用户名: 密码: 验证码:
铝基惰性复合阳极材料的脉冲电沉积制备及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代湿法冶金过程中,阳极材料对提高产品质量和节能降耗都起着关键作用。目前工业上电积锌等金属常用的铅合金阳极具有价廉、易成形、自我修复力强等优点,但也存在能耗高、机械强度低、耐蚀性和催化活性差、使用寿命短以及阴极产品等级低等难以根除的不足。论文针对铅合金阳极的固有缺点,采用脉冲复合电沉积法,在铝基体上制备了锌电积用Al/Pb-WC-CeO2和Al/Pb-WC-CeO2/β-PbO2-WC-CeO2节能惰性复合阳极材料,系统研究了电极微观结构变化与其析氧过电位、电催化活性、耐腐蚀性等电化学性能的关系及规律;并在实验室水平应用于锌电积工艺,探究电极在降低槽电压、提高电流效率和改善阴极产品质量方面的本质原因,探讨了复合电沉积机理及其影响因素。
     1、铝基体前处理
     为了增强铝基体与中间复合层(Pb-WC-CeO2)的结合力,对铝基体表面进行预处理的工序为:.喷砂→两步浸锌→镀镍,其中两步浸锌工艺是关键,Fe3+加入的目的是与锌形成Zn-Fe合金,减小晶粒尺寸,改善镀层结合力;镀镍层呈浅米黄色、表面光滑、结晶致密均匀,与基体结合良好,可满足后续电镀工艺的要求。
     2、Al/Pb-WC-CeO2的制备研究
     (1)采用双脉冲电沉积制备Al/Pb-WC-CeO2的最优工艺条件为:Pb(CH3CO O)2200~250g·L-1, HBF4160~200g·L-1, H3BO310~20g·L-1, C102H151O39N311-3g·L-1,阳离子活性剂0.5~1g·L-1, pH=0.5,正向占空比30%,负向占空比10%,正向电流120mA·cm-2,正向工作时间200ms,温度40℃。该电极在锌电积液中作阳极时属不可逆电极,能有效阻止溶液向镀层内部的渗透,有利于腐蚀性能的提高。
     (2)Ce02细化晶粒和整平镀层的作用明显,对镀层中WC含量有抑制作用;适宜的脉冲参数有利于致密晶核的形成,增大镀层比表面积,其中,增加正向工作时间和升高温度有利于基质金属与颗粒的共沉积,但温度过高会减弱固体颗粒在阴极表面的吸附。
     (3)与直流技术相比,脉冲电沉积的速率提高了约两倍,复合镀层表面更均匀平整,孔隙率低,析氧过电位明显降低,可有效降低槽电压。
     3、Al/Pb-WC-CeO2/PbO2-WC-CeO2复合电极的制备研究
     (1)采用单脉冲阳极氧化法制备Al/Pb-WC-CeO2/PbO2-WC-CeO2复合电极的最佳工艺条件为:Pb(NO3)2190g·L-1、Cu(NO3)2·3H2O15g·L-1、NaF0.5g·L-1、C eO230g·L-1、WC40g·L-1,温度60℃,正向平均电流密度75mA·cm-2,正向占空比30%。
     ‘(2)微米WC使镀层晶粒变得粗大,纳米Ce02有填隙晶格和细化晶粒的作用,可有效降低孔隙率,减小镀层缺陷,对Pb02结晶时组织结构的影响起主导作用,并生成铅铈氧共渗化合物;两种颗粒的协同作用使Pb02在沉积过程中产生择优取向,但其物相仍以β-PbO2为主,电极表面形貌由纯Pb02的扁平八角状变成菱形结构。
     (3)与直流技术相比,采用脉冲技术制备的复合电极在表面形貌、耐蚀性、节能等方面都有着较为显著的改善。
     4、电极材料在电积锌中的性能比较
     (1)纳米Ce02和微米WC的协同作用使电极表面更为均匀、致密、整平,有较大的平均法拉第电流,局部微区尖峰电流分布均匀,具有稳定且良好的电催化活性。
     (2) Al/Pb-WC-CeO2/PbO2-WC-CeO2有最低的槽电压,且在耐腐蚀性、电流效率、使用寿命以及阴极锌中铅含量等方面均有较好的综合性能;失效的主要原因是沉积层逐渐脱落和使用过程中电极表面不可避免出现裂纹。
     (3)铅合金阳极的腐蚀行为受电极电位和疏松多孔的腐蚀产物的表面覆盖度0两个状态变量的影响;Al/Pb-WC-CeO2/PbO2和Al/Pb-WC-CeO2/PbO2-CeO2电极的腐蚀行为主要由电荷转移电阻控制,Al/Pb-WC-CeO2/PbO2-WC、Al/Pb-WC-CeO2/PbO2-CeO2-WC电极主要由扩散控制。
     5、复合电镀机理研究
     (1)脉冲电镀Al/Pb-WC-CeO2时,正、负向脉冲电流交替作用改变了电极表面的吸附、扩散和双电层结构;固体颗粒在阴极表面发生的吸附、脱附反应,影响了沉积过程和扩散过程。
     (2)在Al/Pb-WC-CeO2/PbO2-WC-CeO2的阳极氧化沉积过程中,F-的加入取代了Pb02晶格上的部分羟基,使Pb02晶体的(101)(200)(301)晶面的生长衍射峰强度增加,(110)(200)(301)(310)晶面的衍射峰减弱,晶粒生长产生了择优取向;两种颗粒的加入使Pb02的沉积过程由Pb(Ⅱ)离子直接向Pb(Ⅳ)的Pb02转化一步完成。
In modern hydrometallurgy, the anode materials play a critical role in improving product quality and reducing energy consumption. The lead-based alloys known as cheap, easy to shape and self-healing are used as anode materials in zinc electrowinning. However, there are some inherent defects of lead-based alloys, including high energy consumption, low mechanical strength, poor corrosion resistance and catalytic activity, short service life and low level of cathode product. In the study, aluminum-based inert composite anode materials Al/Pb-WC-CeO2and Al/Pb-WC-CeO2/β-PbO2-WC-CeO2are prepared by pulse composite electrodeposition technology. The relationship between electrode microstructure and electrochemical properties like oxygen evolution overpotential, electrocatalytic activity and corrosion resistance are studied. The nature of electrode in reducing cell voltage, increasing current efficiency and improving cathode product quality are explored when the electrode was used in zinc electrowinning at laboratory level. Besides, the mechanism of composite electrodeposition and its influence factors are discussed.
