用户名: 密码: 验证码:
混凝土受压与受拉性能的尺寸效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土的力学性能与其几何尺寸密切相关,为准确描述不同混凝土力学性能上的差异,系统研究混凝土的尺寸效应显得尤为必要。目前,国内外在混凝土受压变形性能尺寸效应、骨料组分和配筋情况对混凝土力学性能尺寸效应的影响等方面的研究较少。此外,在对混凝土力学性能进行数值模拟时,通常将硬化水泥砂浆基体的力学性能假定为一常数进行分析,忽略其自身的尺寸效应,该假定的有效性尚未得到试验证实。受各种因素的限制,尺寸效应的试验研究往往只能在一个较小的尺度范围内进行,采用数值模拟的方法可有效解决试验研究的不足之处,为尺寸效应的研究提供另外一种研究手段。
     采用试验研究与数值分析相结合的方法,对混凝土的受压与弯拉性能尺寸效应进行了较系统研究。主要研究内容如下:
     1.对162个立方体试件的抗压强度尺寸效应进行了试验研究,结果表明:混凝土抗压强度具有尺寸效应,边长150mm和200mm试件的抗压强度约为边长100mm试件的94%和88%;混凝土、砂浆和净浆抗压强度的尺寸效应依次减弱,砂浆与净浆的尺寸效应仅为混凝土的1/3和30%左右;混凝土抗压强度的尺寸效应随着强度等级的提高而增强,C60混凝土的尺寸效应约为C20混凝土的1.8倍。
     2.对216个棱柱体试件单轴受压性能尺寸效应进行了试验研究,结果表明:混凝土单轴受压性能具有较明显的尺寸效应,边长200mm试件的峰值应力、应变及极限应变分别为100mm试件的85%、104%和110%。边长150mm试件的峰值应力、应变及极限应变分别为100mm试件的92%、102%与105%;强度等级越高,尺寸效应越明显,C20混凝土的尺寸效应仅为C60混凝土的1/2;尺寸效应受骨料组分影响较大,混凝土的尺寸效应分别约为砂浆和净浆的2.7倍和2.8倍;配筋混凝土的尺寸效应明显弱于混凝土试件,对于配筋率约1%时的钢筋混凝土,其内混凝土的尺寸效应约为未配筋混凝土的28%左右。
     3.对162个棱柱体试件弯拉性能试验研究结果表明:弯拉强度具有尺寸效应,边长70mm和100mm混凝土试件的弯拉强度分别为150mm试件的1.15倍和1.1倍;混凝土弯拉强度的尺寸效应强于砂浆和净浆,砂浆和净浆的尺寸效应分别为混凝土的30%和24%;强度等级对弯拉强度尺寸效应影响较大,C60混凝土弯拉强度的尺寸效应约为C20混凝土的2倍。
     4.对统计尺寸效应理论、基于能量释放准则的尺寸效应理论及基于裂纹分形特征的尺寸效应理论进行了比较分析,基于试验数据,给出了各尺寸效应率中相关参数的建议值,提出了不同强度等级混凝土立方体抗压强度、轴心抗压强度以及弯拉强度尺寸效应率中各参数的计算公式。定义临界尺寸和临界强度为:当试件几何尺寸大于某一尺寸后,抗压和抗拉强度的变化率分别小于0.01和0.001,则该尺寸为临界尺寸,相应的强度为临界强度。混凝土各力学性能参数的临界尺寸均随强度等级的提高而增大,C40和C60混凝土的临界尺寸分别约为C20混凝土的1.7倍和2.1倍。
     5.编写了随机骨料的投放程序,建立了二维与三维混凝土随机骨料模型。基于试验数据和随机骨料模型,得到了各强度等级混凝土中粘结界面层的力学性能参数,建立了粘结界面层力学性能与混凝土宏观力学性能间的关系。
     6.采用均质弹脆性、非均质弹脆性和均质弹塑性模型对混凝土的单轴受压性能进行了数值模拟,得到了破坏过程和宏观应力-应变全曲线,结果表明:非均质弹脆性模型得到的上升段和均质弹塑性模型得到的全曲线与试验结果吻合较好。
     7.采用随机骨料模型分析了混凝土的受压和受拉性能,研究了各力学性能参数的尺寸效应,提出了相应的尺寸效应率,得到了临界尺寸和临界强度。结果表明:临界尺寸随强度等级的提高而增大,C40与C60混凝土的临界尺寸分别约为C20混凝土的1.8倍和2.4倍;配筋混凝土中混凝土强度的临界尺寸明显低于未配筋混凝土,临界强度高于未配筋混凝土,当配筋率为1%时,其临界尺寸和临界强度分别为未配筋混凝土的45%和1.3倍左右。
The mechanical properties of concrete closely relate to its geometric dimension.In order to accurately describe the differences of damage process and mechanicalproperties, the research on size effect is particularly necessary. The research on thesize effect of compression behavior and aggregate composition is still insufficient.Furthermore, the mechanical properties of mortar are generally assumed as a constant.The effectiveness of this assumption has not yet been confirmed by test results. Thenumerical analysis on size effect can effectively solve the limitation of theexperimental investigation and also provide another research method for the study.
