the electrodeposition Ni-Co alloy anomaly codeposition mechanism has been discussed. Meanwhile the finished products of the cold-shield material and the miniature corrugated pipe have been tested and investigated.
     The main subjects and results in this dissertation are as follows:
     The cold-shield material with cobalt content in7%to15%,the biggest wall thickness uniformity less than10%, the surface roughness Ra≤0.4and its micro-hardness HV>400can be prepared by electroforming Ni-Co alloy from Sulfate electrolyte. Composition of the casting solution and operating conditions are as follows:NiSO4·6H2O250-350g/L, CoSO4·7H2O9-15g/L, NaCl20-25g/L, H3BO335-45g/L, Surfactant0.05-0.1g/L, Complexing agent TN15-15g/L, Additive TN20.08-0.15g/L, Dk2-6A/dm2, pH value4-5, Temperature55-65℃, magnetic stirring.
     In the above technological process, the concentration of CoSO4·7H2O has certain influences to the electroforming layer's cobalt content, morphology, stress, hardness and microstructure. With the increasing of the Co2+concentrations in the electrocasting liquor, the casting layer's cobalt content will increase, the casting layer' stress and micro hardness shows ascendant trend, and the casting layer's grains became much smaller, more uniform and flat. The casting layer's diffraction peaks are gradually widened, but no other phase diffraction peak appears when the Co2+concentrations increasing in the electrocasting liquor. The current density has great influences on the casting layer's cobalt content and stress. With the increasing of the Current density, the casting layer's cobalt content has a down trend; the Casting layer's stress has the trend of at first increasing, then decreasing; the Casting layer's micro hardness is slightly decreased and the casting layer's grains increase gradually.No other phase diffraction peak appears in the casting layer's diffraction figure and the diffraction peaks (111),(200) all appear the phenomenon of strengthening when the current density increasing. The casting layer's Crystal nucleuses have the preferred orientation and its growth direction are mainly along the [100], partly along the [111] direction. The additive TN2and TN3have great influence on the casting layer's grain size. The impacts of additives on the casting layer's stress have a relationship with the additives' species. TN2can make casting layer produce pressure stress; the casting layer's stress gradually decreases when its concentration increasing. But additive TN3can make casting layer produce tensile stress; the casting layer's stress gradually increases when its concentration increasing.
     The additive TN2which is synthesized independently can make casting layer morphology more bright and flat. It can reduce casting layer's stress at the same time, and it can improve the micro hardness of casting layer. It has stable performance and good application prospect in the electroforming Ni-Co alloy from Sulfate electrolyte.
     The additive TN3can make the casting layer full bright and increase the casting layer's micro hardness obviously. But we should be careful when we use it because of its join will increases the cast layer's stress.
     The miniature corrugated pipe which has low Leak rate, high fatigue limit (more than2×105), high wall thickness uniformity (0.03mm±0.0040), uniform Elongation (2.5mm±0.3) and high stiffness(>700g/mm) can be prepared by electroforming Ni-Co alloy from sulfamate electrolyte. Composition of the electrocasting liquor and operating conditions are as follows:Ni(SO3NH2)2·4H2O500-650g/L, NiCl2·6H2O10-15g/L, Co(SO3NH2)2·4H2O,10-16g/L, H3BO335-40g/L, Surfactant0.15-0.2g/L, pH value3.5-4.5, Temperature40-50℃, Stir Magnetic stirring, Pulse peak current density2-6A/dm2.If the miniature corrugated pipes which have a bright surface and higher stiffness are needed, the additives HP1and HP2should be added into the electrolyte.