     1. Pre-treatment of aluminum substrate
     In order to enhance the bonding force of aluminum substrate and intermediate layer(Pb-WC-CeO2), some pre-treatment are applied in the surface of aluminum substrate by following processes:sandblast→two-step dip zinc(the key point)→nickelage. In two-step dip zinc process, Zn-Fe alloy formed by adding Fe3+which can refine grains and improve the bonding force of coating. The light beige nickelage layer with smooth, dense and uniform surface combined with the substrate well, which can meet the requirements of subsequent plating process.
     2. The study of Al/Pb-WC-CeO2electrode preparation
     (1) The optimum conditions for preparing Al/Pb-WC-CeO2electrode by double-pulse electrodeposition were:Pb(CH3COO)2200-250g·L-1, HBF4160-200g·L-1, H3BO310-20g·L-1, C102H151O39N311-3g·L-1, cationic surfactant0.5-1g·L-1, pH=0.5, WC40g·L-1,CeO240g·L-1, positive duty cycle30%, negative duty cycle10%, forward current density120mA·cm-2, forward working time200ms, temperature40℃. The composite electrode was irreversible electrode when it was used as anode in zinc electrowinning, which can prevent the solution infiltrating into coating effectively and improve the corrosion resistance significantly.
     (2) CeO2particles can refine grains, level off coating surface and restrain W content in the coating. Proper pulse parameters were favorable to forming dense crystal nucleus and increasing specific surface area of coating. It was conducive to co-deposition of Pb, WC and CeO2by increasing temperature and forward working time, but excess temperature will reduce the adsorption of solid particles on cathode surface.
     (3) Compared with DC technology, the electrodeposition rate of pulse technology increased about200%. The surface of composite coating was more uniform, lower porosity and decreased oxygen evolution overpotential significantly, which can reduce the cell voltage effectively.
     3. The study of Al/Pb-WC-CeO2/PbO2-WC-CeO2electrode preparation
     (1) The optimum conditions for preparing Al/Pb-WC-CeO2/PbO2-WC-CeO2composite electrode by single-pulse anodic oxidation method were:Pb(NO3)2190g·L-1, Cu(NO3)2·3H2O15g·L-1,NaF0.5g·L-1, CeO230g·L-1, WC40g·L-1, temperature60℃, forward average current density75mA·cm-2, positive duty cycle30%.
     (2) Micron WC increased coating grains, nanometer CeO2with interstitial lattice and grain refinement effect can reduce the porosity, lessen coating defects and played a key role in tissue and structure of PbO2crystallizing, forming lead-cerium-oxygen nitrocarburizing compound. For the synergistic effect of WC and CeO2, the PbO2grains produced preferred orientation, which resulted in the surface morphology of electrode turning into diamond structure from flat octagonal shape. But the main phase of electrode was still β-PbO2.
     (3) Compared with DC technology, the composite electrodes prepared by pulse technology had significant advantages in surface morphology, corrosion resistance, energy conservation.
     4. The comparison of electrode properties in zinc electrowinning
     (1) For the synergistic effect of CeO2and WC, the electrode surface was more uniform, compact and smooth, the average Faradic current was higher, current spikes of local area was uniform distribution and electrocatalytic activity was stable.
     (2) The Al/Pb-WC-CeO2/PbO2-WC-CeO2electrode with lowest cell voltage had better comprehensive properties in corrosion resistance, current efficiency, service life and lead contend of cathode zinc; the main reasons for failure were sedimentary shedded gradually and the electrode surface cracked inevitably, which leading to corrosion medium permeated into substrate.
     (3) The corrosion behavior of lead-based alloys were influenced by the electrode potential and the surface coverage(θ) of the porous corrosion production. That of Al/Pb-WC-CeO2/PbO2and Al/Pb-WC-CeO2/Pb02-Ce02electrodes were mainly controlled by charge transfer resistance, while the Al/Pb-WC-CeO2/PbO2-WC and Al/Pb-WC-CeO2/PbO2-CeO2-WC electrodes were mainly controlled by diffusion.
     5. The study of composite electroplating mechanism
     (1) During the pulse electroplating of Al/Pb-WC-CeO2electrode, the alternate effect of pulse current changed the adsorption, diffusion and double electrical layer of electrode surface; reaction of adsorption and desorption of solid particles on cathode surface affected the deposition and diffusion process.