     A series of experimental and numerical analysis research were conducted in thispaper. The following conclusions can be made:
     1.162concrete cubic specimens were tested in order to investigate the size effecton compressive strength. Test results indicate that the larger the size, the lower theconcrete compressive strength. The concrete compressive strengths with dimension of150mm and200mm are94%and88%of100mm specimens. The size effect ofconcrete is stronger than the mortar and cement. The size effect of mortar and cementare33%and30%of concrete. With the raise of strength level, the size effect comesmore obvious. The size effect in C60concrete is1.8times of C20concrete.
     2.216uniaxial compression specimens were experimented in order to obtain thesize effect on axial compressive behavior. The experiment result shows that the sizeeffect exists in each kind of specimens. The peak stress, strain at peak stress,ultramate strain of specimens with dimension200mm are85%,104%and110%ofspecimens with dimension100mm respectively. These mechanical paramters of150mm specimens are92%,102%and105%of100mm specimens. The higher thestrength level, the more dramatical the size effect. The size effect of C20concrete is50%of C60concrete. The size effect in concrete is much stronger than the mortar andcement. The size effect on compressive behavior of concrete are about2.7and2.8times of the mortar and cement respectively. Reinforcement can reduces the sizeeffect dramatically. The size effect on compressive behavior of reinforced concrete isabout28percent of concrete.
     3. The test result of162flexural tensile specimens proves that: the flexuraltensile strength increased with the decrease of specimen size. The flexural tensile strength of concrete specimens with dimension of70mm and100mm are anbout1.15and1.1times of150mm concrete specimens. The extent of size effect for the threeaggregate composition is concrete, mortar, cement, respectively. The size effect ofmortar and cement are30%and24%of concrete. The size effect on flexural tensilestrength of C60specimens is2times stronger than the C20specimens.
     4. Based on the fully understanding of the size effect theories, the parameters ofsize effect laws were suggested. Also, the computational formulas of size effect wereproposed in this paper. The higher the compressive strength, the larger the critiacl size.The critical size of C40ad C60concrete are1.7and2.1times of C20concrete.
     5. The two dimensional and three dimensional concrete random aggregate launchprogramm were compiled. Based on the test result and the random aggregate model,the mechanical properties of bonding interface were obtained by a series of numericalanalysis. Also, the relationship between the bonding interface and concre mechanicalbehavior were built in this paper.
     6. Mesoscopic numerical models of homogeneous and heterogeneous concretematerial are established in combination with elastic brittle constitutive and bothelastic brittle and plastic constitutive model for concrete mesoscopic elements. Thedestruction process and macroscopic stree-strain curves were acquired by numericalanalyze.
     7. A series of numerical analysis were performed on the size effect of concretecompressive and tensile behavior. Based on the analysis result, the critical dimensionsof size effect on several mechanical parameters were obtained. Furthermore, the sizeeffect law of various concrete mechanical properties were proposed in this paper.