     The concentration of Co(SO3NH2)2·4H2O has certain influence to the electroforming layer's cobalt content, morphology, hardness and microstructure. With the increasing of the Co2+concentrations in the electroforming solution, the casting layer's cobalt content will increase, the casting layer's grains get refinement, and the micro hardness increases continuously. The casting layer's crystal structure isn't obvious changed, but all diffraction peaks are widened and the Crystal (200) is reduced when the increasing of the Co2+concentrations in the electroforming solution. The Pulse peak current density has great influences on the casting layer's cobalt content and morphology. When the pulse peak current density increases, the casting layer's cobalt content and cauliflower crystal cell continuously increase; the crystal cells' interfaces gradually become clearer. The casting layer's microscopic hardness and microstructure are less affected by the increasing of the pulse peak current density. The additive HP1and HP2have great influence on the casting layer's morphology, microscopic hardness and microstructure. The additive HP1has the function of refining grain and the additive HP2has a very good leveling effect for the casting layer. Both of them can make the casting layer's microscopic hardness strengthen and diffraction peak width. The additive HP1has selectivity to the casting layer's crystal plane and the casting layer's crystal nucleus mainly grows along the [100] direction. But the additive HP2has different selectivity to the casting layer's crystal plane. The casting layer's crystal nucleus mainly grows along the [111] direction.
     The miniature corrugated pipes are produced by using pulse current from sulfamate electrolyte. To a great extent, the pulse current can enhances the casting solution's dispersion ability and penetration power. The additive HP1and HP2that are developed by ourself have a very high application value and can increase the casting layer's surface smoothness and microscopic hardness.
     Both in the Sulfate system and sulfamate system, Ni-Co alloy electroforming all belong to abnormal codeposition. The existence of the sulfamate root will aggravates the Ni-Co alloy anomaly codeposition phenomenon for it is a weak field ligand. Based on the crystal field theory, two mechanisms of Ni-Co alloy anomaly codeposition are discussed.(1)The weak field ligand existence will lead to the cobalt ions d orbital electron split for its stronger adsorption ability. The Co2+and weak field ligand will easily form octahedron high spin complex. It is easier decomposition than the complex which formed by Ni2+with the weak field ligand. So the Co easier electroplating prior to Ni.(2) due to the precipitation of the H+on the cathode,the pH value of the cathode local is increased. The Co(OH)2colloids which are easy formed from OH-and Co2+can adhere to the cathode surface. The reduction reaction of Nickel ions will be restrained by the Co(OH)2colloids.
     The cold-shield material used in the second generation of infrared detector's dewar andd the miniature corrugated pipe used in self-adjusting throttling refrigeration are successful development. These technologies fill the domestic blank on the research techniques of precision devices and independently guarantee production of the major defense equipment key parts in China. The military career and precision manufacturing industry development in our country are promoted by this research, so it has great significance.
     The main innovation points of the research work:(1) The stable processes of the sulfate system and sulfamate system electroforming nickel cobalt alloy have been independently developed.(2) The additives which have good performance and good stability are developed.(3)The nickel cobalt alloy anomaly codeposition mechanism has been discussed on the basis of the theory crystal field.It has reference value for future research.(4) The electroforming nickel cobalt alloy technique has successful applied to the research of the precision devices.This technique fills the blank in domestic and breaks the foreign blockade.