     (2) During the anodic oxidation deposition of Al/Pb-WC-CeO2/PbO2-WC-CeO2electrode, adding F" replaced hydroxide radical of PbO2crystal lattice, which promoted the growth of (101)(200)(301) crystal plane of PbO2, decreased diffraction peak of (110)(200)(301)(310) crystal plane and produced preferred orientation in PbO2crystal. After doping CeO2and WC particles, the deposition of PbO2was changed into one step process:Pb(Ⅱ) ion was oxidated to Pb(Ⅳ) directly.
引文
[1]衷水平.锌电积用铅基合金多孔节能阳极的制备表征与工程化试验[D].中南大学冶金科学与工程学院.2009.
    [2]蒋继穆.我国锌冶炼现状[M].北京:冶金工业出版社,2001.
    [3]孙德塑.国内外锌冶炼技术的新进展[J].中国有色冶金,2004,6(3):1-4.
    [4]梅光贵,王润德,周敬元,等.湿法炼锌学[M].长沙:中南大学出版社,2001.
    [5]苏毅,金作美,等.电积锌的SO2阳极反应动力学[J].中国有色金属学报,2001:496-498.
    [6]王彦军,谢刚等.降低电积锌直流电耗的现状分析[J].湿法冶金,2005(4):208-211.
    [7]王钧扬,锌电积的节电探讨[J].湖南冶金,2003,31(3):45-48.
    [8]付运康.锌电积电流效率低的原因与对策[J].有色金属(冶炼部分),2002,(5):21-23,34.
    [9]张招贤,赵国鹏,胡耀红.应用电极学[M].北京:冶金工业出版社,2005:146-326.
    [10]张招贤.钛电极工学(第二版)[M].北京:冶金工业出版社,2003.
    [11]张招贤.钛电极工学[M].北京:冶金工业出版社,2000.
    [12]Klaus Hein, Thomas Schierle. Oxygen overvoltage at insoluble anodes in the system Pb-Ag-Ca [J]. Erzmetal,2004,44(9):447-451.
    [13]Lupi C, Pilone D.New lead alloy anodes and organic depolariser utilization in zinc electrowi-nning [J].Hydrometallurgy,2005,44(3):347-358.
    [14]徐金法.电积锌阳极材质的发展[J].有色金属(冶炼部分),2005,26(1):39-41.
    [15]杜文明.低银铅钙多元合金阳极板的制造[J].有色金属(冶炼部分),2003,31(6):46-47.
    [16]张玉萍.锌电积用阳极的研究与发展[J].湿法冶金,2001,20(4):169-171.
    [17]王恒章.四元合金阳极板在湿法炼锌中的应用[J].有色冶炼,2001,30(6):18-20.
    [18]Siegmund A, Prengaman D. Zinc electrowinning using novel rolled Pb-Ag-Ca anodes [A]. In: Young C A, eds. Hydrometallurgy 2003:Proceedings of the 5th International Symposium[C]. Vancouver, BC, Canada:Minerals, Metals and Materials Society,2003:1279-1288.
    [19]Prengaman R D, Siegmund A. New wrought Pb-Ag-Ca anodes for Zinc Electrowinning to pr-oduce a protective oxide coating rapidly [A]. In:Dutrizae J, E, eds. LEAD-ZINC 2000[C]. Pi ttsburgh, PA, USA:Warrendale, PA, USA:2000.589-597.
    [20]Takasaki Y, Koike K, Masuko N. Mechanical properties and electrolytic behavior of Pb-Ag-Ca tertiary electrodes for zinc electrowinning [A]. In:Dutrizac J, E, eds. LEAD-ZINC 2000 [C]. Pittsburgh, PA, USA:Warrendale, PA, USA,2000.599-614.
    [21]Petrova M, Noncheva Z, Dobrev T, et al. Investigation of the proeess of obtaining Plastic tre-atment and electrochemical behavior of lead alloys in their capacity as anodes during the ele-ctroextraction of zinc I. Behavior of Pb-Ag, Pb-Ca and Pb-Ag-Ca alloys[J]. Hydrometallurgy, 1996,40(3):293-318.
    [22]Umetsu, Yoshiaki, Nozaka, et al. Anodiebehaviorof Pb-Ag-Ca tertiary alloys in sulfuric acid solution[J] Journal of the Mining and Material Processing Institute of Japan,1989,105(3):24 9-254.
    [23]Stefanov Y, Dobrev T.Potentiodynamic and electron microscopy investigations of lead-cobalt alloy coated lead composite anodes for zinc electrowinning [J]. Transaetions of the Institute of Metal Finishing,2005,83(6):296-299.
    [24]Rashkov S, Doberev T, Noneheva Z, et al. Lead-cobalt anodes for electrowinning of zinc fro-m sulphate eleetrolytes [J]. Hydrometallurgy,1999(52):223-230.
    [25]Hrussanova A, Mirkova L, Dobrev T, et al. Influence of temperature and current density on oxygen overpotential and corrosion rate of Pb-Co3O4, Pb-Ca-Sn, and Pb-Sb anodes for copp-er electrowinning:Part1[J].Hydrometallurgy,2004,72(3-4):205-213.
    [26]Hrussanova A, Mirkova L, Dobrev T, et al. Influence of temperature and current density on oxygen overpotential and corrosion rate of Pb-Co3O4, Pb-Ca-Sn, and Pb-Sb anodes for copp-er electrowinning:Part Ⅱ[J].Hydrometallurgy,2004,72(3-4):215-224.