引文
[1] Bazant Z P. Size effect. International Journal of Solids andStructures,2000,37(4):69-80
    [2]沈蒲生.混凝土结构设计原理(第四版).北京:高等教育出版社,2012,1-5
    [3] Jie Su, Zhi Fang,Zuan Yang. Size effect of concrete compressive strength withdifferent aggregate composition.Key Engineering Materials,2009,400:831-835
    [4] Bazant Z P.,Er-Ping Chen.Scaling of structure failure. American Society ofMechanical Engineers,1997,50(10):593-627
    [5] Bazant Z P.Scaling of quasibrittle fracture:asymptotic analysis.InternationalJournal of Fracture,1997,83(1):41-65
    [6] Griffith A A.Phenomena of rupture and flow in solids. New York: Phil TransPress,1921,179-180
    [7] Walsh P F. Fracture of plain cocnrete. Indian ConcreteJournal,1972,46(11):1565-1581
    [8] Hillerborg A.,Modeer M.,Peterson P E. Analysis of crack formation and crackgrowth in concrete by means of fracture mechanics and finite elements. Cementand Concrete Research,1976,6:773-782
    [9] Bazant Z P.Size effect in blunt fracture:concrete? rock? metal. Journal ofEngineering Mechanics,1984(110):518-535
    [10] Bazant Z P.,Belytschko T B.,Chang T P. Continuum model for strain softening.Journal of Engineering Mechanics,1984,110(12):1666-1692
    [11] Bazant Z P.,Cabot P G.,Pan J Y. Ductility snapcack, size effect and redistributionin softening beams and frames. Journal of StructureEngineering,1987,113(12):2348-2364
    [12] Cabot P G.,Bazant Z P. Nonlocal damage theory. Journal of EngineeringMechanics,1987,113(10):1512-1533
    [13] Mandelbrot B B.,Passojia D E.,Paullay A. Fracttal characteri of fracture surfacesof mentals. Nature,1984,308:721-722
    [14] Brown S R. Note on the description of surface roughness using fractaldemensions. Geophys Research Letters,1987,14(11):1095-1098
    [15] Rount J.,Chen C T. Fractal analysis of polystyrene fracture surfaces. PolymerCommun,1989,30(11):334-335
    [16] Issa M A.,Hammad A M. Assessment and evaluation of fratcal dimension ofconcrete fracture surface digitized images. Cement and ConcreteResearch,24(2):325-334
    [17] Planas J.,Guinea G V.,Elices M. Generalized size effect equation forquasi-brittle materials. Materials and Structures,1997,20(50):671-687
    [18] Carpinteri A.,Chiaia B.Fracture mechanics of concretestructures.Munich:Wittmann FH e d.Aedificatio Publ,1995,581-596
    [19]黄海燕,张子明.混凝土的统计尺寸效应.河海大学学报,2004,l32(3):291-294
    [20] Bazant Z P.,Chen E P.结构破坏的尺度律.力学进展,1999,29(3):383-433
    [21] Carpinteri A.Scaling laws and renormalization groups for strength and toughnessof disordered materials. International Journal of Solids andStructures,1994,(31):291-302
    [22]李家康.高强混凝土立方体抗压强度的尺寸效应.建筑材料学报,2004,7(3):81-84
    [23]冷发光,邢锋,冯乃谦等.粉煤灰高性能混凝土试件强度尺寸效应研究.混凝土,2000,12:18-20
    [24]朱尔玉,杨威,王建海,林文泉.不同形状尺寸C20混凝土试件抗压强度的关系.北京交通大学学报,2005,29(1):1-4
    [25]赵军,高丹盈,朱海堂.钢纤维高强混凝土抗压性能试验研究.新型建筑材料,2005,1:25-27
    [26]钱觉时,杨再富,黄煜镔等.高强混凝土强度尺寸效应的试验研究.华中科技大学学报(城市科学版),2004,21(1):1-4