引文
[1]邢素霞,张俊举,常本康等.非制冷红外热成像技术的发展与现状[J].红外与激光工程,2004,33(5):441-444
    [2]陈者基.红外热像仪的应用及发展[J].激光与红外,1992,22(4):1-4
    [3]张俊,裴和中,张国亮等.添加剂及波形对镍钴合金电铸液的分散能力的影响[J].材料保护,2009,42(9):30-32
    [4]王燕,雷永平,符寒光等.硫酸盐型镀液中电沉积低应力镍钴合金镀层的研究[J].材料工程,2010,8:16-19
    [5]何兴伟.空间用微型红外探测器杜瓦的研制现状及未来的发展方向[J].红外,2005,(5):21-26
    [6]马伟,李德雨,钟玉平.波纹管的发展与应用[J].河南科技大学学报(自然科学版),2004,25(4):28-30
    [7]王三煌.波纹管型自调式制冷器设计研究[J].2006,28(11):651-654
    [8]张允诚,胡如南,向南.电镀手册(第三版)[M].北京:国防工业出版社2007:45-47
    [9]田亮亮.镍基金属镀层的电沉积制备及其性能研究[D].兰州:兰州大学材料物理与化学系,2011
    [10]田伟.锌镍合金电镀工艺及性能研究[D].西安:西北工业大学材料学系,2000
    [11]贺军.镍钴合金镀层薄膜的制备及其变形腐蚀行为研究[D].湘潭:湘潭大学材料物理与化学系,2008
    [12]D.R.Gabe et al,Met[J].fin.1993,91(8):34-36
    [13]Glasstone S.Studyies of electrolytic pokarization.IV.The electrodeposition potentials of oron,cobaltand nickel[J],J.Chem.Soc,1962,129:2887-2892
    [14]Abber Brenner.Electrodeposition of Alloys Vol,Ⅱ[M].New York:Academic Press,1963, 222-235
    [15]Felloni L,Fratesi R.ElectrodePosition of Zinc-Nickel Alloys[J] J.Applied Eleetroehemi-Stry,1998,27(2):574-582
    [16]Kolb D,Metal[J].J.Electroanal Chem,1974,54:25
    [17]陈钧武.电铸发展现状[J].电镀与精饰.1996,18(2):22-26
    [18]张文峰.电铸技术的研究进展[J].机电产品开发与创新.2008,21(4):45-46
    [19]王瑞永,龙晋明,裴和中.电铸镍及镍合金的研究进展[J].电镀与涂饰.2009,28(3):10-13
    [20]李亭举.电铸技术现状及发展[J].航空工艺技术.1990,(5):27-29
    [21]杜爱华,龙晋民,裴和中.电铸纳米晶材料的研究现状[J].电镀与涂饰.2008,27(4):16-19
    [22]朱小东,徐弘,等.快速模具成形中孔(槽)电铸工艺的研究[R].机械装备结构材料与表面技术研讨会,2008:563-567
    [23]覃奇贤,郭鹤桐,等.电镀原理与工艺[M].天津:天津科学技术出版社,1993
    [24]吕益艳,王帮峰,等.发展中的电铸技术[J].电加工与模具,2000,(4):4446
    [25]李国兵,朱小东.电铸成形与其他成形方法耗能的比较[J.模具制造技术,2007,(2):64-67
    [26]Romankiw L T.A path:from electroplating through lithographic masks in electronics to LIGA in MEMS [J].Electrochimica Acta,1997,42.2985-3005
    [27]Ehrfeld W. Electrochemistry and Microsystems [J]. Electrochimica Acta,2003,48 (20-22):2857-2868
    [28]Nosang V, Myung, et al.Development of electroplated magnetic materi- als for MEMS [J] Journal of Magnetism and Magnetic Materials,2003,265:189-198
    [29]Geough J A Mc, Leu M C, Rajurkar K P. Industrial Electroforming Process and Application to Micro/Macro Manufacturing [J].Annals of the CIRP,2001, 50(2):499-514
    [30]马龙等.LIGA工艺中微电铸工艺研究[J].激光技术,2006,30(1):47-49
    [31]邵力耕等.研究UV-LIGA微电铸电极过程的交流阻抗法[J].光学精密工程,2007,15(7):1049-1055
    [32]吕文龙,陈义华,孙道恒.微电铸及其在MEMS中的应用[J].厦门大学学报(自然科学版),2005,44:316-318
    [33]刘益芳,崔宏巍.利用微电铸制作镍悬臂梁[J].厦门大学学报(自然科学版),2005,44(5):658-660
    [34]彭勃等.基于微电铸的非硅MEMS加速度传感器[J].国外电子元件,2006,12:58-60
    [35]John D Madden, Ian W Hunter. Three-dimensional microfabrication by localized electrochemical deposition[J]. Journal of Microelectromechanical Systems,1996,5(1): 24-32.