    [27]Hrussanova A, Russanova A, Mirkoval L, et al. Electrochemical Properties of Pb-Sb, Pb-Ca-Sn and Pb-Co3O4 anodes in copper eleetrowinning [J]. Journal of Applied Electrochemistry, 2002,32(5):505-512.
    [28]Petrova M, Stefanov Y, Noneheva Z, etal. Electrochemical behaviour of lead alloys as anodes in zinc electrowinning [J]. British Corrosion Journal,1999,34(3):198-120.
    [29]梁镇海,孙彦平.Ti/SnO2+Sb2O3+MnO2/PbO:阳极的性能研究[J].无机材料学报,2001,16(1):183-187.
    [30]Serdar A, Kadir P, Tuneer H, et al. Investigation of some Parameters influencing electro cryst allization of PbO2[J].Power Sourees,2000,88(2):232-236.
    [31]孙凤梅.含氧化铱中间层的钛基二氧化铅阳极[J].云南大学学报,2005,27(5A):371-373.
    [32]孙凤梅,潘建跃,罗启富.含铂中间层二氧化铅阳极的制备及其性能[J].材料保护,2005,39(1):53-54.
    [33]王雅琼,童宏扬,许文林.热分解法制备的Ti/SnO2+Sb2O3/PbO2电极性质研究[J].无机材料学报,2003,15(5):1033-1038.
    [34]王雅琼,童宏扬,许文林SnO2+Sb2O3中间层的制备条件对Ti/SnO2+Sb2O3/PbO2阳极性能的影响[J].应用化学,2004,21(5):437-442.
    [35]王雅琼,童宏扬,许文林.超声对Ti/SnO2+Sb2O3/PbO2电极材料结构及电极性能的影响[J].无机材料学报,2004,19(6):1307-1312.
    [36]薛彩霞,梁镇海.’Ti/SnO2+Sb2O4+CF/PbOx电极的制备及其性能研究[J].太原理工大学学报,2007,38(5):431-434.
    [37]张招贤.涂层钛阳极的研究和应用[J].金属学报,2002.(22):596-599.
    [38]张招贤.Ir,Ta氧化物涂层钛阳极恶化原因的分析[J].稀有金属快报,2004,23(10):17-22.
    [39]张招贤.钛电极工学(第二版)[M].北京:冶金工业出版社,2003:173-302.
    [40]李鑫,王涛,魏绪钧,等.稀土在铅基合金中的应用[J].有色金属(冶炼部分),2003,55(2):15-17.
    [41]Hu J M, Zhang J Q, Cao C N. Oxygen evolution reaction on IrO2 based DSA type eleetrodes: kinetics analysis of Tafel lines and EIS[J].International Journal of Hydrogen Energy,2004,2 9(8):791-797.
    [42]Kim K W, Lee E H, Kim J S, et al. A study on performance improvement of Ir oxide-coated t itanium electrode for organic destruction [J]. Electrochimica Acta,2002,47(15):2525-2531.
    [43]汪文兵,龙晋明,郭忠诚.钛基金属氧化物涂层电极的研究进展[J].电镀与涂饰,2006,25(7):46-48.
    [44]李耀刚,孙彦平,等.硫酸介质中Ti/SnO2/PbO2析氧阳极的研究[J].电化学,2003,4(4):439-453.
    [45]梁镇海,边书田,任所才,等.硫酸中钛基二氧化铅阳极研究[J].稀有金属材料与工程,2001,30(3):232-234.
    [46]曹建春,郭忠诚,潘君益,等.新型不锈钢基PbO2/PbO2-CeO2复合电极材料的研制[J].昆明理工大学学报,2004,29(5):38-41.
    [47]曹梅.AI基SnO2+Sb2O3、SnO2+Sb2O3+MnO2涂层二氧化铅电极的制备及其应用[D].昆明:昆明理工大学,2005.
    [48]苗治广,郭忠诚.新型不锈钢基PbO2-WC-ZrO2复合电极材料的研制[J].电镀与涂饰,2007,26(4):15-19.
    [49]Shahram Ghasemi, Hassan Karami.Synthesis and morphological investigation of pulsed curr-ent formed nano-structured lead dioxide[J].Electrochemistry Communications,2005,7(12):12 57-1264.
    [50]梅光贵,王德润,周敬光,等.湿法炼锌学[M].长沙:中南大学出版社,2001:379-381.
    [51]李国防,凌翠霞,乔庆东.铁基PbO2电极的电沉积制备和表征[J].商丘师范学院学报;2006,22(2).
    [52]H.Y. Peng, H.Y. Chen, W.S. Li, et al. A study on the reversibility of Pb(II)/PbO2 conversion for the application of flow liquid battery [J].Journal of Power Sources,2007,168:105-109.
    [53]R Amadelli, A B Velichenko. Ion bombardment of PbO2 films:water influence of cluster pr-o duction [J]. International Journal of Mass Spectrometry 1998,179/180:309-317.
    [54]R Amadelli, A Maldotti. Influence of the electrode history and effects of the electrolyte com-position and temperature on O2 evolution at β-PbO2 anodes in acid media [J]. Journal of Elec-troanalytical Chemistry,2002,534:1-12.
    [55]蔡天晓,鞠鹤,武宏让.电极的改性制备及其性能[J].表面技术,2002,31(5):22-23.