    [27]俞箐,李兴峰,李洪泉.普通混凝土和轻骨料混凝土强度尺寸效应的对比研究[J].混凝土,2010,32(7):58-60
    [28]高丹盈,王勤学,李翔宇.龄期和尺寸对纤维矿渣微粉混凝土抗压强度的影响.工业建筑,2011,41(S1):739-742
    [29] Neville A M.The influence of size of concrete test cubes on mean strength andstandard deviation. Magazine of Concrete Research,1956,8:41-45
    [30] Malhotra V M.Are4×8inch concrete cylinders as6×12inch cylinders for qualitycontrol of concrete?.ACI Mterial Journal,1996,73(1):115-123
    [31] Lessard M.,Chaallal O,Aitcin P C.Testing high strength concrete Compressivestrength,ACI Materials Journal,1993,90(4):451-459
    [32] Sabins G M.,Mirza S M.Size effects in model concretes.Journal of the StructuralDivision,ASCE,1979,105(6):141-152
    [33]姜福田.混凝土力学性能与测定(第一版).北京:中国铁道出版社,1989,15-35
    [34]赵军,郭庆海,高丹盈.高性能自密实混凝土的抗拉性能研究.混凝土,2010(8):37-39
    [35]周红,车轶,陈庚.混凝土立方体与圆柱体劈裂抗拉强度尺寸效应研究.混凝土,2005(1):13-16.
    [36]安明喆,张立军. RPC材料的抗折强度尺寸效应研究.中国矿业大学学报,2007,36(1):38-41
    [37]刘数华,阎培渝,冯建文.超高强混凝土RPC强度的尺寸效应.公路,2011,3:123-127
    [38]范向前,胡少伟,朱海堂,等.龄期和试件尺寸对钢纤维混凝土抗折强度影响试验.混凝土,2011,5:27-31
    [39]徐积善.强度理论及其应用.北京:水利电力出版社,1984,205-207
    [40] Malhotra V M.Effect of specimen size on tensile strength of concrete.ACIJournal,1970,66(6):179-188
    [41] Bazant Z P.,Kazemi S M. Size effect on diagonal shear failure of beams withoutstirrups. ACI Structural Journal,1991,(88):268-276
    [42] Carpinteri A., Ferro G..Scaling behaviour and dual renormalization ofexperimental tensile softening responses,Materials andStructures,1998,31(2):58-67
    [43] Carpinteri A. Decrease of apparent tensile and bending strength with specimensize: two different explainations based on fracture mechanics. InternationalJournal of Solids and Structures,25(4):407-429
    [44] Carpinteri A., Ferro G..Apparent tensile strength and fictit ious fracture energy ofconcrete: a fractal geometry approach to related size effects. In: Fracture anddamage of concrete and rock,Rossmanith,1993,86-94
    [45]章文纲,程铁生,王威龙.钢纤维钢筋混凝土梁抗剪性能的研究.工业建筑,1991,10:15-18
    [46]韩晓凤,张仲卿.试件尺寸对碾压混凝土层面抗剪强度的影响.人民长江,2002,33(7):47-49
    [47]张仲卿.碾压混凝土层面抗剪特性尺寸效应研究.水利发电,2003,29(6):23-24
    [48]魏巍巍,贡金鑫,车轶.无腹筋钢筋混凝土受弯构件基于修正压力场理论的受剪计算.建筑结构学报,2010,31(8):79-83
    [49]徐积善,何淅淅.双轴应力下混凝土强度与变形尺寸效应的试验研究.福州大学学报(自然科学版),1996,24(9):46-50
    [50]何淅淅,徐积善.混凝土拉?压剪强度尺寸效应研究.福州大学学报(自然科学版),1996,24(9):51-56
    [51]徐积善,何淅淅.混凝土拉?压强度尺寸效应的研究.河海大学学报,1997,25(4):47-52
    [52] Wittmann F H.Simulation and analysis of composite structure.Material Scienceand Engineering,1985,6(8):239-248
    [53]王宗敏,朱明霞,赵晓西.混凝土断裂问题研究的层次方法.郑州工业大学学报,2002,12,21(4):16-22
    [54] van Mier J G M.,van Vliet M R A.Experimentation, numerical simulation andthe role of engineering judgement in the fracture mechanics of concrete andconcrete structures.Construction and Building Materials,1999,13(1):3-14
    [55] Schlangen E.,van Mier J G M. Simple lattice model for numerical simulation offracture of concrete materials and structures. Material and Structures,1992,25(3):534-542