    [36]赵阳培,黄因慧,张君伟,等.脉冲射流电铸纳米晶铜的组织与性能[J].机械工程材料,2006,30(6):87-90
    [37]桂枫,姚素薇.电镀纳米金属多层膜研究现状[J].电镀与环保,2000,20(1):3-5
    [38]范爱玲,贺怀堂,田文怀等.电铸超细晶材料的微观组织研究[J].太原重型机械学院学报,2003,24(2):88-91
    [39]Clark D, Wood D, Erb U. Industrial applications of electrode posited nanocrystals[J]. Nanostructured Materials,1997,9(8):755-758
    [40]雷卫宁,朱荻.纳米品精密电铸技术的研究[J].中国机械工程,2003,14(12):1065-1068
    [41]Zhu D, Lei W N. Nanoerystalline electroforming process[J].Annals of the CIRP,2002,51(1):173-176
    [42]Lu L. High tensile ductility in nanocrystalline copper[J]. Journal of Mater Res,2000,15(2):270-273
    [43]赵剑峰,黄因慧,吴安德.射流电沉积快速成形技术基础试验研究[J].机械工程学报,2003,39(4):75-78
    [44]范爱玲,田文怀,周登陵,等.电铸铜药型罩高速变形前后微观组织的观察以及变形机理的探讨[J].兵器材料科学与工程,2001,24(4):3-5
    [45]王铁福,王健平,阮文俊,等.冷挤压聚能药型罩的射流性能研究[J].弹道学报,1996,8(4):65-69
    [46]陈天玉.镀镍合金[M].北京:化学工业出版社,2007
    [47]陈恕华.两元及三元镍合金的电沉积[J].电镀与精饰,1989,11(3):40-44
    [48]陈恕华编译.两元及三元镍合金电沉积的新进展[J].电镀与精饰,1990,12(6):21-24
    [49]朱龙章,张庆元,陈宇飞等.镍钴合金镀层的电沉积及其耐蚀性的研究[J].材料保护,1997,30(5):4-6
    [50]迟兰州,张声峰,何为.石英光纤表面镀镍钴合金工艺研究[J].电镀与涂饰,1998,17(4):7-15
    [51]周向阳,杨建红,李庆余等.电沉积光亮Ni-Co合金工艺的研究[J].电镀与环保,2000,20(3):14-16
    [52]王立平,高燕,刘慧文等.电沉积梯度Ni-Co纳米合金镀层的研究[J].电镀与涂饰,2004,23(6):5-7
    [53]常立民,安茂忠,石淑云.低含量钴对镍合金镀层结构和性能的影响[J].材料保护,2005,38(11):53-55
    [54]潘秉锁,杨洋,杨凯华.镍钴合金电沉积中硫酸钻影响的探讨[J].材料保护,2006,39(4):10-12
    [55]李云东,梁爱琴,娄伟等.镀液成分对纳米镍-钴合金镀层显微硬度的影响[J].电镀与环保,2008,28(4):9-12
    [56]王燕,雷永平,符寒光等.硫酸盐型镀液中电沉积低应力镍钴合金镀层的研究[J].材料工程,2010,(8):16-19
    [57]范爱玲.电铸超细晶材料的微观组织研究[J].太原重型机械学院学报,2003,24(2):88-91
    [58]雷卫宁.基于高性能沉积层的精密电铸技术的研究进展[J]兵器材料科学与工程,2005,29(6):60-63
    [59]Liping Wang etc. Microstructure and tribological properties of electrode- posited Ni-Co alloy deposits[J]. Applied Surface Science,2005,242:326-332
    [60]L.Burzyn'ska,E.Rudnik. The influence of electrolysis parameters on the composition and morphology of Co-Ni alloys[J].Hydrometallurgy,2000,54:133-149
    [61]C.LUPI,D.PILONE.ELECTRODEPOSITION OF NICKEL-COBALT ALLOYS:THE EFFECT OF PROCESS PARAMETERS ON ENERGY CONSUMPTION[J].Minerals Engineering,2001,14(11):1403-1410
    [62]Guiying Qiao,Tianfu Jing, Nan Wang etc. High-speed jet electrodeposition and microstructure of nanocrystalline Ni-Co alloys[J]. Electrochimica Acta,2005,(51):85-92
    [63]Liping Wang,Yan Gao,Qunji Xue etc. Microstructure and tribological properties of electrodeposited Ni-Co alloy deposits[J]. Applied Surface Science,2005,(242):326-332