    [56]Shao-Ping Tong, Chun-An Ma, Hui Feng. A novel PbO2 electrode preparation and its applic-ationin organic degradation [J]. Electrochimica Acta,2008,53:3002-3006.
    [57]张敬尧,李延祥.SiC表面活化对Ni-Co-P/SiC复合沉积层性能的影响[J].腐蚀与防护,2002,23(3):99-101.
    [58]Guo Zhong-cheng, Zhu Cheng-yi, Zhai Da-cheng, et al. Microstructure of electrodeposited RE-Ni-W-P-SiC composite coating [J]. Trans Nonferrous Met Soc China,2000,10(1):50-52.
    [59]苏加国,郭忠诚,邓纶浩,等.工艺条件对电沉积RE-Ni-W-P-iC-PTFE复合镀层性能的影响[J].电镀与环保,2002,22(2):1-4.
    [60]Q Zhao.Y Liu,H Muller-Steinhagen.et al. Graded Ni-P-PTFE coatings and their potential ap-plications[J].Surface and Coatings Technology,2002.155:279-284.
    [61]武剑.Al/Pb-WC-CeO2/a-PbO2/β-PbO2电极的脉冲电沉积制备及其电化学性能研究[D].昆明:昆明理工大学,2011.
    [62]汤皎宁,龚晓钟等.脉冲和直流电镀镍层磨损及腐蚀磨损性能研究[J].材料保护,2001(7):12-13.
    [63]侯丛福,王菊,等.脉冲参数对镀层微观结构及性的影响[J].材料保护,2001(1):10-11.
    [64]熊毅,张纯江,等.脉冲喷射电沉积镍工艺的研究[J].电镀与涂饰,2000(6):11-13.
    [65]S C Kou. In situ measurement of the mixed potential of electroless copper deposition [J].Plat-ing and surface finishing,2001:119-123.
    [66]Vatistas N,Cristofaro S. Lead dioxide coating obtained by pulsed current technique [J]. Elect-rochemistry Communications,2000,2(5):334-337.
    [67]J B Bajata, V B Miskovic-Stankovic. Electrochemical deposition and characterization of Zn-Co alloys and corrosion protection by electrodeposited epoxy coating on Zn-Co alloy[J].Elec-trochimica Acta,2002,47(25):4101-4112.
    [68]S K Ghosh, A K Grover. Nanocrystalline Ni-Cu alloy plating by pulse electrolysis [J].Surfac-e and Coatings Technology,2000,126(1):48-63.
    [69]林忠夫.日本电镀技术的发展[J].电镀预精饰,2002,1:39-44.
    [70]李雪松,吴化.脉冲电沉积Ni-Al2O3纳米复合镀层晶体结构的变化[J].金属热处理,2008,33(6):59-60.
    [71]B Ranjith, G Paruthimal Kalaignan. Ni-Co-TiO2 Nano-composite coating prepared by pulse and pulse reversal methods using acetate bath [J]. Applied Surface Science,2010,257:42-47.
    [72]吴化,陈颖,李雪松.脉冲参数对Ni-SiC纳米复合镀层的影响[J].电镀与环保,2006,26(1):8-10.
    [73]苏永堂,成旦红,等.银-纳米Si02脉冲复合电镀工艺条件的优化与性能研究[J].电镀与涂饰,2005,24(10):5-7.
    [74]P Bercot. Electrolytic composite Ni-PTFE coatings:an adaptation of Guglielmi's model for the phenomena of incorporation [J].Surface and Coatings Technology,2002,157(2):282-289.
    [75]Cao J L,Zhao H Y,Cao F H,et al.Electrocatalytic degradation of 4-chlorophenol on F-doped PbO2 anodes[J].Electrochimica Acta,2009,54:2595-2602.
    [76]Liu Y,Liu H L.Comparative studies on the electrocatalytic properties of modified PbO2 ano-d es[J].Electrochimica Acta,2008,53:5077-5083.
    [77]Ai S Y,Gso M N,Zhang W,et al.Preparetion of Ce-PbO2 modified electrode and its applicati-on in detection of anilines[J].Talata,2004,62:445-450.
    [78]王雅琼,王鹏,沙红霞,等。Ru02含量对Ti/SnO2+Sb2O3/RuO2+PbO2阳极性能的影响[J].稀有金属材料与工程,2007,36(3):424-427.
    [79]赵乃勤,王玉林,周复刚.复合电沉积技术制备颗粒增强耐磨复合材料及其在汽车轴瓦中的应用展望,2000,14(2):28-30.
    [80]崔晓莉,江志裕.交流阻抗谱的表示及应用[J].上海师范大学学报(自然科学版),2001,30(4):53-61.
    [81]曹楚南.腐蚀电化学[M].北京:化学工业出版社,2006(8):127-175.
    [82]Liu Y,Liu H L,Ma J,et al.Investigation on electrochemical properties of cerium doped lead di oxide anode and application for elimination of nitrophenol[J].Electrochimica Acta,2010,56:1 352-1360.
    [83]王雅琼,顾彬,许文林,等.钛基Pb02电极上苯酚的电化学氧化[J].稀有金属材料与工程,2007,36(5),874-878.
    [84]A J Bard, E E Fan, J Kwak, et al. Scanning electrochemical microscopy introduction and pri-ncipal [J].Anal. Chem.,1989,61 (2):132-138.