    [56] Schlangen E.,Garboczi E J.Fracture simulations of concrete:computationalaspects.Engineering Fracture Mechanics,1997,57:319-332
    [57] Ince R.,Arslan A.,Karihaloo B L.Modelling of size effect in concretestrength.Engineering Fracture Mechanics,2003,70(6):2307-2320
    [58] Bazant Z P.,Tabbara M R.,et al.Random particle model for fracture of aggregateor fiber composites.Journal of Engineering Mechanics,1990,16(8):1686-1705
    [59] Mohamed A R.,Hansen W.Micromechanical modeling of concrete response understatic loading.ACI Material Journal,1999,96(2):196-203
    [60] Wang Z M.,Kwan A K,et al.Mesoscopic study of concrete II: nonlinear finiteelement analysis.Computers and Structures,1999,70(5):533-544
    [61]高政国,刘光廷.二维混凝土随机骨料模型研究.清华大学学报,2003,43(5):710-714
    [62]唐春安,朱万成.混凝土损伤与断裂--数值试验.北京:科学出版社,2003
    [63]朱万成,唐春安.混凝土试样在静态载荷作用下断裂过程的数值模拟研究.工程力学,2002,19(6):148-153
    [64] Zubelewicz A.,Bazant Z P. Interface element modeling of fracture in aggregatecomposites.Journal of Engineering Mechanics,ASCE,1987,113(11):1619-1630
    [65]张德海,邢纪波等.混凝土拉伸断裂的细观数值分析.计算力学学报,2006,23(1):65-70
    [66]张德海,邢纪波,朱浮声等.混凝土破坏过程的数值模拟.东北大学学报,2004,25(2):175-178
    [67]杨强,张浩,吴荣宗.二维格构模型在岩石类材料开裂模拟中的应用.岩石力学与工程学报,2000,19(S1):941-945
    [68]杨强,张浩,周维垣.基于格构模型的岩石类材料破坏过程的数值模拟.水利学报,2002,4:46-52
    [69]杨强,任继承,张浩.岩石中锚杆拔出试验的数值模拟.水利学报,2002,12:68-73
    [70]杨强,程勇刚,张浩.基于格构模型的岩石类材料开裂数值模拟.工程力学,2003,20(1):117-123
    [71] Cusatis G.,Bazant Z. P. Confinement-shear lattice model for concrete damage intension and compression: I. theory. Journal of EngineeringMechanics,2003,129(12):1439-1448
    [72] Cusatis G.,Bazant Z. P. Confinement-shear lattice model for concrete damage intension and compression: II. computation and validation. Journal of EngineeringMechanics,2003,129(12):1449-1458
    [73] Cusatis G.,Bazant Z. P. Confinement-shear lattice CSL model for fracturepropagation in concrete. Computer Methods in Applied Mechanics andEngineering,2006,195(52):7154-7171
    [74] van Mier J G M.,Vervuurt A. Materials engineering of cement-based compositesuing lattice model. Boston: WIT Press,1999,1-32
    [75] Cundall P. A.,Strack O D L.,et al. A discrete numerical model for granularassemblies. Geotechnique,1979,29(1):47-65
    [76] Cundall P A.,Hart R D. Numerical modeling of discontinua. In: Proc. of1st. USConf. On Discrete Element Methods,Golden CO,1989,594-615
    [77] Yen K Z Y.,Chaki T. K. A dynamic simulation of particle rearrangement inpowder packing with realistic interactions. Journal of AppliedPhysics,1992,71(7):3164-3173
    [78] Fu G.,Dekelbab W.3-D random packing of polydisperse particles and concreteaggregate grading. Powder Technology,2003,133(1-3):147-155
    [79] Zhong X X, Chang C S.Micromechanical modeling for behavior of cementitiousgranular materials.Journal of Engineering Mechanics,ASCE,1999,125(11):1280-1288
    [80]高政国,刘光廷.二维混凝土随机骨料模型研究.清华大学学报,2003,43(5):710-714
    [81]刘光廷,王宗敏.用随机骨料模型模拟混凝土材料的断裂.清华大学学报,1996,36(1):84-89