    [64]Wolfgang E.G. Hansal, Barbara Tury, Martina Halmdienst etc. Pulse reverse plating of Ni-Co alloys:Deposition kinetics of Watts, sulfamate and chloride electrolytes[J]. Electrochimica Acta,2006,(52):1145-1151
    [65]A.Dolati,M.Sababi,E.Nouri.A study on the kinetic of the electrodeposited Co-Ni alloy thin films in sulfate solution[J].Materials Chemistry and Physics,2007,118-124
    [66]Yundong Li, Hui Jiang, Dong Wang etc. Effects of saccharin and cobalt concentration in electrolytic solution on microhardness of nanocrystalline Ni-Co alloys[J].Surface & Coatings Technology,2008,(202):4952-4956
    [67]S.L.Wang,L.L.Hong and W.W.Yu.Influence of 2-butyne-1,4-diol on the structure and performance of the Co-Ni alloy plarea by electrodeposition[J].Acta Metall,2008,50-56.
    [68]Sh. Hassani, K. Raeissi, M. Azzi etc. Improving the corrosion and tribocorrosion resistance of Ni-Co nanocrystalline coatings in NaOH solution[J]. Corrosion Science, 2009,(51):2371-2379
    [69]Liangliang Tian, Jincheng Xu, Songtao Xiao. The influence of pH and bath composition on the properties of Ni-Co coatings synthesized by electrodeposition[J]. Vacuum,2011, (86):27-33
    [70]Liangliang Tian, Jincheng Xu, Chengwen Qiang. The electrodeposition behaviors and magnetic properties of Ni-Co films[J]. Applied Surface Science, 2011,(257):4689-4694
    [71]Ali Karpuz, Hakan Kockar, Mursel Alper etc. Electrodeposited Ni-Co films from electrolytes with different Co contents [J]. Applied Surface Science, 2012,(258):4005-4010
    [72]王伊卿,赵文轸,唐一平等.Ni-Co合金电铸工艺及性能研究[J].兵器材料科学与工程.2000,23(3):39-43
    [73]鞍钢集团机械制造公司风机电镀厂.电铸镍钴合金的方法:CN,1515703A [P].2003-01-08
    [74]杜爱华,龙晋明,裴和中等.电铸镍钻合金中内应力的影响因素[J].电镀与涂饰,2008(6):15-17
    [75]张俊,裴和中,张国亮.光亮剂对镍钴合金电铸层的影响[J].材料保护,2009,42(4):33-35
    [76]张俊,裴和中,张国亮.超细晶镍钴合金电铸工艺研究[J].材料保护,2010,43(1):36-37
    [77]裴和中,张俊,张国亮.黑铬镀层的红外辐射性能及镀液废水处理[J].材料保护,2009,42(12):15-17
    [78]张俊,裴和中,张国亮等.添加剂及电源波形对镍钴合金电铸液分散能力的影响[J].材 料保护,2009,42(9):30-32
    [79]赵徂欣.镍钴合金电铸模具的研究[J].金属成形工艺,1992,10(1):13-17
    [80]李松,马市娟.复合材料模具表面电铸镍钴合金研究[J].电镀与涂饰,2006,25(10):1-4
    [81]武刚,李宁,周德瑞.氨基磺酸体系Co-Ni合金电化学共沉积行为及动力学机理[J].高等化学工程学报,2005,19(1):48-53
    [82]许伟长,戴品强,郑耀东.钴含量对电沉积纳米晶镍钴合金组织与力学性能的影响[J].2010,20(1):92-99
    [83]D. Golodnitsky, Yu. Rosenberg, A. Ulus.The role of anion additives in the electro-deposition of nickel-cobalt alloys from sulfamate electrolyte[J]. Electrochimica Acta, 2002, (47):2707-2714
    [84]C.K. Chung, W.T. Chang. Effect of pulse frequency and current density on anomalous composition and nanomechanical property of electrodeposited Ni-Co films[J].Thin Solid Films,2009, (517):4800-4804