    [85]J Kwak, A J Bard. Scanning electrochmical microscopy. Theory of the feedback mode [J].An al. Chem.,1989,61(11):1221-1227.
    [86]Seegmiller J C, Buttry D A. SECM study of heterogeneous redox activity at Al 2024 surfaces [J]. J.Electrochem.Soc.,2003,150(9):413-418.
    [87]Cai C, Liu B, Mirkin M V. Scanning Electrochemical Microscopy of LivingCells.3.Rhodobac ter sphaeroides [J]. Anal.Chem.,2002,74(1):114-119.
    [88]M E Williams, K J Stevenson, A M Massari,et al. Imaging size-selective permeation through micropatterned thin films using scanning electrochemical microscopy [J].Anal. Chem.,2000, 72(14):3122-3128.
    [89]Uitto, D Olivia, White,et al. Scanning electrochemical microscopy of membrane-transport in the reverse imaging mode [J].Anal. Chem.,2001,73(3):533-539.
    [90]Uitto,D.Olivia,White,S.Henry.Scanning Electrochemical Microscopy of Membrane-Transport in the Reverse Imaging Mode [J].Anal.Chem.,2001,73(3):533-539.
    [91]Edwards M A, Martin S,Whitworth A L,etal.Scanning electrochemical microscopy:principle s and applications to biophysical systems[J]. Physiological Measurement,2006,27(12):63-108.
    [92]T Yasukawa, T Kaya, T Matsue. Dual imaging of topography and photosynthetic activity of a single protoplast by scanning electrochemical microscopy [J].Anal. Chem.,1999,71(20):463 7-4641.
    [93]Williams M E, Stevenson K J, Massari A M, etal. Imaging Size-Selective Permeation throug h Micropatterned Thin Films Using Scanning Electrochemical Microscopy [J]. Anal.Chem., 2000,72(14):3122-3128.
    [94]I Turyan, T Matsue, D Mandler. Patterning and characterization of surfaces with organic and biological molecules by the scanning electrochemical microscope [J].Anal. Chem.,2000,72 (15):3431-3435.
    [95]C Cai, B Liu, M V Mirkin. Scanning electrochemical microscopy of livingcells.3.rhodobacter sphaeroides [J].Anal. Chem.,2002,74(1):114-119.
    [96]J C Seegmiller, D A Buttry. A SECM study of heterogeneous redox activity at Al 2024 surfa-ces [J]. Electrochem. Soc.,2003,150(9):413-418.
    [97]杨重愚.轻金属冶金学[M].北京:冶金工业出版社,1991.
    [98]张俊敏,李瑛培.达克罗技术及其发展前景[J].表面技术,2000,29(3):20-21.
    [99]李青,李刚.电子元件与电镀技术[J].表面技术,2000,(1):19-24.
    [100]石金声.电镀化学基础[M].天津:天津科学技术出版社,1999:38-45.
    [101]Jaekwang Lee, Jiyoung Kim, Jutae Kim,et al. Effects of pretreatment on the aluminium etch pit formation[J].Corrosion Science,2009,(51):1501-1505.
    [102]钱建才,李兵.铝合金表面阳极氧化膜复合层电化学性能研究[J].表面技术,2009,29(10):21-28.
    [103]刘永辉.电化学测试技术(第一版)[M].北京:航空学院出版社,1987(10):164-170.
    [104]程志亮,杨秀荣.电化学交流阻抗技术表征自组装多层膜[J].分析化学,2001,29(1):6-10.
    [105]陈长风,路民旭,赵国仙.N80钢CO2腐蚀电极过程交流阻抗分析[J].金属学报,2002,38(7):770-774.
    [106]谢德明,童少平,胡吉明.多道富锌基涂层在NaCl溶液中的电化学行为研究[J].金属学报,2004,40(7):749-753.
    [107]张志刚,辜志俊,廖永贵.人工破损涂层的电化学阻抗谱研究[J].电化学,2000,6(3):473-477.
    [108]张俊颉,吴敏,秦艳涛.交流阻抗法研究四羧基酞菁锌掺杂的二氧化钛半导体电极[J].物理化学学报,2008,24(1):79-84.
    [109]王慧龙,辛剑.HC1介质中琉基三唑缓蚀吸附膜对碳钢的保护时间的研究[J].腐蚀科学与防护技术,2004,16(5):284-286.
    [110]朱龙章,陈霞,顾卫星.稀土在电沉积锌一镍合金中的作用[J].化学研究与应用,2001,13(1):98-101.
    [111]梁志杰.现代表面镀覆技术[M].北京:机械工业出版社,2005.
    [112]Velichenko A B, Amadelli R, Zucchini G L, et al. Electrosynthesis and physicochemical pr-operties of Fe-doped lead dioxide electrocatalysts[J]. Electrochimica Acta,2000,45:4341-4 350.
    [113]Velichenko A B,Amadelli R,Knysh V A,et al.Kinetics of lead dioxide electrodeposition fro-m nitrate solutions containing colloidal TiO2[J].Journal of Electroanalytical Chemistry,2009, 632:192-196.
    [114]A B Velichenko, R Amadellib, E A Baranova, et al. Electrodeposition of Co-doped lead di-o xide and its physicochemical[J]. Journal of Electroanalytical Chemistry,2002,527:56-64.
    [115]Pei Kang Shen, Xiao Lan Wei. Morphologic study of electrochemically formed lead dioxide [J]. Electrochimica Acta,2003,48:1743-1747.