    [82] Walraven J C.,Reinhardt H W. Theory and experiments on the mechanicalbehavior of cracks in plain and reinforced concrete subjected to shear loading.HERON,1991,26(1):26-35
    [83]宋玉普.多种混凝土材料的本构关系和破坏准则.北京:中国水利水电出版社,2002:91-108
    [84]彭一江,黎保琨.碾压混凝土细观结构力学性能的数值模拟.水利学报,2001,6:19-22
    [85]黎保琨,彭一江.碾压混凝土试件的细观损伤断裂的强度与尺寸效应分析.华北水利电力学院学报,2001,22(3):50-53
    [86]屈彦玲.混凝土抗剪强度尺寸效应的数值模拟.国防交通工程与技术,2007,3:29-33
    [87]屈彦玲.混凝土单轴抗压强度尺寸效应的数值模拟.石家庄铁路职业技术学院学报,2007,6(4):23-26
    [88]田瑞俊,杜修力,彭一江.混凝土压缩断裂过程及尺寸效应的数值模拟.工业建筑,2008,38(4):68-72
    [89]杜立峰,杨茜,屈彦玲.混凝土劈裂抗拉强度尺寸效应的细观数值研究.铁道建筑,2008,7:41-45
    [90]党发宁,梁新宇,田威.混凝土随机骨料模型尺寸效应的细观数值分析.岩石力学,2009,30(2):518-522
    [91] Stefan H.,Stefan E.,Torsten L. Mesoscale modeling of concrete: geometry andnumerics.Computers&Structures,2006,84(7):450-461
    [92] Wriggers P.,Moftah S O., Mesoscale models for concrete: homogenisation anddamage behavior. Finite Elements in Analysis and Design,2006,42(7):623-636
    [93] Leite J P B.,Slowik V.,Apel J. Computational model of mesoscopic structure ofconcrete for simulation of fracture processes. Computers&Structures,2007,85(17):1293-1303
    [94]屈彦玲.碾压混凝土单轴抗拉强度尺寸效应的数值模拟.水资源与水工程学报,2007,18(4):45-48
    [95]屈彦玲,彭一江,杜立峰.碾压混凝土试件抗剪强度尺寸效应的数值模拟.水利与建筑工程学报,2007,5(3):21-25
    [96]屈彦玲.碾压混凝土单轴抗拉强度尺寸效应的数值模拟.黑龙江水专学报,2007,34(3):12-16
    [97]屈彦玲,杨茜,张相龙.碾压混凝土劈裂抗拉强度及其尺寸效应的细观数值研究.公路交通科技,2008,25(12):80-85
    [98]王宝庭,宋玉普.混凝土随机骨料模型的网格自动剖分方法.大连理工大学学报,1999,39(3):445-450
    [99] De Schutter G.,Taerwe L.Random particle model for concrete based on Delaunaytriangulation.Materials and Structures,1993,26(1):67-73
    [100] Bazant Z P.,Tabbara M R.,Kazeml M T.,et al. Random particle model for fractureof aggregate or fiber composites. Journal of EngineeringMechanics,1990,16(8):1686-1705
    [101] Bazant Z P.,Caner F C.,Adley M D. Fracturing rate effect and creep in microplanemodel for dynamlcs. Journal of Enigeering Mechanics,2000,26(9):962-970
    [102] Mohamed A R.,Hansen W. Micromechanical modeling of concrete response understatic loading part I: model development and validation. ACI MaterialsJournal,1999,96(2):196-203
    [103] Mohamed A R.,Hansen W. Micromechanical modeling of concrete response understatic loading part II: model prediction for shear and compressive loading. ACIMaterials Journal,1999,96(3):354-358
    [104] Mohamed A R.,Hansen W. Micromechanical modeling of crack-aggregateinteraction in concrete materials. Cement and ConcreteComposites,1999,21(6):349-359
    [105] Kawai T.New element models in discrete structural analysis.Japanese civilengineering society symposium,1977,7(15):584-591
    [106] Kawai T. Some Consideration on the finite element method. International Journalfor Numerical Methods in Engineering.,1980,16(4):414-422
    [107] Wang J.,Navi P.,Huet C. Numerical analysis of crack propagation in tensionspecimens of concrete considered as a2D multicracjed granular composite.Materials and Structures,1997,16(2):142-153.