    [85]Meenu Srivastava, V. Ezhil Selvi, V.K. William Grips etc. Corrosion resistance and microstructure of electrodeposited nickel-cobalt alloy coatings [J]. Surface & Coatings Technology,2006,(201):3051-3060
    [86]王文忠.电铸技术及其应用[J].电镀与涂饰,1998,17(1):36-39
    [87]王三煜.节流制冷机的现状与发展[A].第十五届全国红外科学技术交流会暨全国光电技术学术交流会论文集[C],北京,中国兵工学会,2001,790-792
    [88]McGeough J A, Leu M C, Rajurkar K P. Industrial electroforming process and application to micro/macro mnufacturing[A].Annals of the CIRP[C],2001,50(2): 499-514
    [89]B. Tury, G.Z.Radnoczi, G.Radnoczi, etc. Microstructure properties of pulse plated Ni-Co alloy [J]. Surface & Coatings Technology,2007,202:331-335
    [90]曾华梁,吴仲达,陈钊武等.电镀工艺手册[M].北京:机械工业出版社,2002.
    [91]王伊卿,赵文轸,唐一平,等.Ni-Co合金电铸工艺及性能研究[J].兵器材料科学与工程,2000,23(3):39-43
    [92]A.M.El-Sherik, J.Shirokoff, U.Erb. Stress measurements in nanocry- stalline Ni electrodeposits [J]. Journal of Alloys and Compounds,2005,389:140-143
    [93]Geough J A Me, Leu M C, Rajurkar K P. Industrial Electroforming Process and Application to Micro/Macro Manufacturing [J].Annals of the CIRP,2001,50(2): 499-514
    [94]R.T.C.Choo,J.M.Toguri,A.M.E1-Sherik et al.,Mass transfer and electrocrystallizationanalyses of nanocrystalline nickel production by pulse plating[J].Appl Electrochem,1995(25):384-403
    [95]Yundong Li,Hui Jiang,Dong Wang,Huiyan Ge.Effects of saccharin and cobalt concentration in electrolytic solution on microhardness of nanocrystalline Ni-Co alloys[J].Surface & Coatings Technology,2008,4952-4956
    [96]方景礼.电镀配合物——理论与应用[M].北京:化学工业出版社,2007
    [97]张芳,荆天辅,乔桂英,等.脉冲电沉积钴镍合金层微观结构的研究[J].电镀与涂饰,2001,20(6):1-3
    [98]Ali Karpuz,Hakan Kockar,Mursel Alper.The effect of different chemical compositions caused by the variation of deposition potential on properties of Ni-Co films[J].Applied Surface Science,2011(257):3632-3635
    [99]Correia A N, Machado S A S. Electrodeposition and characterizations of thin layer of Ni-Co alloys obtained from dilute chloride baths [J]. Electrochimica Acta,2000, 45(11):1733-1738
    [100]Gomez E, Ramirez J, Valles E. Electrodeposition of Co-Ni alloys [J]. J Appl Electrochem,1998,28(3):71-76
    [101]Burzynska L, Rudnik E. The influence of electrolysis parameters on the composition and morphology of Co-Ni alloys [J].Hydrometallury,2000,54(1):133-137

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700