    [116]陈步明,郭忠诚等.电沉积PbO2-WC-ZrO2复合电极材料的工艺研究[J].电镀与涂饰,2008,30(8):8-11.
    [117]Devilliers D, Dinh Thi M T, Mahe E, et al. Electroanalytical investigations on electrodeposi-ted lead dioxide [J].Journal of Electroanalytical Chemistry,2004,573:227-239.
    [118]彭昌盛,宋少先,谷庆宝.扫描探针显微技术理论与应用[M].北京:化学工业出版社,2007.
    [119]Stuart A G Evans, Karine Brakha, Martial Billon, et al. Scanning elecrochemical microscop-y(SECM)[J].Electrochemistry Communications.2005(7):135-140.
    [120]杨晓辉,赵瑜,谢青季,等.扫描电化学显微镜技术近期进展[J].分析科学学报.2004,20(2):210-214.
    [121]钟世德,王书运.材料表面分析技术综述[J].山东轻工业学院学报.2008,22(2):59-64.
    [122]李松瑞.铅及铅合金[M].长沙:中南工业大学出版社,1996:329-330.
    [123]张玉萍.锌电积用阳极的研究与发展[J].湿法冶金,2001,20(4):169-171.
    [124]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002:1-153.
    [125]崔忠波,陈民芳,刘德宝,由臣.EIS在医用钛合金表面改性研究中的应用[J].天津理工大学学报,2007,23(4):30-33.
    [126]程志亮,杨秀荣.电化学交流阻抗技术表征自组装多层膜[J].分析化学研究报告,2001,29(1):6-10.
    [127]查全性等.电极过程动力学导论(第三版)[M].北京:科学出版社,2007:213-233.
    [128]李谋成,曾潮流,林海潮.参比电极体系内阻对电化学阻抗谱的影响[J].腐蚀科学与防护技术,2001,13(3):125-127.
    [129]巴德,福克纳,邵元华,等.电化学方法:原理和应用(第二版)[M].北京:化学工业出版社,2008,256-289.
    [130]李荻.电化学原理(第三版)[M].北京:北京航空航天大学出版社,2008:115-118.
    [131]曹楚南.混合电位下的电极过程研究[J].腐蚀科学与防护技术,1998,10(1):1-5.
    [132]谢德明,童少平,胡吉明.多道富锌基涂层在NaCl溶液中的电化学行为研究[J].金属学报,2004,40(7):749-753.
    [133]张志刚,辜志俊,廖永贵.人工破损涂层的电化学阻抗谱研究[J].电化学,2000,6(3):473-477.
    [134]张鉴清,孙国庆,曹楚南.评价有机涂层防护性能的EIS数据处理[J].腐蚀科学与防护技术,1994,6(4):318-324.
    [135]曹远栋,陈步明,郭忠诚.电沉积a-PbO2-TiO2-CeO2工艺研究[J].电镀与涂饰,2009,28(11):1
    [136]常志文,郭忠诚,潘君益,等.Al/Pb-WC-ZrO2-Ag和Al/Pb-WC-ZrO2-CeO2复合电极材料的性能研究[J].昆明理工大学学报,2007,32(3):13-18.
    [137]陈步明,郭忠诚a-PbO2-CeO2-TiO2复合电极材料的耐腐蚀性研究[J].电镀与精饰,2011,33(4):1-4.
    [138]张翼,周新新,张玉洁.金属氧化物涂层钛阳极的研究[J].化学进展,2009,21(9):1827-1831.
    [139]宁海霞,成小乐.WC颗粒增强钢基复合材料的制备及耐磨性研究[J].新技术新工艺,2010,(1):61-63.
    [140]王钧扬.锌电积的节电探讨[J].湖南冶金,2003,3(2):45-48.
    [141]常成,刀海金,孙啸飞,等.锌电积电流效率影响因素的研究进展[J].中国有色冶金,2011,(4):74-80.
    [142]张玉萍.锌电积用阳极的研究与发展[J].湿法冶金,2001,20(4):169-171.
    [143]彭根芳.锌电积直流电耗的实证分析与优化探讨[J].有色冶金节能,2003.20(2):17-20.
    [144]袁广银,曾小勤,吕宜振,等.锑合金化对镁铝基合金力学性能的改善作用[J].材料工程,2001(4):10-15.
    [145]王留成,李晓乐,赵建宏,等.掺杂Pb02/Ti阳极在硫酸铬电氧化过程的电极行为[J].化学研究与应用,2007,19(2):172-175.
    [146]张招贤.钛电极工学[M].北京:冶金工业出版社,2003:370-374.
    [147]王海滨,田艳红.掺杂稀土金属改性二氧化锰/活性炭超级电容器的研究[J].稀有金属,2007,31(2):197-200.
    [148]陈步明,郭忠诚,杨显万,等.电沉积掺杂二氧化铅表面的研究进展[J].中国有色金属学报,2008,18(9):1711-1720.
    [149]Shahram Ghasemi,Mir Fazllolah Mousavi,Mojtaba Shamsipur.Electrochemical deposition of lead dioxide in the presence of polyvinylpyrrolidone A morphological study[J].Electroch-imica Acta,2007,53:459-467.
    [150]Kong J T,Shi S Y,Kong L C,et al.Preparation and characterization of PbO2 electrodes doped with different rare earth oxides[J].Electrochimica Acta,2007,53:2048-2054.