    [108]王宝庭,宋玉普,张燕坤.基于刚体-弹簧模型的混凝土微裂纹行为模拟.工程力学,1999,16(2):140-145
    [109] Wang Baoting,Zhou Xiangui.Model of random polygon particles for concrete andmesh automatic subdivision.Journal of Wuhan University ofTechnology,2001,16(4):36-40
    [110]陈惠发.土木工程材料的本构方程.武汉:华中科技大学出版社,2001,89-93
    [111]江见鲸.关于钢筋混凝土数值分析中的本构关系.力学进展,1994,24(1):117-122
    [112]过镇海.混凝土的强度和变形:试验基础和本构关系.北京:清华大学出版社,1997,57-60
    [113] GB/T50081-2002,普通混凝土力学性能试验方法标准.北京:中国建筑工业出版社,2002
    [114]江见鲸.混凝土结构有限分析元.北京:清华大学出版社,2005
    [115]过镇海,时旭东.钢筋混凝土原理和分析.北京:清华大学出版社,2003,2-21
    [116] Perdikaris P. C.,Romeo A. Effect of size and compressive strength on the fractureenergy of plain concrete.In: Proceedings of the1stInternational Conference onFractur eMechanics of Concrete Structures, FRAMCOS, Breckenridge,USA,1992:550-555
    [117] Gettu R.,Bazant Z. P.,Karr M. E. Fracture properties and brittleness of highstrength concrete.ACI Materials Journal,1990,87:608-618
    [118] Bazant Z. P.,Kazemi M. T. Size effect on diagonal shear failure of beams withoutstirrups,ACI Structural Journal,1991,88:268-27
    [119] Bazant Z. P.,Xi Yi. Statistical size effect in quasibrittle structures:II Nonlocaltheory. Journal of engineering mechanics,1991,117(11):2623-2640
    [120] Weibull W.. Phenomenon of Rupture in Solids,Proc Royal Swedish Inst ofEngineering Research,1939(153):1-55
    [121] Freudenthal A M. Physical and statistical aspects of fatigue.Advance and AppliedMechanics,1956,4:117-157
    [122] Bazant Z P. Crack band theory for fracture of concrete. Materials andStructure,1983,16:155-177
    [123] Bazant Z. P.,Xi Y.,Reid S. G.. Statistical size effect inquasibrittle strctures-I: isWeibull theory applicable?. Journal of EngineeringMechanics,1991,117(11):2609-2622
    [124] Bazant Z. P.,Kazemi M. T.. Size effect in fracture of ceramics and its use todetermine fracture energy and effective process zone length. Journal ofEngineering Mechanics,1990,73(7):1804-1853
    [125] Bazant Z P.Size effect in tensile and compression fracture of concretestructures:computational modeling and design. In:3r dInternational Conference ofFracture Mechanics of Concrete Structures,1998,1905-1922
    [126] Bazant Z P.Size effect on structural strength: a review. Archive of AppliedMechanics,1999,6:703-725
    [127] Mandelbrot B B. Fractals: Form, Chance and Dimension. San Francisco:Freeman Press,1977,1-20
    [128] Jirasek M.,Bazant Z P.Particle model for quasibrittle fracture and application tosea ice.Journal of Engineering Mechanics,1995,12l(9):1016-1025
    [129]杨成球,吴政.全级配混凝土强度尺寸效应及变形特性研究.大连理工大学学报,1997,37(1):129-134
    [130] Sabnis G M.,Mirza S M.Size effect in model concretes?. Journal ofStructure,1979,105:1007-1020
    [131] Hasegawa T.,Shioya T. Okada T.Size effect on splitting tensile strength ofconcrete [C]. In:Proceedings of the Japan Concrete Institute,7thConference.1985:309-312
    [132] Bazant Z P.,Kazemi M T.,Hasegawa T.Size effects in Brazilian split cylindertests:measurements and fracture analysis.ACI Materials Journal,1991,88:325-332
    [133]王立久,曹庆坚.基于网格模型的混凝土细观结构数值模拟.建材技术与应用,2005,6(23):8-10
    [134]乔英杰.特种水泥与新型混凝土.哈尔滨:哈尔滨工程大学出版社,1997,45-59
    [135] Metropolis W.,Ulam S. Monte Carlo method. Journal of the American StatisticalAssociation,1949,44:335-341
    [136]杨耀臣.蒙特卡罗方法与人口仿真学.合肥:中国科学技术大学出版社,1999,45-59
    [137]徐钟济.蒙特卡罗方法.上海:上海科技出版社,1985,68-75
    [138]安德,赫尔曼.统计物理学中的蒙特卡罗模拟方法.北京:北京大学出版社,2008,1-30
    [139]谢和平.岩石?混凝土损伤力学.徐州:中国矿业大学出版社,2010,79-95
    [140]朱自强.应用计算流体力学.北京:北京航空航天大学出版社,1998,23-37
    [141]丁永祥.约束Dela unay三角剖分与有限元网格自动生成.华中科技大学学报(自然科学版),2011,23(6):39-43
    [142]张玉萍,蒋寿伟.基于单调链法的凸壳三角剖分算法研究闭.南京理工大学学报,2004,28(6):590-594
    [143]赵武,王旭生.成非结构网格的改进阵面推进法闭.航空计算技术,2003,33(1):26-29
    [144]汤书军.混凝土材料细观力学模型与破坏分析:[河海大学硕士论文].南京:河海大学,2006,21-29
    [145]王怀亮.复杂应力状态下大骨料混凝土力学特性的试验研究和分析:[大连理工大学博士论文].大连:大连理工大学,2006,77-86
    [146] Zhu W.,Bartos P J M.Application of depth-sensing micro-indetation testing tostudy of interfacial transition zone in reinforced concrete.Cement and ConcreteResearch,2010,30(8):1299-1304
    [147]李国强,邓学钧.水泥混凝土微裂纹演化的混沌分析.重庆交通学院学报,1996,15(1):22-26
    [148]黄政宇.土木工程材料.北京:高等教育出版社,2002,74-80
    [149]黄海燕,杨冠颖,沈超明,等.混凝土强度尺寸效应的细观数值分析.混凝土,2007,4:11-14
    [150]马怀发,陈厚群,黎保琨.混凝土试件细观结构的数值模拟.水利学报,2004,10:27-35
    [151]林皋,李建波,赵娟,梁正召.单轴拉压状态下混凝土破坏的细观数值演化分析.建筑科学与工程学报,2007,24(1):1-6
    [152]张子明,赵吉坤,吴昊,等.混凝土单轴荷载下细观损伤破坏的数值模拟.河海大学学报(自然科学版),2005,33(4):422-425
    [153]刘庭金,朱合华,莫海鸿.非均质混凝土破坏过程的细观数值试验.岩石力学与工程学报,2005,24(22):4120-4133
    [154] Van Mier J G M,Van Vliet M R A,Wang TK.Fracture mechanisms in particlecomposites:statistical aspects in lattice type analysis.Mechanics of Materials,2002,34(11):705-724
    [155]金伟良,袁伟斌.离心钢管混凝土轴压构件的有限元分析.浙江大学学报(工学版),2005,39(10):1571-1576

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700