    [151]A B Velichenko,D Devilliers.Electrodeposition of fluorine-doped lead dioxide[J] Journal of Fluorine Chemistry,2007,128:269-276.
    [152]周雅宁,万亚珍,刘金盾.二氧化铅电极的制备及应用现状[J].2006,38(10):8-11.
    [153]王峰,俞斌Pt/PbO2电极在COD测定中初探[J].南京工业大学学报,2002,24(2):93-96.
    [154]Song Y H,Wei G,Xiong R C.Structure and properties of PbO2-CeO2 anodes on stainless ste-el[J].Electrochimica Acta,2007,57:7022-7027.
    [155]张招贤.钛电极工学[M].北京:冶金工业出版社,2003:645-648.
    [156]R Amadelli, L Aimelao, A B Veliehenko, et al. Oxygen and ozone evolution fluoride modifi ed lead dioxide electrodes[J]. Eleetroehimica Aeta,1999,45:713-720.
    [157]Tong S P, Zhang T M,Ma C A. Oxygen evolution behavior of PTFE-PbO2 electrode in H2SO4 solution[J].Chinese Journal of Chemical Engineering,2008,16(6):885-889.
    [158]R Amadelli, L Armelao, E Tondello, et al. A SIMS and XPS study about ions influence on e lectrodeposited PbO2 films [J].Applied Surface Seience,1999,142:200-203.
    [159]A B Veliehenko, D Devilliers. Eleetrodeposition of fluorine-doped lead dioxide [J]. Journal of fluorine chemistry,2007,128(4):269-276.
    [160]Amemiya S, Bard A J, F F Mirkin, et al. [J]. Anal. Chem.,2008,1,95-131.
    [161]陈玉峰,吴英绵,赵菁,等.电沉积Pt基二氧化铅电极的机理研究[J].河北化工,2007,30(12):18-19,46.
    [162]Velichenko A.B, Girenko D V, Kovalev S V, et al. Kinetics of the lead dioxide electrodepo-sition from a nitrate electrolyte [J]. Elektrokhimiya,1999,35(12):1420-1423.
    [163]D Devilliers,M T Dinh Thi,E Mahe,et al.Electroanalytical investigations on electrodeposited lead dioxide[J].Journal of Electroanalytical Chemistry,2004,573:227-239.
    [164]D Devilliers, M T Dinh Thi, E Mahea, et al. Cr(III) oxidation with lead dioxide-based anode s [J]. Electrochimica Acta,2003,48(28):4301-4309.
    [165]A B Velichenko, E A Baranova, D V Girenko, et al. Mechanism of electrodeposition of lead dioxide from nitrate solutions[J]. Russian Journal of Electrochemistry,2003,39(6):615-621.
    [166]Di LI. Electrochemical principle (M).BeiJing:Bei Hang University Press,1999:87-97.
    [167]Wen Chao LI. Metallurgical and materials physical chemistry (M).BeiJing:Metallurgical Industry Press,2001.457-467.
    [168]Ren Xiubing,Lu Haiyan,Liu Yanan,et al.3-Dimensional growth mechanism of lead dioxide electrode on the Ti substrate in the process of electrochemical deposition[J].China Academi-c Journal Electronic Publishing House.
    [169]Liu H L,Liu Y,Zhang C,et al.Electrocatalytic oxidation of nitrophenols in aqueous solution u sing modified PbO2 electrodes[J]. Appl Electrochem,2008,38:101-108.
    [170]王留成,李晓乐,赵建宏,等.掺杂PbO2/Ti阳极在硫酸铬电氧化过程的电极行为[J].化学研究与应用,2007,19(2):172-175.
    [171]Leonardo S, Andrade, Romeu C, et al. Degradation of phenol using Co-and Co,F-doped PbO2 anodes in electrochemical filter-press cells[J].Journal of Hazardous Materials,2008, 153:252-260.
    [172]V Saez, E Marchante, M I Diez,et al.A study of the lead dioxide electrocrystallization mech-anism on glassy carbon electrodes.Part Ⅰ:Experimental conditions for kinetic control[J].Mat-erials Chemistry and Physics,2011,125:46-54.
    [173]A B Velichenko, R Amadelli, E A Baranova, et al. Electrodeposition of Co-doped lead diox-ide and its physicochemical properties [J].Journal of Electroanalytical Chemistry,2002,527: 56-64.
    [174]Zhu Longzhang, Chen Yufei, Yu Jiangping. Function of rare earth compounds on electrode-position of zinc-nickel alloy [J].Chemical Research and Application,2001,13(1):98-102.
    [175]A B Velichenko, E A Baranova, D V Girenko, et al. Mechanism of electrodeposition of lead dioxide from nitrate solutions [J].Russian Journal of Electrochemistry,2003,39(6):615-621.
    [176]Chen X M,Yao P D,Wang D H,et al.Antimony and cerium co-doped tin oxide electrodes for pollutant degradation[J].Chemical Engineering Journal,2009,147:412-415.
    [177]胡吉明.Ti基IrO2+Ta2O5阳极析氧电催化与失效机制研究[D].北京:北京科技大学,2000.
    [178]Mario H P Santana, Luiz A De Faria, Julien F C Boodts. Investigationof the properties of Ti/ [IrO2-Nb2O5]electrodes for simultaneous oxygen evolutionand electrochemical ozone Prod-uction,EOP [J].Electrochimica Acta,2004,49:1925-1935.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700